
WS 2008/09 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme

Geb. 36, Raum 329
Tel. 0631/205 3275

dessloch@informatik.uni-kl.de

Chapter 6 – Object Persistence, Relationships
and Queries

Object Persistence

 Persistent object:
 Lifetime of a persistent object may exceed the execution of individual applications

 Goals
hi ld th li ti f i ti d t t shield the application from existing data stores
 data model, query language, API, schema

 simplification of programming model for persistent data access and management
 no explicit interaction with data source using SQL, JDBC, …
 eliminate "object/relational impedance mismatch"

objects relations

structure •complex values, collections
•class hierarchies (inheritance)

•flat tables

bi bi

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
2

relationships •binary
•1:1, 1:n, n:m (using collections)
•uni-/bi-directional references

•binary
•1:1, 1:n
•value-based, symmetric

behavior •methods

access paradigm •object navigation (follow references) •declarative, set-oriented (queries)

WS 2008/09 2

Object-Relational DBMS and JDBC

 Materializing instances of SQL user-defined types as instances of
corresponding Java classes
 manipulated using existing result set or prepared statement interfaces
 get/setObject(<column>) simply "works" for structured types get/setObject(<column>) simply works for structured types
 Example:

ResultSet rs = stmt.executeQuery("SELECT e.addr FROM Employee e");
rs.next();
Residence addr = (Residence)rs.getObject(1);

 Still requires knowledge of DB-schema, explicit SQL statements for retrieval,
insertion, update, deletion of objects

 No support for building Java object references from DB-object relationships

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
3

CREATE TYPE residence (
door INTEGER,
street VARCHAR(100),
city VARCHAR(50))

public class Residence {
public int door;
public String street;
public String city; }

Java SQL

Object Persistence Services & Frameworks

 Basic approach (both in an application server and stand-alone appl. context)
 application interacts only with objects

 create, delete
 access/modify object state variables access/modify object state variables
 method invocation

 persistence infrastructure maps interactions with objects to operations on data
sources

 e.g., INSERT, UPDATE, SELECT, DELETE

 May involve definition of a "mapping" from objects to data store schema
 mapping has to cover

 datatypes
 classes, class hierarchies

© Prof.Dr.-Ing. Stefan Deßloch

 identifiers
 relationships

 see course "Informationssysteme" (EER -> RM) for possible mapping alternatives

Caution: inherent performance impact!

Middleware for Information
Systems

4

WS 2008/09 3

Object Persistence

 Aspects of persistence (Atkinson et.al, SIGMOD Record 1996)
 Orthogonal persistence

 persistence independent of data type, class
 instances of the same class may be transient or persistent instances of the same class may be transient or persistent

 Transitive persistence (aka persistence by reachability)
 objects can be explicitly designated to become persistent (i.e., roots)
 objects referenced by persistent objects automatically become persistent, too

 Persistence independence (aka transparent persistence)
 code operating on transient and persistent objects is (almost) the same
 "client object" side: no impact when interacting with persistent objects

 application may have to explicitly "persist" an object, but continues to use the same interface for
interacting with the persistent object

 interactions with a data store are not visible to/initiated by the client object, but happen

© Prof.Dr.-Ing. Stefan Deßloch

y j pp
automatically (e.g., when object state is modified or at EOT)

 "persistent object" side: no special coding for "implementing" persistence

 Realizing the above aspects
 requires significant efforts in programming language infrastructure

 above goals are almost never fully achieved

 may be considered "dangerous" (transitive persistence)

Middleware for Information
Systems

5

Persistence Programming Model Design Points

 Persistence in application server middleware
 surfaced at the distributed object programming model, or
 supported at the programming language level

Determining object persistence Determining object persistence
 Statically (compile-time) – all/no objects of a certain class/type/programming

model concept are persistent, or
 Semi-dynamic – objects of preselected classes (persistence-capable) may become

persistent dynamically at runtime, or
 Dynamic (also: orthogonal persistence) – any object may be transient or persistent

 Identifying objects
 implicit OID, or

li it (i ibl) bj t k (i k)

© Prof.Dr.-Ing. Stefan Deßloch

 explicit (visible) object key (primary key)

Middleware for Information
Systems

6

WS 2008/09 4

Persistence Programming Model Design Points (2)

 Accessing object state (from client, from server/persistent object)
 (public) member variables, or
 object methods (getter/setter, …)

Updating persistent object state Updating persistent object state
 explicit (methods for store, load, …), or
 automatic (immediate, deferred), or
 combination

 Handling dependencies/relationships
 Referential integrity
 Lazy vs. eager loading
 “Pointer swizzling”

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
7

CORBA – Persistent Object Service

 Goal: uniform interfaces for realizing object persistence
 POS (Persistent Object Service) components

 PO: Persistent Object
 are associated with persistent state PO PO

client app

p
through a PID (persistent object
identifier)

 PID describes data location

 POM: Persistent Object Manager
 mediator between POs and PDS
 realizes interface for persistence

operations
 interprets PIDs
 implementation-independent

 PDS: Persistent Data Service

PO PO PO

POM

DDO ODMG DA

Datastore_CLI

© Prof.Dr.-Ing. Stefan Deßloch

 mediator between POM/PO and
persistent data store

 data exchange between object and
data store as defined by protocols

 Datastore
 stores persistent object data
 may implement Datastore_CLI (encapsulates ODBC/CLI)

Middleware for Information
Systems

8

RDBMS ODBMS
simple
object
store

WS 2008/09 5

CORBA Persistence Model

 CORBA object is responsible for realizing its own persistence
 can use PDS services and functions
 implicit persistence control

client is potentially unaware of object persistence aspects client is potentially unaware of object persistence aspects
(client persistence independence)

 explicit persistence control
 persistent object implements PO interface, which can then be used by the client

 Explicit persistence control by CORBA client:
 client creates PID, PO using factory objects
 PO Interface

 connect/disconnect – automatic persistence for the duration of a "connection"
 store/restore/delete – explicit transfer of data

© Prof.Dr.-Ing. Stefan Deßloch

 delegated to POM, PDS

 caution!: CORBA object reference and PID are different concepts
 client can "load" the same CORBA object with data from different persistent object states

Middleware for Information
Systems

9

Persistence Protocols

 CORBA Persistence Service defines three protocols
 Direct Access (DA) protocols

 PO stores persistent state using so-called direct access data objects (DADOs)
 CORBA objects whose interfaces only have attributesj y
 defined using Data Definition Language (IDL subset)

 precompilation is specific to CORBA/PDS environment

 DADOs may persistently reference other DADOs, CORBA objects

 ODMG'93 protocols
 utilizes ODMG standard for object-oriented databases
 persistent objects are programming language objects, not CORBA objects
 definition of persistence "schema" similar to DA protocol (is a superset)

 own DDL (ODL) for defining POs

 Dynamic Data Object (DDO) protocols

© Prof.Dr.-Ing. Stefan Deßloch

y j () p
 "generic", self-describing DO

 methods for read/update/add of attributes and values
 manipulation of meta data

 used for accessing record-based data sources (e.g. RDBMS) using DataStore CLI interface
 CLI for CORBA

 Protocols are employed in the implementation of POs

Middleware for Information
Systems

10

WS 2008/09 6

EJB – Entity Beans

 Persistence is supported at the EJB/distributed object programming model
 explicit type of EJB for (static) persistent objects
 invocation of remote object methods

life cycle interface (Home interface) life-cycle interface (Home interface)
 create, retrieve, delete
 findByPrimaryKey
 additional, bean-specific finder methods

 primary-key class for uniquely identifying persistent bean objects

 Follows transparent persistence approach on the client
 persistence-related operations (e.g., synchronizing object state with DB contents)

are hidden from the client
 automatic update of persistent object state

© Prof.Dr.-Ing. Stefan Deßloch

 automatic update of persistent object state

Middleware for Information
Systems

11

Entity Beans

 Object persistence logic is implemented separately from business logic
 entity bean "implements" call-back methods for persistence

 ejbCreate – insert object state into DB
 ejbLoad – retrieve persistent state from DB ejbLoad retrieve persistent state from DB
 ejbStore – update DB to reflect (modified) object state
 ejbRemove – remove persistent object state

 Manipulation of CMP fields through access methods (getfield(), setfield(...))
 access within methods of the same EB
 client access can be supported by including access methods in the remote interface
 provides additional flexibility for container implementation

 lazy loading of individual attributes
 individual updates for modified attributes

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
12

WS 2008/09 7

Container-Managed Persistence (CMP)

 Bean developer defines an abstract persistence schema in the deployment
descriptor
 persistent attributes (CMP fields)

 Mapping of CMP fields to DB-structures (e.g., columns) in deployment phasepp g (g ,) p y p
 depends on DB, data model
 tool support

 top-down, bottom-up, meet-in-the-middle
 Container saves object state

 bean does not worry about persistence mechanism
 call-back methods don't contain DB access operations
 may be used to compress/decompress values, derive attribute values, …

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
13

Bean-Managed Persistence (BMP)

 Callback-methods contain explicit DB access operations
 useful for interfacing with legacy systems or for realizing complex DB-mappings

(not supported directly by container or CMP tooling)

 No support for container-managed relationships No support for container-managed relationships
 Finder-methods

 have to be implemented in Java
 no support for EJB-QL

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
14

WS 2008/09 8

Entity Beans (and CORBA) - Problems

 Distributed component vs. persistent object
 granularity
 potential overhead (and possible performance problems)

solution in EJB 2 0: local interfaces solution in EJB 2.0: local interfaces
 but: semantic differences (call-by-value vs. call-by-reference)

 complexity of development process

 Missing support for class hierarchies with inheritance

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
15

JDO – Java Data Objects

 JDO developed as new standard for persistence in Java-based applications
 first JDO specification 1.0 released in March 2002 (after ~ 3 years) through Suns

JCP (Java Community Process)
 > 10 vendor implementations plus open-source projects
 mandatory features and optional features in the specification (i.e., some optional

features are „standardized“  promises better portability).
 Features, elements

 orthogonal, transitive persistence
 native Java objects (inheritance)
 byte code enhancement
 mapping to persistence layer using XML-metadata
 transaction support
 JDO Query Language

© Prof.Dr.-Ing. Stefan Deßloch

 JDO Query Language
 JDO API
 JDO identity
 JDO life cycle
 integration in application server standard (J2EE)

Middleware for Information
Systems

16

WS 2008/09 9

Persistence in JDO

 (Semi-)dynamic persistence
 Java class supports (optional) persistence (implements PersistenceCapable)
 not all instances of the class need to be persistent

application can/must explicitly turn a transient object into a persistent object (and vice application can/must explicitly turn a transient object into a persistent object (and vice
versa)

 Persistence logic is transparent for client at the Java level
 interacting with transient and persistent objects is the same

 Transitive persistence (i.e., by reachability)

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
17

JDO API

PersistenceManagerFactory

 manages connection to persistence layer
 manages PersistenceManager pool

Transaction

 realizes transactional behavior
together with persistence layer

1

 manages PersistenceManager pool

PersistenceManager

g p y

Query

 helps locate persistent objects

Extent

1

1

1

0..n

0..n

use

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
18

 has connection to persistence layer
 manages JDO instance cache

Extent

 represents all instances of a class

1

1 0..n 0..1

WS 2008/09 10

PersistenceManager API - Example

1 Author author1 = new Author("John", "Doe");
2 PersistenceManager pm1 = pmf.getPersistenceManager();
3 pm1 currentTransaction begin();3 pm1.currentTransaction.begin();
4 pm1.makePersistent(author1);
5 Object jdoID = pm1.getObjectId(author1);
6 pm1.currentTransaction.commit();
7 pm1.close();

8 // Application decides that author1
9 // must be deleted
10 PersistenceManager pm2 = pmf.getPersistenceManager();

© Prof.Dr.-Ing. Stefan Deßloch

g p p g g ();
11 pm2.currentTransaction.begin();
12 Author author2 = (Author)pm2.getObjectById(jdoID);
13 pm2.deletePersistent(author2);
14 pm2.currentTransaction.commit();
15 pm2.close();

Middleware for Information
Systems

19

Byte-Code-Enhancement

 Java bytecode (*.class) and metadata (*.jdo)
 Same object class (now implements PersistenceCapable)
 O/R-mapping specification is vendor-specific

MyClass.java

MyClass.java

MyClass.class MyClass.classJava
Compiler

JDO
Enhancer

provided by application
developer

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
20

y j
MyClass.javaJDO
meta data

Java Virtual Machine

JDO
run time environment

developer

provided by JDO
vendor

WS 2008/09 11

Java Persistence API

 Result of a major 'overhaul' of EJB specification for persistence, relationships,
and query support
 simplified programming model
 standardized object-to-relational mapping standardized object-to-relational mapping
 inheritance, polymorphism, "polymorphic queries"
 enhanced query capabilities for static and dynamic queries

 API usage
 from within an EJB environment/container
 outside EJB, e.g., within a standard Java SE application

 Support for pluggable, third-party persistence providers

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
21

Entities

 "An entity is a lightweight persistent domain object"
 entities are not remotely accessible (i.e., they are local objects)
 no relationship with the EntityBeans concept, but co-existence

 Simplified programming model for EJB entitiesp p g g
 entity is a POJO (plain old Java object)

 marked as Entity through annotations or deployment descriptor
 no additional local or home interfaces required
 no implementation of generic EntityBean methods needed

 entity state (instance variables) is encapsulated, client access only through accessor or other
methods

 use of annotations for persistence and relationship aspects
 no XML deployment descriptor required

 Entities and inheritance

© Prof.Dr.-Ing. Stefan Deßloch

 abstract and concrete classes can be entities
 entities may extend both non-entity and entity classes, and vice versa

Middleware for Information
Systems

22

WS 2008/09 12

Identity and Embeddable Classes

 Entities must have primary keys
 defined at the root, exactly once per class hierarchy
 may be simple or composite

must not be modified by the application must not be modified by the application
 more strict than primary key in the RM

 Embeddable classes
 "fine-grained" classes used by an entity to represent state
 instances are seen as embedded objects, do not have a persistent identity

 mapped with the containing entities
 not sharable across persistent entities

 current version of the specification requires/defines only basic support for
embedding

© Prof.Dr.-Ing. Stefan Deßloch

embedding
 only one level
 no support for collections of embedded objects
 inheritance and polymorphism of embedded classes is not required

Middleware for Information
Systems

23

Requirements on Entity Class

 Public, parameter-less constructor
 Top-level class, not final, methods and persistent instance variables must not be final
 Entity state is made accessible to the persistence provider runtime

 either via instance variables (protected or package visible) either via instance variables (protected or package visible)
 or via (bean) properties (getProperty/setProperty methods)
 consistently throughout the entity class hierarchy

 Collection-valued state variables have to be based on (generics of) specific classes in
java.util

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
24

WS 2008/09 13

Mapping to RDBMS

 Entity mapping
 default table/column names for entity classes and persistent fields

 can be customized using annotations, deployment descriptor

 mapping may define a primary table and one or more secondary tables for an mapping may define a primary table and one or more secondary tables for an
entity

 state of an entity/object may be distributed across multiple tables

 Inheritance mapping strategies supported for the mapping
 single table with discriminator column (default)

 table has columns for all attributes of any class in the hierarchy
 tables stores all instances of the class hierarchy

 horizontal partitioning
 one table per entity class, with columns for all attributes (incl. inherited)

© Prof.Dr.-Ing. Stefan Deßloch

 table stores only the direct instances of the class

 vertical partitioning
 one table per entity class, with columns for newly defined attributes (i.e., attributes

specific to the class)
 table stores information about all (i.e., transitive) instances of the class

Middleware for Information
Systems

25

Entity Life Cycle and Persistence

 Orthogonal persistence
 instances of entity classes may be

transient or persistent
 persistence property controlled by

 Entity manager manages entity
state and lifecycle within
persistence context
 persist(obj) -> INSERT persistence property controlled by

application/client (e.g., a
SessionBean)

 persist(obj) > INSERT
 merge(obj) -> UPDATE
 remove(obj) -> DELETE
 find(class, pKey) -> SELECT
 refresh(obj) -> SELECT

titi

new
new()

persist()

()

refresh()

no persistent
ID yet

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
26

entities are
associated with

a persistence
context

managed removed

detached

remove()

merge()

persistence context
ends

persist()

WS 2008/09 14

Relationships

 Persistence model needs to be complemented by relationship support
 represent relationships among data items (e.g., tuples) at the object level
 support persistence of native programming language concepts for "networks" of

objectsobjects
 references, pointers

 Alternatives
 value-based relationships at the object level (see relational data model)

 requires to issue a query (over objects) to locate related object(s)
 no "navigational" access

 relationships are part of persistent object interface(s) or implementation
 getter/setter methods or properties/fields to represent relationship roles of participating

entities

© Prof.Dr.-Ing. Stefan Deßloch

 relationships are always binary, collection support required for 1:n, n:m
 uni-directional or bi-directional representation

 consistency?

 separate relationship concept/service, independent of persistent object interfaces

Middleware for Information
Systems

27

CORBA Relationships

 Relationship Service
 management of object dependencies, separate from object state or interface
 relationship involves: type, role, cardinality

type: types of objects that may participate in a specific relationship type type: types of objects that may participate in a specific relationship type
 role: role names of participating entities

 major goals
 multi-directional use/navigation and relationship maintenance
 decouple relationship from CORBA object reference maintained by each participating

object
 graph traversal
 attributes and behavior for relationships

 generic IDL interfaces for roles, relationships, …
t b bt d f li ti ifi l ti hi (E D t)

© Prof.Dr.-Ing. Stefan Deßloch

 to be subtyped for application-specific relationships (e.g., Emp-Dept)
 supplemented by additional interfaces for relationship graph traversal

 Relationships are separate (CORBA) objects
 highly dynamic, powerful, but very complex to use
 not really suitable for (fine-grained) data-level relationships

Middleware for Information
Systems

28

WS 2008/09 15

EJB - Container-managed Relationships

 Relationships can be defined in deployment descriptor or through annotations
 part of abstract persistence schema

 Relationships may be uni-directional ("reference") or bi-directional
R l ti hi t 1 1 1 1 Relationship types: 1:1, 1:n, n:1, n:m

 Access methods for accessing objects participating in a relationship
 like CMP field methods (get/set)
 Java Collection interface for set-valued reference attributes

 Container generates code for
 relationship maintenance

 cardinality, inverse relationship field consistency are guaranteed

 persistent storage, involves mapping definition as well

© Prof.Dr.-Ing. Stefan Deßloch

p g pp g

 No transitive persistence
 relationship can only be established among entityBeans, which are already

persistent

 Only supported for CMP EntityBeans

Middleware for Information
Systems

29

JDO – Relationships and Transitive Persistence

 All PersistenceCapable objects reachable from persistent object through
standard Java references within an object graph are made persistent, too

 No managed inverse relationships

Author1

Book1 Book2

If Author1 is made
persistent, then all objects
reachable (e.g., books
and chapters) are made
persistent, too!

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
30

Chapter1 Chapter2 Chapter1

WS 2008/09 16

Relationships in Java Persistence API

 Relationships are represented in the same way as persistent attributes
 member variables, get/set method pairs

 Supports uni- and bi-directional binary relationships of the same types as EJB
CMRCMR
 but does not provide automatic maintenance of inverse relationships

 a designated owning side "wins" at the persistent data store

 Selective transitive persistence
 defined using CASCADE options on relationships

 Relationship mapping
 represented using primary key/foreign key relationships
 table for the "owning" side of the relationship contains the foreign key

© Prof.Dr.-Ing. Stefan Deßloch

 N:M-relationships represented using a relationship table

Middleware for Information
Systems

31

Relationships – Additional Aspects

 Discussions about benefits and drawbacks of transitive persistence
 easy to use from a development perspective, but
 implicit definition of persistence

developer needs to understand what to expect in terms of number of resulting insert developer needs to understand what to expect in terms of number of resulting insert
operations

 and what about the "reverse" semantics for object deletion: when should an object
that was implicitly made persistent be deleted?

 when the originally referencing object causing implicit persistence is deleted or removes
the reference?

 when the object is no longer references by other persistent objects (garbage collection)?
 still could be retrieved using its primary key value

 when it is explicitly deleted?

 Cascading delete rules are usually the only mechanism offered to implement

© Prof.Dr.-Ing. Stefan Deßloch

 Cascading delete rules are usually the only mechanism offered to implement
automatic deletion
 relationships can be flagged to cause deletion, if "parent" object is deleted

 often mapped to referential integrity constraints in the DB-mapping

 what is the resulting object state in the application, if the deleted object is still
referenced?

Middleware for Information
Systems

32

WS 2008/09 17

Queries Over Persistent Objects

 Accessing persistent objects through primary key or navigation over
relationships
 is a useful basic mechanism that fits the OO programming model
 but is a severe restriction when accessing collections of persistent objects but is a severe restriction when accessing collections of persistent objects
 and can cause severe performance impact through tuple-by-tuple operations

 Object retrieval through a query language
 required to solve the above problems
 but should not force the developer to drop down to the data store query language

(and schema) again

 Object query language
 continues to shield the developer from data store (and mapping) details

f k f b d

© Prof.Dr.-Ing. Stefan Deßloch

 requires persistence framework to transform object queries into corresponding
data store queries based on the object-to-relational mapping

Middleware for Information
Systems

33

CORBA Queries

 Query Service
 set-oriented queries for locating CORBA objects
 SQL, OQL (ODMG) can be used as query languages

query results are represented using Collection objects query results are represented using Collection objects
 iterators

 not restricted to persistent query objects

 Query can be optionally delegated to a "query evaluator" (e.g., the query
engine of a RDBMS or ODBMS) or to a "queryable collection"
 a query evaluator may iterate over a collection of CORBA objects and access

attributes or evaluate methods, or
 it may involve other queryableCollections to evaluate subqueries and then do the

join processing after retrieving the results

© Prof.Dr.-Ing. Stefan Deßloch

join processing after retrieving the results

 Queries can only access the public attributes of CORBA objects
 everything is based on the remote interfaces of objects

 performance? optimization?

 There is no conceptual mapping from query language concepts (e.g., tables,
object collections) to CORBA concepts provided

Middleware for Information
Systems

34

WS 2008/09 18

EJB Query Language (EJB-QL)

 Introduced as a query language for CMP EntityBeans
 used in the definition of user-defined Finder methods of an EJB Home interface

 no arbitrary (embedded or dynamic) object query capabilities!

 uses abstract persistence schema as its schema basis uses abstract persistence schema as its schema basis
 SQL-like

 Example:
SELECT DISTINCT OBJECT(o)

FROM Order o, IN(o.lineItems) l

WHERE l.product.product_type
= ‘office_supplies’

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
35

Java Persistence Query Language

 Extension of EJB-QL
 named (static) and dynamic queries
 range across the class extensions including subclasses

a persistence unit is a logical grouping of entity classes all to be mapped to the same DB a persistence unit is a logical grouping of entity classes, all to be mapped to the same DB
 queries can not span across persistence units

 includes support for
 bulk updates and delete
 outer join
 projection
 subqueries
 group-by/having

 Prefetching based on outer joins

© Prof.Dr.-Ing. Stefan Deßloch

 Example:
SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1

Middleware for Information
Systems

36

WS 2008/09 19

JDO Query Language

 A JDOQL query has 3 parts
 candidate class: class(es) of expected result objects
 restriction at the class level

 candidate collection: collection/extent to search over candidate collection: collection/extent to search over
 (optional) restriction at the object extent level

 filter: boolean expression with JDOQL (optional: other query language)

 JDOQL characteristics
 read-only (no INSERT, DELETE, UPDATE)
 returns JDO objects (no projection, join)
 query submitted as string parameter  dynamic processing at run-time
 logical operators, comparison operators: e.g. !,==,>=

JDOQL specific operators: type cast using "()" navigation using " "

© Prof.Dr.-Ing. Stefan Deßloch

 JDOQL-specific operators: type cast using () , navigation using .
 no method calls supported in JDOQL query
 sort order (ascending/descending)
 variable declarations

Middleware for Information
Systems

37

Query

 JDO-Query with JDOQL for locating JDO instances:

1 String searchname = "Doe";
2 Q er q pm ne Q er ()2 Query q = pm.newQuery();
3 q.setClass(Author.class);
4 q.setFilter("name == \"" + searchname +"\"");
5 Collection results =(Collection)q.execute();
6 Iterator it = results.iterator();
7 while (it.hasNext()){
8 // iterate over result objects
9 }
10 q.close(it);

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
38

WS 2008/09 20

JDOQL Examples

 Sorting:
1 Query query = pm.newQuery(Author.class);

2 query setOrdering("name ascending firstname ascending");2 query.setOrdering(name ascending, firstname ascending);

3 Collection results = (Collection) query.execute();

 Variable declaration
1 String filter = "books.contains(myBook) && " +

2 "(myBook.name == \"Core JDO\")";

3 Query query = pm.newQuery(Author.class, filter);

4 query.declareVariables("Book myBook");

5 Collection res lts (Collection) q er e ec te()

© Prof.Dr.-Ing. Stefan Deßloch

5 Collection results = (Collection) query.execute();

Middleware for Information
Systems

39

Realizing Automatic Persistence

 Strategies for "loading" objects from the persistent store during navigational
access
 "lazy" loading – object is retrieved only when accessed based on primary key or

reference (relationship)reference (relationship)
 easy to implement
 may cause increased communication with data source, resulting in performance

drawbacks

 "eager" loading
 when an object is requested, transitively load all the objects reachable through references
 requires construction/generation of complex data store queries
 may cause a lot of unnecessary objects to be loaded

 Persistence frameworks usually offer a combination of the above strategies
l i hi b li i l d i d l

© Prof.Dr.-Ing. Stefan Deßloch

 relationships can be explicitly designated as eager or lazy
 at deployment time? separate definitions depending on the application scenario?

 can be generalized to arbitrary persistent attributes
 e.g., to pursue lazy loading of large objects

Middleware for Information
Systems

40

WS 2008/09 21

Realizing Automatic Persistence (2)

 How to write object changes back to the data store
 there may be many fine-grained (i.e., attribute-level) updates on a persistent

object during a transaction
 immediate update: write changes to the DB after every attribute modification immediate update: write changes to the DB after every attribute modification

 easy to implement/support, but many interactions with the DBMS

 deferred update: record changes and combine them into a single update per tuple
at the end of the transaction

 more complex to implement, unless one always updates the complete tuple
 the latter will result in unnecessary processing overhead at the DBMS

 approach needs to be refined to account for consistent query results
 write back changes also before any object query statement are executed

 Concurrency control strategy (determined in combination with the persistent
data store)

© Prof.Dr.-Ing. Stefan Deßloch

data store)
 pessimistic, using locking at the DBMS-level

 requires long read locks to avoid lost updates

 optimistic, by implementing "optimistic locking"

Middleware for Information
Systems

41

Optimistic Locking and Concurrency

 Note: most DBMSs don't support optimistic concurrency control
 Example JPA: optimistic locking is assumed, with the following requirements

for application portability
isolation level "read committed" or equivalent for data access isolation level "read committed" or equivalent for data access

 no long read locks are held, DBMS does not prevent lost updates, inconsistent reads

 declaration of a version attribute for all entities to be enabled for optimistic locking
 persistence provider uses the attribute to detect and prevent lost updates

 provider changes/increases the version during a successful update
 compares original version with the current version stored in the DB, if the version is not the same,

a conflict is detected and the transaction is rolled back

 inconsistencies may arise if entities are not protected by a version attribute
 does not guarantee consistent reads

fli t l b d t t d t th d f (ibl l) t ti

© Prof.Dr.-Ing. Stefan Deßloch

 conflicts can only be detected at the end of a (possibly long) transaction

Middleware for Information
Systems

42

WS 2008/09 22

Transactions in JDO

 JDO transactions supported at the object level
 Datastore Transaction Management (standard):

 JDO synchronizes transaction with the persistence layer
t ti t t f i t l i d transaction strategy of persistence layer is used

 Optimistic Transaction Management (optional):
 JDO progresses object transaction at object level
 at commit time, transaction is synchronized with persistence layer

 Transactions and object persistence are orthogonal

object
characteristics transactional non-transactional

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Information

Systems
43

characteristics

persistent standard optional

transient optional standard (JVM)

Transactions and Concurrency Control

 Access of persistent data resulting from persistent object manipulation always
occurs in the scope of a transaction

 What happens at transaction roll-back?
state of entities in the application is not guaranteed to be rolled back only the state of entities in the application is not guaranteed to be rolled back, only the
persistent state

 What happens if a transaction terminates and objects become "detached"?
 objects can still be modified "offline"

 What happens when objects are merged "re-attached" to a new transaction
context?
 objects are NOT automatically refreshed
 potential for lost updates

© Prof.Dr.-Ing. Stefan Deßloch

 can be controlled by explicit refresh or using optimistic locking

Middleware for Information
Systems

44

WS 2008/09 23

Summary

 Object persistence supported at various levels of abstraction
 CORBA

 standardised "low-level" APIs
 powerful, flexible, but no uniform model for component developer

 various persistence protocols
 explicit vs. implicit (client-side transparent) persistence

 EJB/J2EE Entity Beans
 persistent components

 CMP: container responsible for persistence, maintenance of relationships
 uniform programming model
 transparent persistence

 JDO
 persistent Java objects
 orthogonal, transparent, transitive persistence

© Prof.Dr.-Ing. Stefan Deßloch

g , p , p
 Java Persistence API

 successor of EJB entity beans
 standardized mapping of objects to relational data stores
 influenced partly by JDO, Hibernate
 can be used outside the EJB context as well

Middleware for Information
Systems

45

Summary (2)

 Query Support
 CORBA: queries over object collections

 no uniform query language
 uses SQL, OQLQ , Q

 persistent object schema?

 EJB-QL: queries over abstract persistence schema
 limited functionality, only for definition of Finder methods
 more or less a small SQL subset

 JDO: queries over collections, extents
 limited functionality
 proprietary query language

 Java Persistence Query Language
b d EJB QL (d th f SQL)

© Prof.Dr.-Ing. Stefan Deßloch

 based on EJB-QL (and therefore on SQL)
 numerous language extensions for query, bulk update
 static and dynamic queries

 Queries over multiple, distributed data sources are not mandated by the above
approaches!

Middleware for Information
Systems

46

