
WS 2008/09 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 5
Application Server Middleware

Outline

 Types of application server middleware
 tasks

 TP monitors
CORBA CORBA

 Server-side components and EJB
 Summary

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
2

WS 2008/09 2

Types of Middleware

 RPC/RMI middleware infrastructure
 basic development and execution support
 additional services

TP monitor TP monitor
 transaction management, TRPC
 process management
 broad set of capabilities

 Object broker (e.g., CORBA)
 distributed object computing, RMI
 additional services

 Object transaction monitor

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

j
 … = TP monitor + object broker
 most often: TP monitor extended with object-oriented (object broker) interfaces

 Component Transaction Monitor
 … = TP monitor + distributed objects + server-side component model

3

Middleware Tasks

 Distributed computing infrastructure (RPC, RMI)
 Transactional capabilities

 programming abstractions (demarcation)
di t ib t d t ti t distributed transaction management

 Security services
 authentication, authorization, secure transmission, …

 Unified access to heterogeneous information sources and application systems
 Scalable and efficient application processing

 large number of client applications or end users

 Reliability, high availability

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Programming model abstractions that allow the developer to focus on
application logic (i.e., ignore infrastructure as much as possible)

4

WS 2008/09 3

Java RMI

 Location-transparency
 Platform-independence
 Java only
 Additional drawbacks

 no standardized RMI format/protocol
 missing support for important information systems services

 transactions, security, ...

 no support for remaining middleware tasks

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
5

TP Monitor

 Provides functionality to develop, run, manage, and maintain transactional
distributed IS
 transaction management
 process managementp g

 Additional capabilities (beyond TRPC)
 high number of connected clients/terminals (102 - 104)
 concurrent execution of functions
 access shared data

 most current, consistent, secure
 high availability

 short response times
 fault tolerance

 flexible load balancing

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 flexible load balancing
 administrative functions

 installation, management, performance monitoring and tuning

 One of the oldest form of middleware
 proven, mature technology

6

WS 2008/09 4

Scalable and Efficient Application Processing

 Managing large workloads
 one process per client is not feasible
 TP monitor manages server pools

groups of processes or threads pre-

…

 groups of processes or threads, pre-
started, waiting for work

 client requests are dynamically
directed to servers

 extends to pooling of resource
connections

 Load balancing
 distribute work evenly among

members of pool

TP-Monitor
scheduler

server class

serverserverserver

server class

serverserverserver

…

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 TP monitor can dynamically
extend/shrink size of server pools
based on actual workload

 management of priorities for
incoming requests

DBMS

7

Basic Components of a TP Monitor

 Interface
 programs and terminals

 Program flow
 store, load, execute procedures interface

client applicationend user

 store, load, execute procedures
 Router

 maps logical resource operations
to physical resources (e.g.,
DBMS)

 Communication manager
 infrastructure for communicating

with resources
 Transaction manager

W

TP services

transaction m
anagem

ent

program flow

router

communication

programs

resources

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 Wrappers
 hide heterogeneity of resources

 Services
 security, performance

management, high availability,
robustness to failures, …

resource resource

wrapper wrapper

8

WS 2008/09 5

Transactional Services

 Need to strictly distinguish TP monitor and TA manager functionality
 many users/applications don't need TP monitor: batch applications, ad-hoc query

processing
 special application systems (e g CAD) have their own (terminal) environment special application systems (e.g., CAD) have their own (terminal) environment
 but all need transactional support

 Separation of components for
 transactional control (TA manager)
 transaction-oriented scheduling and management of resources (TP monitor)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
9

CORBA - Introduction

 CORBA: Common Object Request Broker Architecture
 Object-oriented, universal middleware platform

 object bus architecture based on RMI concept
l i d d t language-independent

 platform-independent

 OMG
 industry consortium (founded in 1989, 11 members)
 today over 1000 members
 creates specifications (no standard/reference implementations)

 First CORBA products appeared in the 90's
 e.g., IONA's Orbix in 1993 (for C and C++)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

g ()

10

WS 2008/09 6

CORBA – Reference Model

 Object Management Architecture (OMA)
 Interfaces in different categories

 Application Interfaces
 Object Services (horizontal) Object Services (horizontal)
 Domain Interfaces (vertical)

 Telecommunication, Finance, E-Commerce, Medicine, ...

Object Request Broker

Application
Interfaces Domain

Interfaces

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Object Request Broker

Object
Services

11

CORBA – Interface Definition Language

 IDL defines:
 Types
 Constants

Object Interfaces (Attributes Methods and Exceptions) Object-Interfaces (Attributes, Methods and Exceptions)

 Independent of programming language
 language-specific IDL bindings and compilers

C l ie n t S e rv e r

J av a C + + C o b o l

I D L

Jav a C + + C o b o l

ID L

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

S tu b S k e le to n

O R B

12

WS 2008/09 7

CORBA IDL - Example

Module PizzaService {
interface OrderService {

void newOrder (in long custNo, out long orderNo);
void addItem (in long orderNo,void addItem (in long orderNo,

in long pizzaNo,
in long count);

};
interface DeliveryService {

long delivery(in long custNo);
};

};
interface Order {

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

readonly attribute long id; // only get-method
attribute Date deliveryDate; // Date is an IDL interface
void addItem(in long pizzaId, in long pizzaCount);
};

13

CORBA – Core Components

 Object References (Interoperable Object References, IOR)
 Object Request Broker (ORB)
 Object Adapter
 Stubs and Skeletons
 Dynamic Invocation/Skeleton Interface (DII/DSI)

Stub DII DSIORB
Interface

Object
Adapter

Client ORB Core Server ORB Core

SkeletonORB
Interface

t k

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 Service-specific: Stub, Skeleton
 Identical for all applications: ORB Interface, DII, DSI

network

14

WS 2008/09 8

CORBA – ORB and Object Adapter

 ORB
 provides network communication and connection management
 manages stubs (client-side)

maps RMI to object adapter (server side) maps RMI to object adapter (server side)
 provides helper functions (e.g., converting object references)

 Object adapter: Portable Object Adapter (POA)
 generated object references
 maps RMI to server objects
 activates/deactivates/registers server objects
 may perform multi-threading, …

 ORB + object adapter = request broker

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
15

CORBA – Static and Dynamic Invocation

 Static invocation
 stub and skeleton generated by IDL compiler
 IDL interface is mapped to specific programming language

static type checking (at compile time) static type checking (at compile time)

 Dynamic invocation
 object interfaces (meta data) can be discovered/selected at run-time using

interface repository
 generic DII (dynamic invocation interface) operations are used to construct and

perform a request
 dynamic type checking (at run-time)
 more flexible, but less efficient than static invocation

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
16

WS 2008/09 9

CORBA – “On the wire”

 Data format:
 defines encoding of data types
 defines responsibilities for required conversions

Common Data Representation (CDR) Common Data Representation (CDR)

 Communication protocol
 defines client/server interactions

 message format
 message sequence

 CORBA 2.0: General Inter-ORB Protocol (GIOP)
 Internet-Inter-ORB-Protocol (IIOP)

 maps GIOP to TCP/IP
 internet as “Backbone-ORB”

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 internet as Backbone ORB

 optional: Environment-Specific Inter-ORB Protocols (ESIOP)
 example: DCE Common Inter-ORB Protocol (DCE-CIOP)

17

CORBA Object Services

 Goal: extend basic ORB capabilities to provide additional OTM system services
 Naming, Life Cycle, Events, Persistence, Concurrency Control, Transaction,

Relationship, Externalization, Query, Licensing, Properties, Time, Security, Trading,
Collections

 Service usage
 functionality defined using CORBA-IDL
 CORBA object invokes method of service object

 Example: NameService

 CORBA object implements interface provided as part of a service (may not need to
provide any code)

 Example: TransactionalObject

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
18

WS 2008/09 10

CORBA – Object Transaction Service

 Based on X/OPEN DTP model and capabilities
 (flat) ACID transactions

 optional: nested transactions

 TAs may span across ORBs
 X/OPEN DTP

 interoperability with "procedural" TA-Managers

 Roles and interfaces
 transactional client

 demarcation (begin, commit, rollback)
 uses OTS Interface Current

 transactional server
 participates in TA, does not manage any recoverable resources
 "implements" OTS Interface TransactionalObject

 only serves as a "flag" to have the ORB propagate the transaction context

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

y g p p g

 optionally uses OTS Interface Current

 recoverable server
 participates in TA, manages recoverable resources
 implements OTS Interface TransactionalObject and Resource, uses Current and Coordinator

 participates in 2PC

19

OTS – Elements and Interaction

Recoverable
Server

Recoverable

Transactional
Client Server

Transactional

Resource

ORB

Object

Transactional
Object

begin, commit, may force Rollback 2PCRegister

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Transaction Service (OTS)
Transaction Context

begin, commit, may force Rollback 2PCg
resources for
Commit/Rollback

rollback

20

WS 2008/09 11

Server-side Component Models

 Problems with CORBA (up to 2.0)
 complex, non-standard programming of server objects

 service usage (transactions, security, ...)
 behavior fixed at development timep

 resource management, load balancing
 proprietary programming model and interfaces, is supported by object adapter

 Standardized Server-side component model
 defines a set of "contracts" between component and component server for

developing and packaging the component
 developer focuses on application logic

 service use can be defined at deployment time by configuring the application component
 code generation as part of deployment step

resource management load balancing realized by application server

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 resource management, load balancing realized by application server
 component only has to fulfill certain implementation restrictions

 server components are portable

21

Enterprise JavaBeans (EJBs)

 Standard server-side components in Java
 encapsulates application logic

 business object components
 can be combined with presentation logic component models can be combined with presentation logic component models

 servlets, JSPs

 EJB container
 run-time environment for EJB

 provides services and execution context

 Bean-container contract
 EJB implements call-back methods

 Interoperability with CORBA
 invocation: RMI/IIOP

services

EJB-Server

EJB-Container
DB

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 services
EJB

EJB

EJB

Client
file
system

(legacy)
application

22

WS 2008/09 12

EJB - Concepts

 Enterprise Java Bean (EJB) consists of (ejb-jar file):
 class implementing business logic (Bean)
 remote interface, defining methods

life cycle interface (Home interface) life-cycle interface (Home interface)
 create, retrieve, delete

 deployment descriptor
 primary-key class for uniquely identifying persistent bean objects

 Client interacts with bean using EJB object und EJB home
 generated at deployment time

C tH

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

EJB Container

Client
CartHome

Cart

CartBean

23

EJB – Basic Types

 Session Beans
 realizes business activity or process

 Entity Beans
t i t t b i bj t represent persistent business objects

 Message-driven Beans
 asynchronous, message-oriented (JMS)
 facilitates integration with existing applications

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
24

WS 2008/09 13

Entity Beans

 Persistent objects
 object state usually managed by a DBMS
 Primary-Key allows object access

Home interface has methods for creating finding deleting EB Home interface has methods for creating, finding, deleting EB
 Home.findByPrimaryKey(...)
 individual finder methods

 an entity (instance) can be used by multiple clients/objects
 governed by concurrency, transaction mechanisms

 Persistence mechanism
 bean-managed (BMP), container-managed (CMP)

 Relationships
management of relationships between entities

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 management of relationships between entities

 Query
 EJB-QL

 specification of semantics of user-defined finder methods

25

Session Beans

 Realization of session-oriented activities and processes
 isolates client from entity details
 reduces communication between client and server components

Session beans are transient Session beans are transient
 bean instance exists (logically) only for duration of a "session"

 Home.create(...), Home.remove()

 stateless session bean
 state available only for single method invocation

 stateful session bean
 state is preserved across method invocation

 session context

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 association of bean instance with client necessary

 not persistent, but can manipulate persistent data
 example: use JDBC, SQLJ to access RDBMS

26

WS 2008/09 14

Example

 look up Home interface
Context initialContext = new InitialContext();
CartHome cartHome = (CartHome)

initialContext lookup(“java:comp/env/ejb/cart”);initialContext.lookup(java:comp/env/ejb/cart);

 create session bean
cartHome.create(“John”, “7506”);

 invoke bean methods
cart.addItem(66);
cart.addItem(22);
...

 delete session bean

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

cart.remove()

27

Deployment

 EJB is server-independent
 What happens during deployment

 make classes and interfaces known
if i f b tt ib t t DB t t specify mapping of bean attributes to DB structures

 configuration regarding transactional behavior
 configuration of security aspects
 setting environment/context variables
 generation of glue-code

 Specified using a deployment descriptor
 XML file

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
28

WS 2008/09 15

Demarcation of Transactions

obj
method invocation

obj

obj obj

obj

objobj

transactional object

transaction

obj

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

RM "RM"RM RM

29

Transactional Object Behavior

obj obj
begin … commit

objobj

objobj objobj

no current TA-context:
begin … commit

propagate existing
TA-context

don't propagate
existing TA-context

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

RM RM RM "RM"

no current TA-context:
error! current. TA: suspend

new TA: begin … commit
old TA: resume

30

WS 2008/09 16

Transaction Management Approaches

 Explicit (programmatic) management
 method interacts with TA manager using demarcation API

 begin, commit, rollback
 suspend, resume suspend, resume

 management of transaction context
 direct: passed along as explicit method parameter
 indirect (preferred!): a "current" TA context is propagated automatically

 Implicit (declarative) management
 separate specification of transactional properties

 can be realized/modified independent of application logic
 may be deferred to deployment phase

 supported through container services

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

pp g

 Combination of both approaches in distributed IS

31

Explicit Demarcation with JTA

 Can be used by EJB Session Beans and EJB client, web components
 EJB: in descriptor transaction-type = Bean
 not supported for EntityBeans

 Demarcation uses JTA UserTransaction
 begin() – creates new TA, associated with current thread
 commit() – ends TA, current thread no longer associated with a TA
 rollback() – aborts TA
 setRollbackOnly() – marks TA for later rollback

 beans with implict TA-mgmnt can use method on EJBContext

 setTransactionTimeout(int seconds) – sets timeout limit for TA
 getStatus() – returns TA status information

 active, marked rollback, no transaction, ...

 Stateless SessionBeans

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 begin() and commit() have to be issued in the same method

 Stateful SessionBeans
 commit() and begin() can be issued in different methods
 TA can remain active across method invocations of the same bean

32

WS 2008/09 17

Implicit (Declarative) Demarcation in EJB

obj obj
begin … commit

objobj

objobj objobj

Descriptor:
Required

Descriptor:
Supports

Descriptor:
NotSupported

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

RM RM RM "RM"

Descriptor:
Mandatory Descriptor:

RequiresNew

33

EJBs – Transactional Properties

 Transaction attributes for methods specified in deployment descriptor:

TA-Attribute Client-TA TA in method

Not Supported none
T1

none
none

Supports none
T1

none
T1

Required none
T1

T2
T1

RequiresNew none T2

recommended
for
CMP
entity beans

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

T1 T2

Mandatory none
T1

error!
T1

Never none
T1

none
error

entity beans

34

WS 2008/09 18

Transactions in J2EE

 Application component may use Java Transaction APIs (JTA)
 UserTransaction object provided via JNDI (or EJB-context)

Java application
or application server

DBk

DBi
JDBC
JMS

javax.transaction.
TransactionManager

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

RMRMTM RM

k

MQ Server

javax.transaction.
xa.XAResource

35

JDBC - Distributed Transaction Support

 Requires interaction with a transaction manager
 X/Open DTP, Java Transaction Service (JTS)

 Demarcation of transaction boundaries
J T ti API (JTA) Java Transaction API (JTA)

 UserTransaction Object

 NOT using methods of Connection interface

 JDBC defines additional interfaces to be supported by a driver implementation
to interact with transaction manager
 XADataSource, XAConnection, ...

 DataSource interface helps to make distributed transaction processing
transparent to the application

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
36

WS 2008/09 19

Connection Pooling

 Improves performance, scalability
 establishing a connection is expensive

 communication/storage resources
 authentication, creation of security context

Server side application components Server-side application components
 DB access often in the context of few (shared)

user ids
 connection is often held only for short duration

(i.e., short processing step)

 Reuse of physical DB connection desirable
 open -> "get connection from pool"
 close -> "return connection to pool"

 Connection pooling can be "hidden" by
DataSource, Connection interfaces

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 transparent to the application

source: JDBC 3.0

37

Distributed Transaction Processing with JDBC

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

source: JDBC 3.0

38

WS 2008/09 20

JTS Architecture

(EJB-)
application resource

adapter
resource
managerpp

server adapter manager

JTS TM JTS or OTS
transaction

manager (TM)Java-

javax.transaction.
TransactionManager

javax.transaction.
xa.XAResource

Org.com.
C

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

manager (TM)
JTA Mapping

of
CORBA

CosTransactions

39

EJB Resource Management

 Traditional task of a (component) TP monitor
 pooling of resources, load management and balancing

 EJB specification
 Instance Pooling and Instance Swapping Instance Pooling and Instance Swapping

 EJB server manages (small) number of Enterprise Beans
 reuse, dynamic selection for processing incoming requests

 made possible by 'indirect' bean access via EJB object
 usually only applicable for stateless session beans and for entity beans

 Passivation and Activation
 bean state can be stored separately from bean (passivation)

 allows freeing up resources (storage), if bean is not used for a while (e.g., end user think time)
 if needed, bean can be reactivated (activation)
 uses Java Serialization
 can also be used for stateful session beans

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 can also be used for stateful session beans

 "Disallowed" for EJB developers:
 creating threads, using synchronization primitives
 I/O, GUI operation
 network communication
 JNI

40

WS 2008/09 21

CORBA Component Model

 Motivated by success of EJB component model
 New CORBA Component Model (CCM) as middle-tier infrastructure

 adds successful EJB concepts
t i l t ti f d l t separates implementation from deployment

 provides container capabilities (transactions, persistence, security, events)
 interoperability with EJBs

 Advantage: CORBA components can be implemented in various programming
languages

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
41

Summary

 Distributed computing infrastructure and transactional capabilities are core
application server middleware features

 Different types of application server middleware
TP monitors object brokers object transaction monitors component transaction TP monitors, object brokers, object transaction monitors, component transaction
monitors

 Additional tasks addressed by middleware
 security, uniform access to heterogeneous resources, scalable and efficient

application processing, reliability, high availability, …
 server-side component model

 high-level abstractions
 portability of server components
 deployment phase

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

p y p

 Broad variance of support for these tasks
 Convergence of different types of middleware

42

