
WS 2008/09 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 4
Remote Procedure Calls and

Distributed Transactions

Outline

 Remote Procedure Call
 concepts

 IDL, principles, binding

 variations variations
 remote method invocation

 example: Java RMI

 stored procedures

 Distributed Transaction Processing
 transactional RPC
 X/Open DTP

 Summary

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
2

WS 2008/09 2

Communication and Distributed Processing

 Distributed (Information) System
 consists of (possibly autonomous) subsystems
 jointly working in a coordinated manner

How do subsystems communicate? How do subsystems communicate?
 Remote Procedure Calls (RPC)

 transparently invoke procedures located on other machines

 Peer-To-Peer-Messaging
 Message Queuing

 Transactional Support (ACID properties) for distributed processing
 Server/system components are Resource Managers
 (Transactional) Remote Procedure Calls (TRPC)

© Prof.Dr.-Ing. Stefan Deßloch

 Distributed Transaction Processing

Middleware for Information Systems
3

Remote Procedure Call (RPC)

 Goal: Simple programming model for distributed applications
 based on procedure as an invocation mechanism for distributed components

 Core mechanism in almost every form of middleware
Di t ib t d i t t (t tl) i h t Distributed programs can interact (transparently) in heterogeneous
environments
 network protocols
 programming languages
 operating systems
 hardware platforms

 Important concepts
 Interface Definition Language (IDL)

Interface Definition
Language (IDL)

IDL Compiler

© Prof.Dr.-Ing. Stefan Deßloch

 Proxy (Client Stub)
 Stub (Server Stub)

Middleware for Information Systems
4

StubProxyHeader files

WS 2008/09 3

How RPC Works

 Define an interface for the remote procedure using an IDL
 abstract representation of procedure

 input and output parameters

 can be independent of programming languages can be independent of programming languages

 Compile the interface using IDL-compiler, resulting in
 client stub (proxy)
 server stub (skeleton)
 auxiliary files (header files, …)

 Client stub (proxy)
 compiled and linked with client program
 client program invokes remote procedure by invoking the (local) client stub

© Prof.Dr.-Ing. Stefan Deßloch

 implements everything to interact with the server remotely

 Server stub (skeleton)
 implements the server portion of the invocation
 compiled and linked with server code
 calls the actual procedure implemented at the server

Middleware for Information Systems
5

RPC
Client’s system

Client
application

Client
proxy

RPC
runtime

PACK

ARGUMENTPay_cc

Call SEND

Servers’s system

RPC
runtime

Server
stub

Server
application

UNPACK

ARGUMENT

RECEIVE Pay_cc

CALL
PACKET

UNPACK

RESULT

Return to

Pay_Bill

RECEIVE

WAIT

1. The client
calls the local

3. The client runtime
system sends the cal l

PACKSEND RETURN

WORK

5. The server stub
unpacks the

RETURN
PACKET

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
6

proxy.

2. The client proxy
marshals (packs)
arguments to
Pay_cc.

y
packet (arguments
and procedure name).

p
arguments and calls
the server program.

4. The server runtime
receives the message
and calls the right
stub.

4. The Pay_cc program runs
as if it were cal led local ly. Its
results flow back to the caller
by reversing the procedure.

WS 2008/09 4

Binding in RPC

 Before performing RPC, the client must first locate and bind to the server
 create/obtain an (environment-specific) handle to the server
 encapsulates information such as IP address, port number, Ethernet address, …

 Static binding
h dl "h d d d" h l b l handle is "hard-coded" into the client stub at compile-time

 advantages: simple and efficient
 disadvantages: client and server are tightly coupled

 server location change requires recompilation
 dynamic load balancing across multiple (redundant) servers is not possible

 Dynamic binding
 utilizes a name and directory service

 based on logical names, signatures of procedures
 server registers available procedure with the N&D server
 client asks for server handle, uses it to perform RPC
 requires lookup protocol/API

© Prof.Dr.-Ing. Stefan Deßloch

 requires lookup protocol/API
 may be performed inside the client stub (automatic binding) or outside
 opportunities for load balancing, more sophisticated selection (traders)

 Location transparency usually means that a remote procedure is invoked just like a
local procedure
 Binding process for remote and local procedures usually differ

Middleware for Information Systems
7

RPC Variation 1: Distributed Objects

 Basic Idea: Evolve RPC concept for objects
 application consists of distributed object components
 object services are invoked using Remote Method Invocation (RMI)

Utilizes/matches advantages of object oriented computing Utilizes/matches advantages of object-oriented computing
 object identity
 encapsulation: object manipulated only through methods
 inheritance, polymorphism
 interface vs. implementation
 reusability

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
8

WS 2008/09 5

Distributed Objects with Java RMI

 Mechanism for
communication
 between Java programs
 between Java programs and

Directory Service
 between Java programs and

applets
 running in different JVMs,

possibly on different nodes

 Capabilities
 finding remote objects
 transparent communication

with remote objects
 loading byte code for remote

Client

ServerRMI

RMI

RMI

© Prof.Dr.-Ing. Stefan Deßloch

 loading byte code for remote
objects

Middleware for Information Systems
9

Java RMI – Development

 Java is used as the IDL and development programming language
 Development steps

1. Defining a remote interface (e.g., Order)
I l ti bj t l (O d I l hi h i l t O d)2. Implementing server object class (e.g., OrderImpl, which implements Order)
 only application logic; communication infrastructure not "visible"

3. Implement client object, invocation of remote (server) object
 locate the remote object using the RMI registry
 invoke methods on remote object using the remote interface

4. Provide server code for
 creating a server object (instantiate server object class)
 registering the server object with the RMI registry

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
10

WS 2008/09 6

Example - Class and Interface Relationships

Remote

UnicastRemoteObjectextends

'marker'
interface

class providing remote
server object 'infrastructure'

j

Order

OrderImplOrderClient

extendsimplementsstub variable
declaration

call via
stub

create

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
11

OrderServer

client server

Java RMI – Deployment and Runtime

 Deployment
 generate stub and skeleton using RMI

compiler
 invoke server code for creating and Interface Definition
 invoke server code for creating and

registering the server object

 Runtime
 run the client application
 issuing a server object lookup in the client

application will result in transferring a client
stub object (implementing the remote
interface) to the client application

 stub class needs to be loaded into JVM on the
li t ith th h l l l th

Language (Java)

SkeletonStub/Proxy

RMI Compiler

© Prof.Dr.-Ing. Stefan Deßloch

client, either through local class path or
dynamically over the network

 invoking methods on the remote interface
will be carried out using stubs/skeletons as
discussed earlier

Middleware for Information Systems
12

SkeletonStub/Proxy

WS 2008/09 7

RPC Variation 2: Stored Procedures

 Named persistent code to be invoked in SQL, executed by the DBMS
 SQL CALL statement

 Created directly in a DB schema
St d P d ti i Stored Procedure creation requires
 header (signature): consists of a name and a (possibly empty) list of parameters.

 may specify parameter mode: IN, OUT, INOUT
 may return result sets

 body (implementation): using SQL procedural extensions or external programming
language (e.g., Java)

 Invocation of stored procedures
 using CALL statement through the usual DB access approaches (e.g., JDBC – see

CallableStatement)

© Prof.Dr.-Ing. Stefan Deßloch

CallableStatement)
 RPC is not transparent!
 generic invocation mechanism, not stubs/skeletons involved)

 in the scope of an existing DB connection, active transaction

Middleware for Information Systems
13

RPCs and Transactions

 Example scenario for T: debit/credit
 T invokes debit procedure (ST1),

modifying DB1
 T performs credit operation on DBS2

presentation

client

 T performs credit operation on DBS2,
modifying DB2

 Need transactional guarantees for T
 Program structure of T

BOT
CALL debit(…)
CONNECT (DB2)
UPDATE ACCOUNTS SET …
DISCONNECT

application
logic

resource
management

ST1

T

P

distributed TA

© Prof.Dr.-Ing. Stefan Deßloch

DISCONNECT
EOT

 Requires coordination of distributed
transaction
 based on 2PC

Middleware for Information Systems
14

management

DB1 DB2

DBS1 DBS2

WS 2008/09 8

Transactional RPC (TRPC)

 Servers are resource managers
 RPCs are issued in the context of a transaction

 demarcation (BOT, EOT) usually happens on the client

TRPC St b TRPC-Stub
 like RPC-Stub
 additional responsibilities for TA-oriented communication

 TRPC requires the following additional steps
 binding of RPC to transactions using TRID
 notifying TA-Mgr about RM-Calls if performed through RPC (register participant of

TA)
 binding processes to transactions: failures (crashes) resulting in process

© Prof.Dr.-Ing. Stefan Deßloch

termination should be communicated to the TA-Mgr

Middleware for Information Systems
15

X/OPEN – Standard for Distributed TA Processing

 Resource Manager
 recoverable
 supports external coordination of TAs using

2PC protocol (XA-compliant)
TA Mgr

local environment

 TA-Mgr
 coordinates, controls RMs

 Application Program
 demarcates TA

(TA-brackets)
 invokes RM services

 e.g., SQL-statements
 in distributed environment:

performs (T)RPCs

TX-Interface

XA-Interface

R M

TA-Mgr

Application

Request

Begin
Commit
Rollback

Join

Prepare, Commit,
Rollback

(TM)

(AP)

© Prof.Dr.-Ing. Stefan Deßloch

performs (T)RPCs
 Transactional Context

 TRID generated by TA-Mgr at BEGIN
 established at the client
 passed along (transitively) with RM-requests, RPCs

Middleware for Information Systems
16

Resource-Mgr
(RM)

WS 2008/09 9

Interactions in a Local Environment

1. AP -> TM: begin() – establishes transaction context, global TRID
2. TM -> RM: start() – TM notifies frequently used RMs about the new global

transaction, so that RM can associate future AP requests with the TRID
AP RM t th RM3. AP -> RM: request – the RM

1. first registers with the TM to join the global transaction (unless it was already
notified in (2) above), then

2. processes the AP request

4. AP -> TM: commit() (or rollback) – TM will interact with RMs to complete the
transaction using the 2PC protocol

A thread of control is associated with at most one TRID at a time. An AP request

© Prof.Dr.-Ing. Stefan Deßloch

is implicitly associated with a TRID through the current thread.

Middleware for Information Systems
17

X/OPEN DTP – Distributed Environment

TA-Mgr
TM

TA-Mgr
TM

Outgoing
Incoming Start

Begin
Commit

Abort

Recource-Mgr

RM

Recource-Mgr

RM

CM
Comm.-Mgr

Application
CM

Comm.-Mgr
Server

Prepare, Commit, Abort

RM Request
Prepare, Commit, Abort

RM Request
Remote
Request

TRPC

© Prof.Dr.-Ing. Stefan Deßloch

 Outgoing TRPC: CM acts like a RM, notifies local (superior) TM that TA
involves remote RMs

 Incoming TRPC: CM notifies local (subordinate) TM about incoming global TA
 Superior TM will drive hierarchical 2PC over remote TM/RMs through CM

Middleware for Information Systems
18

WS 2008/09 10

Summary

 Remote Procedure Call
 important core concept for distributed IS
 RPC model is based on

interface definitions using IDL interface definitions using IDL
 client stub (proxy), server stub (skeleton) for transparent invocation of remote procedure
 binding mechanism

 RPC Variations
 Remote Method Invocation

 supported in object-based middleware (e.g., CORBA, Enterprise Java)

 Stored Procedures

 Transaction support for RPCs
 distributed transaction processing guarantees atomicity of global TA

© Prof.Dr.-Ing. Stefan Deßloch

 distributed transaction processing guarantees atomicity of global TA
 transactional RPC
 X/Open DTP as foundation for standardized DTP

 variations/enhancements appear in object-based middleware (CORBA OTS, Java JTA/JTS)

Middleware for Information Systems
19

JAVA RMI EXAMPLE
Appendix

© Prof.Dr.-Ing. Stefan Deßloch

JAVA RMI EXAMPLE

Middleware for Information Systems
20

WS 2008/09 11

Example Scenario: Pizza-Service
Customer

id: OID
name: String
create
delete
currentOrder

Order

id: OID
orderDate: Date
deliveryDate: Date
create
addItem

* 1

orders

currentOrder
totalAllOrders

addItem
deliver
cancel
totalPrice

Address

id: OID
zip: int
city: String
street: String

Item

id OID

1

*

1

1

1

address

orderItems

i

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
21

* *
* *

* *

Supplier

id: OID
name: String

id: OID
count: int
create
delete

1

1
addressPizza

id: OID
name: String
price: float
getPrice
setPrice

Ingredient

id: OID
name: String
stock: int

pizzas

ingredients

Example – Remote Service Interface

import java.rmi.*;
import java.util.Date;
public interface Order extends Remote {

public void addItem(int pizzaId, int number)public void addItem(int pizzaId, int number)
throws RemoteException;

public Date getDeliveryDate() throws
RemoteException;

public Date setDeliveryDate (Date newDate) throws
RemoteException;

…
}

© Prof.Dr.-Ing. Stefan Deßloch

...
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.*;

Middleware for Information Systems
22

WS 2008/09 12

Example – Server Class Implementation

...
public class OrderImpl

extends UnicastRemoteObject
implements Order {

i V fIprivate Vector fItems;
private Date fDeliveryDate;
public OrderImpl(String name) throws RemoteException {

super();
try {

Naming.rebind(name, this);
fItems = new Vector();
fDeliveryDate = null;

}
catch (Exception e) {

'export' Order object
for accepting

requests

register
with name

server

© Prof.Dr.-Ing. Stefan Deßloch

catch (Exception e) {
System.err.println(“Output: “ + e.getMessage());
e.printStackTrace();

}
}

...

Middleware for Information Systems
23

server

Example – Server Class (continued)

...
public void addItem(int pizzaId, int number)

throws RemoteException {
// assuming class Item is known// assuming class Item is known
Item item = new Item(pizzaId, number);
fItems.addElement(item);

}
... // Impl. of other methods }

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
24

WS 2008/09 13

Example – Server

...
import java.rmi.*;
import java.server.*;
public class OrderServer {

remote object
name (later used
in client lookup)

public class OrderServer {
public static void main(String args[]) {

try {
OrderImpl order = new OrderImpl(“my_order”);
System.out.println(“Order server is running”);

}
catch (Exception e) {

System.err.println(“Exception: “ + e.getMessage());
e.printStackTrace();

© Prof.Dr.-Ing. Stefan Deßloch

}
}

}

Middleware for Information Systems
25

Example – Client Program

...
import java.rmi.*;
public class OrderClient {

public static void Main(String args[]) {

returns an instance of the stub
class (generated from the remote

Order interface)public static void Main(String args[]) {
try {

Order order = (Order)
Naming.lookup("/my_order");

int pizzaId = Integer.parseInt(args[0]);
int number = Integer.parseInt(args[1]);
order.addItem(pizzaId, number);

}
catch (Exception e) {

Order interface)

© Prof.Dr.-Ing. Stefan Deßloch

System.err.println(“system error: “ + e);
}

}
}

Middleware for Information Systems
26

WS 2008/09 14

Example – Compile, Generate Stub, Run

 Compile:
javac Order.java OrderImpl.java OrderClient.java OrderServer.java

 Generate stub and skeleton code:
i O d I lrmic OrderImpl

 Administrative steps:
 Start directory server: rmiregistry
 Start RMI-Servers: java OrderServer
 Run clients: java OrderClient

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
27

