
WS 2008/09 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 8 – Web Services Foundations

Types of E-Business

Business To Consumer
(B2C)

Business To Business
(B2B)

Intra Business

• Relation between
enterprise and
customers
• Sales-related aspects
are predominant,
like product presentation,
advertising, service

• Relation between
processes of different
enterprises
• Predominant are
relation to suppliers,
and customer relations
to other enterprises

• Electronic
organization of
internal business
processes, like
realization within
workflow systems

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
2

advisory, shopping like industrial
consumers, retailers,
banks

WS 2008/09 2

B2B Integration – Conventional Middleware

 Middleware itself is (logically) centralized
 usually controlled by a single company
 now requires agreement on using, managing specific middleware platform across

companies ("third party")companies (third party)
 need to implement a "global workflow"
 problems

 lack of trust
 autonomy needs to be preserved
 business transactions are confidential

 Point-to-point solutions
 lack of standardization
 many partners involved -> heterogeneity of middleware platforms

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
3

 many partners involved > heterogeneity of middleware platforms

 Focus on LAN
 insufficient support for internet protocols
 problems with firewalls
 cannot work with multiple trust domains

What’s a Web Service?

 “A Web Service is programmable application logic accessible using standard Internet
protocols…”

Microsoft

“A Web Service is an interface that describes a collection of operations that are network A Web Service is an interface that describes a collection of operations that are network
accessible through standardized XML messaging …”

IBM

 "Web services are software components that can be spontaneously discovered,
combined, and recombined to provide a solution to the user’s problem/request. The
Java language and XML are the prominent technologies for Web services”

Sun

 "A Web Service is a 'virtual component' that hides 'middleware ideosynchracies' like the
underlying component model invocation protocol etc as far as possible"

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
4

underlying component model, invocation protocol, etc. as far as possible
Frank Leymann (IBM)

WS 2008/09 3

Web Services - Definition

 W3C Web Services Architecture WG
 produces WS Architecture Specification (working group note, 02/2004)

 provide a common definition of a web service
 define its place within a larger Web services framework to guide the community

 Definition
 "A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards."

 Earlier, more general definition:
“A Web service is a software application identified by a URI, whose interfaces and

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
5

A Web service is a software application identified by a URI, whose interfaces and
bindings are capable of being defined, described, and discovered as XML artifacts.
A Web service supports direct interactions with other software agents using XML
based messages exchanged via internet-based protocols.”

(October 2002)

Web Services

 New distributed computing platform built on existing infrastructure including
XML & HTTP
 Web services are for B2B what browsers are for B2C

Self contained self describing modular service that can be published located Self-contained, self describing, modular service that can be published, located
and invoked across the web
 Refer to open standards and specifications:

 component model (WSDL)
 inter-component communication (SOAP)
 discovery (UDDI)

 Platform- and implementation-independent access
 Described, searched, and executed based on XML

 Enable component-oriented applications

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
6

 Enable component-oriented applications
 Loose coupling from client to service
 Enable to integrate legacy systems into the web
 Useful for other distributed computing frameworks such as CORBA, DCOM, EJBs
 Web services as wrappers for existing IS-functionality

WS 2008/09 4

Service-Oriented Architecture (SOA)

 Definition (given by OASIS SOA Reference Model):
"A paradigm for organizing and utilizing distributed capabilities that may be under the

control of different ownership domains"
 Principal conceptsp p

 service – mechanism to enable access to one or more capabilities
 provider and consumer roles
 service opaqueness

 invocation interface, separate from implementation

 service-based interactions involve
 visibility (awareness, willingness, reachability)

 availability of service descriptions and policies
 interaction

 interaction modes
 information model – characterizes information exchange (syntax, semantics)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
7

g (y ,)
 behavior model – action model, process model

 real world effect
 return information and/or change some shared state

 service description
 policies and contracts – contrain the service use, reach service use agreement
 service execution context

Service-Oriented Architecture (SOA)

 Service Requestor
 Finds required services

via Service Broker
 Binds to services Binds to services

via Service Provider

 Service Provider
 Provides e-business services
 Publishes availability of these

services through a registry

 Service Registry
 Provides support for publishing

and locating services

Service
Provider

Service
Registry

Service
Requestor

Publish

Find

Bind

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
8

and locating services
 Like telephone yellow pages

WS 2008/09 5

Granularity of Services

 Services can be simple and composite
 check credit card number
 raise a mortgage

Simple services are Simple services are...
 ...provided as servlets, EJBs, Assembler programs,...

 Composite services are...
 ...provided via "choreography"

 referring to other fine grained services
 scripting fine grained services into business processes

 via workflow technology

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
9

Technologies: Service Description & Discovery

 Service Description
 Common Base Language (XML)
 Interfaces (WSDL)

 extend "traditional" IDLs properties and semantics

vertical standards

d

 interaction mode
 address/transport protocol info

 Business Protocols (WSCL, BPEL)
 describe possible conversations

 order of interactions

 Properties and Semantics
(UDDI, WS-Policy)

 descriptions to facilitate binding in a
loosely-coupled, autonomous setting

 e.g., non-functional properties (cost,
transactional & security support)
textual descriptions

 Service Discovery
 Directory/Repository for WS descriptions

common base language

interfaces

business protocols

directories

Service Description and Discovery Stack

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
10

 textual descriptions

 organize this information

 Vertical Standards
 interfaces, protocols, etc. specific to

application domains

 Directory/Repository for WS descriptions
 APIs and protocols for directory

interaction
 at design-time or run-time

WS 2008/09 6

Technologies: Service Interaction & Composition

 Service Interaction
 Transport

 lots of possibilities
 HTTP most common protocol infrastructure

middleware properties

 Basic and Secure Messaging
 standardize how format/package

information to be exchanged (SOAP)
 define how to extend basic mechanism to

achieve additional capabilities (WS-
Security)

 Protocol Infrastructure (meta-protocols)
 general infrastructure for business

interactions
 maintain state of conversation
 meta-protocols

which protocols do we use?  Service Composition

transport

basic and secure messaging

Service Interaction Stack

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
11

 which protocols do we use?
 who is coordinating?

 Middleware Properties (horizontal
protocols)

 properties similar to those of
conventional middleware

 reliability, transactions, …

 Service Composition
 Implement web service by invoking

other web services
 Similar to workflow management, only

for web services

Web Service System Architecture

service provider

 Common internal architecture leveraging conventional middleware

internal web service
middleware

web services interface

access to internal systems

conventional middleware

client

service provider

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
12

other tiers

conventional middleware

other tiers

WS 2008/09 7

External Web Services Architecture

web services
li t web servicetransaction transaction

Service ProviderService Requestor
external middleware

client

internal
middleware

other tiers

web service

internal
middleware

other tiers

transaction
management

other protocol
infrastructure

composition
engine

transaction
management

other protocol
infrastructure

composition
engine

service
d i tiservicei

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
13

descriptionsservice
descriptionsservice

descriptions

Directory Service Provider

Standards

 XML (eXtensible Markup Language)
 Underlying basic representation approach (common syntax)

 SOAP (Simple Object Access Protocol)
St d di d i t ti Standardized interaction

 common data format
 conventions for different forms of interaction (messaging, RPC)
 bindings to lower-level transport protocols (HTTP, SMTP)

 Messages (not RPCs) as the basic communication unit
 loose coupling, broad range of supported protocols

 WSDL (Web Services Description Language)
 Description of a service’s programming interface
 XML-based interface definition language

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
14

 XML-based interface definition language

 UDDI (Universal Description, Discovery and Integration)
 Registry of and search for web services information

 equivalent of a naming and directory service in conventional middleware

WS 2008/09 8

SOAP – Simple Object Access Protocol

basic and secure messaging

protocol infrastructure

middleware properties

 Defines how to format information in XML so that it can be exchanged
between peers
 message format for stateless, one-way communication

 support loosely-coupled applications

 conventions for interaction patterns (RPC)

transport

Service Interaction Stack

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
15

 conventions for interaction patterns (RPC)
 implement "on top of" one-way messaging
 first message encodes the call, second (reply) message the result

 processing rules for SOAP messages
 how to transport SOAP messages on top of HTTP, SMTP

SOAP Envelope Framework

 Defines mechanism for identifying
 What information is in the message
 Who should deal with the information
 Whether this is optional or mandatoryp y

 Envelope element is the root element of the SOAP message, contains
 Optional header element
 Mandatory body element

 Body element
 Contains arbitrary XML

 application-specific
 Child elements are called body entries (or bodies)

 Some consequences

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
16

 Message body cannot contain general XML document, only elements
 Validation of application data (i.e., the body) requires separation from the

surrounding SOAP-specific XML
 Many web service engines support that

WS 2008/09 9

Sample SOAP Message

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>

<m:reservation xmlns:m="http://travelcompany.example.org/reservation"
env:role="http://www.w3.org/2003/05/soap-envelope/role/next "
env:mustUnderstand="true">

<m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference> q pq j /
<m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>

</m:reservation>
<n:passenger xmlns:n="http://mycompany.example.com/employees"

env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">

<n:name>Åke Jógvan Øyvind</n:name>
</n:passenger>

</env:Header>
<env:Body>
<p:itinerary xmlns:p="http://travelcompany.example.org/reservation/travel">

<p:departure>
<p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving>
<p:departureDate>2001-12-14</p:departureDate>

</p:departure>
<p:return>

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
17

p
<p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving>
<p:departureDate>2001-12-20</p:departureDate>

</p:return>
</p:itinerary>

<q:lodging xmlns:q="http://travelcompany.example.org/reservation/hotels">
<q:preference>none</q:preference>

</q:lodging>
</env:Body>

</env:Envelope>

SOAP Headers

 Primary extensibility mechanism in SOAP
 Additional facets can be added to SOAP-based protocols
 Mechanism to

provide additional "control" information (e g directives context information) provide additional control information (e.g., directives, context information)
 pass information that is orthogonal to the specific information to execute the request

 Any number of headers can appear in a SOAP envelope

 Usage areas
 Application-specific extensions (see previous example)

 e.g., reservation identification, customer identification and information, …

 Generic service extensions
 authentication, authorization, transaction management, payment processing, tracing,

auditing

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
18

 Header content
 Arbitrary XML
 Determined by the schema of the header element

WS 2008/09 10

SOAP Processing Model Terminology

 Sender
 Node that transmits a SOAP message.

 Receiver
 Node that accepts a SOAP message.p g

 Message path
 Set of SOAP nodes through which a single SOAP message passes. This includes the initial SOAP

sender, zero or more SOAP intermediaries, and an ultimate SOAP receiver.

 Initial sender
 Sender that originates a SOAP message at the starting point of a SOAP message path.

 Intermediary
 Both a receiver and a sender. Targetable from within a SOAP message. Processes the SOAP

header blocks targeted at it and acts to forward a SOAP message towards an ultimate
receiver.

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
19

 Ultimate receiver
 Final destination of a SOAP message. Responsible for processing the contents of the SOAP

body and any SOAP header blocks targeted at it. Cannot also be an intermediary for the same
SOAP message

SOAP Processing Model

 Describes logical actions taken by a node when receiving a SOAP message
 Every node has to

 check message for syntactical correctness
l SOAP ifi t analyze SOAP-specific parts

 envelope, header, body elements

 Role attribute (optional)
 governs further processing of header blocks
 node assumes one or more roles, selects headers targeted at these roles

 every node must assume the role "next"

 predefined roles ("next", "ultimate_receiver", …) vs. user-defined roles

 MustUnderstand attribute (optional)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
20

 if set to "true" for a selected header, a node assuming the target role MUST
understand and be able to process it

 generate fault if header cannot be processed, before any processing is started

WS 2008/09 11

SOAP Intermediaries

 SOAP intermediaries provide "value-added services"
 SOAP message can travel through multiple SOAP nodes

 Sender [-> Intermediary …] -> ultimate Receiver

 Intermediaries process one or more SOAP headers Intermediaries process one or more SOAP headers
 Header is removed from the message after processing (default behavior)

 can be reinserted by the intermediary, possibly with modified values

 Intermediary does not need to understand message body

reservation
client

cust-service
intermed.

reservation
server

•customer id
•reservation id
•body

•customer id
+ preferences

•reservation id
•body

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
21

 Relay attribute (optional)
 relayable headers that were targeted at the intermediary but were not processed

have to be forwarded
 non-relayable headers that were targeted at the intermediary but were not

processed have to be removed

Error Handling in SOAP

 SOAP Fault element
 Returned as the single element inside the body of the response

 Fault element indicates which error occurred and provides diagnostic
information through child elementsg
 Code element (required)

 Hierarchical namespace of faultcode values
 E.g., Client.AuthenticationFailure

 Top level codes:
 VersionMismatch
 MustUnderstand – a required header was not understood
 Client – likely cause is content or formatting of the SOAP message
 Server

 Reason element contains human-readable message
 Ability to signal a fault depends on the underlying message transfer

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
22

 Ability to signal a fault depends on the underlying message transfer
mechanism
 protocol binding has to specify the details

WS 2008/09 12

SOAP Data Encoding

 Encoding simple data types (e.g., strings, integers, booleans, …) is easy
 Use the corresponding XML Schema representation
 The xsi:type can be used to further describe the data type passed in the message

 Example: Example:
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol xsi:type=“xsd:string”>DEF</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

 For more complex types (e.g., arrays, arbitrary objects), one may want to use a specific
encoding
 Attribute encodingStyle can appear in any element in a SOAP message

 SOAP defines set of encoding rules, based on XML Schema
 SOAP-ENV:encodingStyle=http://schemas xmlsoap org/soap/encoding/

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
23

 SOAP ENV:encodingStyle http://schemas.xmlsoap.org/soap/encoding/
 SOAP arrays, structures, …

 Usage is not mandatory
 E.g., a vendor may support an optimized encoding format

SOAP-based RPCs

 SOAP is fundamentally a stateless, one-way message exchange paradigm
 …but applications can create more complex interaction patterns

 Request/response, request/multiple responses

 SOAP-based RPC
 Employs request/response message exchange pattern (MEP)

 MEPs define "templates" for more complex message eschanges

 Invocation is modeled as a struct of in/inout parameters
 <doCheck>

<product> … </product>
<quantity> … </quantity>

</doCheck>

 Response is modeled as a struct as well
 <doCheckResponse> … </doCheckResponse>

 All data is passed by-value

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
24

 Endpoint (address of target node) to be provided in a protocol binding-specific manner

 Protocol Bindings and RPC
 RPC not predicated to any protocol binding
 Binding to HTTP (synchronous protocol) makes RPC-style “natural”

 One-way exchange will use simple acknowledgement as HTTP response

WS 2008/09 13

A Simple SOAP/HTTP RPC

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: application/soap+xml ;
charset="utf-8"

Object Endpoint

charset= utf-8
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
< b l>DIS</ b l>

Method Name

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
25

<symbol>DIS</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Input Parameter

A Simple SOAP Response

HTTP/1.1 200 OK
Content-Type: application/soap+xml;
charset="utf-8„
Content Length: nnnnContent-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>
<m:GetLastTradePriceResponse xmlns:m="Some-URI">

<Price>34.5</Price> Standard

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
26

</m:GetLastTradePriceResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Standard
Suffix

WS 2008/09 14

More SOAP

 SOAP protocol bindings
 SOAP standard defines a binding to HTTP
 SOAP is transport-independent, can be bound to any protocol type

E g SMTP message queuing systems E.g., SMTP, message queuing systems, …

 SOAP with Attachments
 XML isn’t good at carrying non-XML things within it
 Introduces an outer multipart MIME envelope
 Root part is SOAP envelope
 Other parts can be anything: XML, images, …

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
27

Beyond SOAP – WS-Addressing

 Source and Destination information
 SOAP does not define them as part of the message itself

 relies on protocol-specific bindings

 Example: SOAP/HTTP Example: SOAP/HTTP
 endpoint reference is a URL encoded in the HTTP transport header
 destination of the response is determined by the return transport address

 Information might be lost
 transport connection terminates (timeout)
 message forwarded by an intermediary (e.g., a firewall)

 Response always goes to sender
 not possible to have response go somewhere else

 WS-Addressing

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
28

g
 provides a mechanism to place the target, source and other important address

information directly within the Web service message
 decouples address information from any specific transport model

 w3c recommendation

WS 2008/09 15

WS-Addressing Constructs

 Endpoint reference
 uniquely identifies WS endpoint

 Message information headers
 describe end-to-end message characteristics such as

d d ti ti d i t source and destination endpoints
 message identity

 Example
<S:Envelope xmlns:S="http://www.w3.org/2002/12/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<S:Header>

<wsa:MessageID>
http://example.com/6B29FC40-CA47-1067-B31D-00DD010662DA

</wsa:MessageID>
<wsa:ReplyTo>

<wsa:Address>http://business456.com/client1</wsa:Address>
</wsa:ReplyTo>

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
29

</wsa:ReplyTo>
<wsa:To>http://fabrikam123.com/Purchasing</wsa:To>
<wsa:Action>http://fabrikam123.com/SubmitPO</wsa:Action>

</S:Header>
<S:Body>

...
</S:Body>

</S:Envelope>

Web Services Description Language (WSDL)

 Provides all information necessary to programmatically access a service
 documentation for distributed systems
 recipe for automating the details involved in applications communication

WSDL specification WSDL specification
 standardization pursued by w3c

 http://www.w3.org/TR/wsdl

 V1.1 specification is a w3c note
 not an official standard, but most widely used

 WSDL 2.0 is a w3c recommendation

i f

business protocols

protocols and semantics

vertical standards

directo

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
30

common base language

interfaces

ries

Service Description and Discovery Stack

WS 2008/09 16

WSDL Goals

 Provides a description of the logical interface of a web service
 operations, parameters, …
 similar to IDL in conventional middleware

Also describes mechanism to access the web service Also describes mechanism to access the web service
 which protocol is used

 SOAP, …

 service location

 Support modular specifications
 same service interface can be provided through different protocols and data

formats, at different locations

 Defines interaction paradigms (message exchange patterns)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
31

 exchange of several asynchronous messages

Ingredients of WSDL

 Abstract part
 Types: Definitions of data types needed
 Message Exchange Pattern: Abstract definition of data exchanged

Operation: Abstract actions supported by the service Operation: Abstract actions supported by the service
 Interface: Interface defined as set of operations

 Concrete part
 Binding: Concrete protocol and data format used to implement an interface
 Endpoint: Single individual "end point" identified by a network address supporting

a particular binding
 Service: Collection of related "end points"

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
32

WS 2008/09 17

WSDL 2.0 Document Structure

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
33

Modularizing Service Definitions

 WSDL document defines a target namespace
 similar to XML Schema target namespace

 Import/Include
d i ti<description>

[<import namespace="uri" location="uri"/> | <include location="uri"/>]*
</description>

 Can be used to factor out any kind of definitions
 Types, Interface, Bindings,... or any combination of these
 Example:

 Import Interface and specify Binding
 Import Binding and specify Service

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
34

 Import, include differ regarding namespaces
 include: referenced WSDL document needs to have same target namespace
 import: referenced WSDL can have different target namespace

 components are referenced in importing document using qualified names

WS 2008/09 18

Message Exchange Patterns

 Define sequence and cardinality of messages in an operation
 abstract: not message types, no binding-specific information is specified
 minimal contract

Standard MEPs defined by WSDL specification Standard MEPs defined by WSDL specification
 in-bound MEPs

 In-Only, Robust In-Only, In-Out, In-Optional-Out

 out-bound MEPs
 Out-Only, Robust Out-Only, Out-In, Out-Optional-In
 Where to send to? Outside scope of WSDL

 Information could be provided through another (subscribe) operation or defined at deployment
time

 fault model

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
35

 robust*, *-optional-*: fault message may be sent as a reply
 In-Out, Out-In: fault message may replace a reply
 *-Only: do not generate fault messages

 Extensibility – possible to define new MEPs

Types

<description…>
<types>

<xsd:schema…/>*
</types></types>

</description>
 Type clause used to define types used in message exchange

 all message types (normal, fault) are single, top-level elements
 Default type system is XML Schema

 Special extensibility element foreseen to refer to other type system
 Example

<description targetNamespace= …> …
<types>

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
36

<types>
<xsd:schema …>

<xsd:complexType name=“registration”>
… </xsd:complexType>

<xsd:element name="registrationRequest" type="registration"/>
</xsd:schema>

</types>
…

WS 2008/09 19

Interface

 Interface is a set of abstract operations
 may extend other interfaces (i.e., multiple interface inheritance)

 faults, operations, etc. are inherited
 overloading of operations is not supported overloading of operations is not supported
 inheritance conflicts must not occur

 default style for operations can be specified

 Operation groups a set of abstract messages involved
 references a MEP that defines sequence of messages
 defines the structure of input, output, infault, outfault messages by referencing the

appropriate (schema) types
 optionally declares a style

 rules used for generating messages, e.g., RPC style

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
37

g g g , g , y

 may optionally be declared "safe"
 no further obligations result from an invocation

 Interface Fault
 definition of faults that can occur in the scope of this interface

Interface Syntax (Simplified)

<description targetNamespace="xs:anyURI" >
. . .

<interface name="xs:NCName" extends="list of xs:QName"?
styleDefault="list of xs:anyURI"? >styleDefault= list of xs:anyURI ? >

<fault name="xs:NCName" element="xs:QName"? > </fault>*
<operation name="xs:NCName" pattern="xs:anyURI" style="list of xs:anyURI"?

wsdlx:safe="xs:boolean"? >
<input messageLabel="xs:NCName"? element="union of xs:QName, xs:Token"? > </input>*
<output messageLabel="xs:NCName"? element="union of xs:QName, xs:Token"? > </output>*
<infault ref="xs:QName" messageLabel="xs:NCName"? > </infault>*
<outfault ref="xs:QName" messageLabel="xs:NCName"? > </outfault>*

</operation>*

</interface>*

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
38

. . .

</description>

WS 2008/09 20

RPC Style

 Designed to facilitate programming language bindings to WSDL
 ensure that the messages can be mapped to function/method signatures

 Can be used in combination with MEPs in-only, in-out
M h h t f ll th f ll i l Message schemas have to follow the following rules
 structure of input/output messages is defined as complex type with sequence
 no complex content models (e.g., choice, group, …) allowed with sequence
 only local elements allowed as sequence items (but may be nillable, have multiple

occurrence)
 local name of input message element corresponds to the operation name
 local name of output message element is a concatenation of operation name |

"Response"
tt ib t ll d f t t d l f i t/ t t

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
39

 no attributes allowed for content model of input/output messages
 …

Example
. . .
<types>
<xs:element name="checkAvailability">

<xs:complexType>
<xs:sequence>

<xs:element name="checkInDate"

<interface name = "reservationInterface" >
<operation name="checkAvailability"

pattern="http://www.w3.org/2006/01/wsdl/in-out"
style="http://www.w3.org/2006/01/wsdl/rpc"
wrpc:signature= "checkInDate #in

checkOutDate #in roomType #inout<xs:element name checkInDate
type="xs:date"/>

<xs:element name="checkOutDate"
type="xs:date"/>

<xs:element name="roomType"
type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="checkAvailabilityResponse">

<xs:complexType>
<xs:sequence>

<xs:element name="roomType"
t " t i "/

yp
rateType #out rate #return">

<input messageLabel="In"
element="tns:checkAvailability" />

<output messageLabel="Out"
element="tns:checkAvailabilityResponse" />

</operation>
. . .

</interface>
. . .

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
40

type="xs:string"/>
<xs:element name="rateType"

type="xs:string"/>
<xs:element name="rate"

type="xs:double"/>
</xs:sequence>

</xs:complexType>
</xs:element> …

</types>

WS 2008/09 21

Binding

 Interface, type elements define the abstract, reusable portion of the WSDL definition
 The binding element tells the service requestor how to format the message in a

protocol-specific manner
 interface can have one or more bindings

l ifi id d i bi di i Protocol-specific aspects are provided using binding extensions
<binding name="…" interface="…"?>

<-- extensibility element (1) -->*
<operation ref="…">*

<-- extensibility element (2) -->*
<input messageLabel="…"?>?

<-- extensibility element (3) -->*
</input>
<output messageLabel="…"?>?

<-- extensibility element (4) -->*
</output>
<infault ref="…" messageLabel="…"?>*

<-- extensibility element (5) -->*
</infault>

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
41

</infault>
<outfault ref="…" messageLabel="…"?>*

<-- extensibility element (6) -->*
</outfault>

</operation>
</binding>

 Standard binding extensions for SOAP/HTTP, HTTP GET/POST, SOAP w/MIME
attachments

SOAP Binding - Details

 <soap:binding>
 protocol: HTTP, SMTP, FTP, …
 mep: default SOAP message exchange pattern for operations

<soap:operation> <soap:operation>
 action: value of SOAPAction HTTP header (SOAP over HTTP only!)
 mep: actual mep for the operation

 e.g., soap-response for implementing an in-out WSDL MEP

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
42

WS 2008/09 22

Endpoint and Service

 Endpoint
 Specifies the network address of the endpoint hosting the web service

 Service
 Contains a set of related endpoint elementsp

 Group endpoints related to the same service interface but expressed by different protocols (bindings)

 Example
<service name="StockQuoteService"

interface="StockQuoteInterface">

<endpoint name="StockQuoteEndpoint“

binding="tns:StockQuoteSoapBinding">

<address="http://myservice.com/stockquote"/>

</port>

</service>

implemented binding

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
43

address of the endpoint

Web Service Policies

 Web service capabilities and requirements need to be described as (machine-
readable) metadata
 examples: addressing, security, transactions, reliability
 allows tools to check for service compatibility, generate codep y, g

 WS-Policy
 express capabilities, characteristics of entities in a WS-based system

 policy assertions, expressions, statements
 example:

<All>
<wsam:Addressing>…</wsam:Addressing>
<ExactlyOne>

<sp:TransportBinding>…</sp:TransportBinding>
<sp:AsymmetricBinding>…</sp:AsymmetricBinding>

</ExactlyOne>
</All>

© Prof.Dr.-Ing. Stefan Deßloch

</All>
 allows senders, receivers to specify their security requirements and capabilities

 WS-PolicyAttachment
 associate policy expressions with subjects

 reference policies from WSDL definitions or inline them in bindings
 associate policies with UDDI entities

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
44

WS 2008/09 23

Universal Description
Discovery and Integration (UDDI)
 Goal: enable service discovery

 catalogue services based on published information of service providers
 maintain taxonomy(ies) to support searching for appropriate services in business

termsterms
 specify technical binding information to actually communicate with the selected

service

 UDDI registry serves as a directory of web services
 Allows searching “by what” and “by how” instead of just “by name”

 UDDI defines
 Set of schemas for describing businesses and their services

 UDDI data model

SOAP API for accessing a UDDI registry

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
45

 SOAP API for accessing a UDDI registry

 UDDI initiative
 Involves more than 300 companies
 http://www.uddi.org

UDDI Core Data Structures

businessEntity: information about the party
publishing service information

tModel: descriptions of specifications for services
or value sets; basis for technical fingerprints

businessService: descriptive information
about a family of technical services

bindingTemplate: technical information about
service entry point and implementation specs

contains
0 or more

contains
1 or more

references
to designate interface specifications
for a service

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
46

 UDDI key
 uniquely identifies each instance of core data structures within a registry
 basis for realizing the containment/referencing relationships (using foreign keys)

 XML Schema definition for UDDI Data Model

WS 2008/09 24

BusinessEntity

 Business key: UDDI key
 Descriptive information about the business entity offering services

 (multiple) name(s) and textual description(s), possibly in multiple languages
t t i f contact info

 names, phone numbers, e-mail addresses, postal addresses, descriptions

 known identifiers
 list of identifiers that a business may be known by, in different identifier systems

 tax number, D-U-N-S, …

 business categories describing specific business aspects
 categorization by industry, product, geographic region, …

 discovery URLs referring to other documents or resources describing the business
entity

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
47

 Business services, describing families of web services offered

BusinessService

 Services key: UDDI key
 Business key: identifies the provider of the service
 Information describing a logical service in business (not technical) terms

 (multiple) name(s) and textual description(s), possibly in multiple languages
 business categories describing the provided service (see businessEntity categories)

 categorization by industry, product, geographic region, …

 Binding templates providing technical descriptions of the web services
constituting the business service
 e.g., the set of web services implementing a logical financial service

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
48

WS 2008/09 25

BindingTemplate

 Binding Key: UDDI key
 Service Key: identifies the logical service implemented by the web service
 Information businesses an instance of a web service offered at a particular

t k ddnetwork address
 (multiple) textual description(s), possibly in multiple languages
 access point representing the network address (e.g., URL) for invoking the service
 categories describing specific aspects of the service

 tModelInstanceDetails
 points to one or more tModel information elements
 goal: provide a technical "fingerprint" for identifying compatible services

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
49

What Are tModels?

 A tModel (technology model) represents a concept, an idea, a well accepted
technical specification (taxonomy, interface…)...
 Its semantics should be clearly described
 UDDI comes with a set of predefined tModels UDDI comes with a set of predefined tModels

 Examples
 Taxonomies

 NAICS (industry codes), UNSPC (product & service codes), ISO3166 (geographic
locations) …

 Technical specifications
 RosettaNet, ebXML, EDI, standard ERP system interface,...

 Identifiers
 D&B numbers, US tax codes,...

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
50

, ,

 When registering a tModel it gets a globally unique identifier: tModelKey
 tModel data structure

 tModelKey, name, overviewDoc, descriptions, categories, identifiers, …
 overviewDoc may contain a URL child element that points to a WSDL file describing the

interface …

WS 2008/09 26

Using tModelKeys

 tModelKey is used to give references a semantics
<element name = "keyedReference">

<type content = "empty">
<attribute name = "tModelKey" type = "string"/>y yp g /
<attribute name = "keyName" minOccurs = "1" type = "string"/>
<attribute name = "keyValue" minOccurs = "1" type = "string"/>

</type>
</element>

 This allows to specify the semantics of a name-value pair, e.g.: Is the
identifier a US Tax Number, is it D&B number, is the name of an interface of
the system of a particular ERP vendor,...?
 Example: identify SAP AG by its Dun & Bradstreet D-U-N-S® Number, using the

di tM d lK ithi th UDDI B i R i t

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
51

corresponding tModelKey within the UDDI Business Registry
<keyedReference

tModelKey=”uddi:ubr.uddi.org:identifier:dnb.com:D-U-N-S”
keyName=”SAP AG”
keyValue=”31-626-8655” />

Important Registry APIs

 Inquiry API
 Find things

 find_business
 find_service

fi d bi di

 Publishers API
 Save things

 save_business
 save_service

bi di find_binding
 find_tModel

 Get Details about things
 get_businessDetail
 get_serviceDetail
 get_bindingDetail
 get_tModelDetail

 save_binding
 save_tModel

 Delete things
 delete_business
 delete_service
 delete_binding
 delete_tModel

 security…
 get_authToken
 discard_authToken

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
52

Provided as SOAP-based web services

WS 2008/09 27

Inquiry API

 FIND APIs
 Basic browsing/searching

 Can return a set of results

 Limited search capabilities Limited search capabilities
 Query is specified in an XML element with subelements for

 Values of properties to match (e.g., business name starts with ‘S’)
 Qualifiers that modify the search behavior (e.g., exactNameMatch, sortByNameDesc, …)

 Example: Find the latest two businesses that registered, and whose name starts with an
‘S’

 <find_business generic=“1.0” maxRows=“2” xmlns=“urn:uddi-org:api”>
<findQualifiers>

<findQualifier>sortByDateDesc</findQualifier>
</findQualifiers>
<name>S</name>

</find business>

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
53

</find_business>

 Return unique reference keys identifying the result “elements”

 GET APIs
 Based on unique reference keys, retrieve detailed information

Registry Types

 Different types of registries
 corporate/private (e.g., enterprise web service registry)

 operates within the boundaries of a single company (or for a restricted number of
partners)p)

 data is not shared with other registries

 affiliated (e.g., trading partner network)
 registry is deployed in a controlled environment
 limited access by authorized clients
 data may be shared with other registries in a controlled manner

 public (e.g., UDDI Business Registry)
 open, public access to registry data
 secured administrative access, content may be moderated

data may shared transferred among registries

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
54

 data may shared, transferred among registries

 UDDI Business Registry
 public, global registry of businesses and their services
 master directory of publicly available e-commerce services
 was initial focus of UDDI effort

WS 2008/09 28

Registry Architecture

 UDDI registry may consist of multiple UDDI nodes
 UDDI node

 supports interaction with UDDI data through (subset of) UDDI APIs
b l t tl UDDI i t belongs to exactly one UDDI registry

 interacts with other nodes in the same registry (through replication) to maintain a
single, complete logical copy of the registry data

 Affiliation of registries
 consists of multiple registries
 registries define policies for controlled copying of subsets of registry data among

each other
 registries share a common namespace for UDDI keys, have compatible policies for

assigning key values

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
55

assigning key values

 Enhanced set of APIs to support registry architecture, types of registries
 security, custody transfer, subscription, replication

Registry Affiliation – Example

UBRP i

Semi-Private
Domain

Shared
Domain

Public Domain

bli h UBR
Node 1

UBR
Node 2

Affiliated
Private
Registry

Affiliated
P i t

Private
Registry

Private
Domain

Shared
Domain

su
bs

cr
ip

tio
n

publish

publish

publish

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
56

Private
Registry

Private
Registry

WS 2008/09 29

Tooling Principles

UDDI

publish find

TransportProxy Stub

WSDL

publish find

generate

generate

generate

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
57

Requestor Service

Java API for XML Web Services (JAX-WS)

 API for building web services and clients based on remote procedure calls and
XML
 Goal: hide all the complexities of SOAP message processing
 APIs for supporting XML based RPC for the Java platformpp g p

 Define web service
 Use web service

 Defines
 WSDL/XML to Java mapping
 Java to XML/WSDL mapping
 Core APIs
 SOAP support (including attachments)
 Client and Server Programming models involving generated stub classes

 Client side invocation (standard programming model)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
58

 Application invokes web service through generated stub class
 JAX-WS runtime maps the invocation to SOAP, builds the SOAP message,

processes the HTTP request
 Server side processing

 JAX-WS runtime processes HTTP, SOAP message, maps to RPC and dispatches to
target (class implementing the web service)

WS 2008/09 30

Mapping WSDL <-> Java – Example

WSDL 1.1 interface definition:
<!-- WSDL Extract -->
<message name=”getLastTradePrice”>

<part name=”tickerSymbol”
type=”xsd:string”/>

Java service endpoint interface:

//Java
public interface StockQuoteProvider

type= xsd:string />
</message>
<message

name=”getLastTradePriceResponse”>
<part name=”result”

type=”xsd:float”/>
</message>
<portType

name=”StockQuoteProvider”>
<operation
name=”getLastTradePrice”

extends java.rmi.Remote {
float getLastTradePrice(

String tickerSymbol)
throws java.rmi.RemoteException;

}

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
59

parameterOrder=”tickerSymbol”>
<input message=

”tns:getLastTradePrice”/>
<output message=

”tns:getLastTradePriceResponse”/>
</operation>

</portType>

J2EE Architecture

Web service support

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
60

Source: Web services for
J2EE Specification 1.0

WS 2008/09 31

Summary

 Service-oriented architectures
 definition, access, discovery of (web) services

 SOAP
d fi SOAP t t d i f k defines SOAP message structure and messaging framework

 stateless, one-way
 more complex patterns "on top" (e.g., request/response)

 provides convention for doing RPCs using SOAP
 support for extensibility, error-handling, flexible data representation
 independent of transport protocols

 binding framework for defining protocol-specific bindings
 SOAP/HTTP

 extensions beyond SOAP for addressing, reliable messaging (see next chapter)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
61

e te s o s beyo d SO o add ess g, e ab e essag g (see e t c apte)

Summary (cont.)

 WSDL
 supports description of all information needed to access a web service

 interface, operation, message types
 binding to specific protocol (e.g., SOAP) binding to specific protocol (e.g., SOAP)

 protocol extensions

 endpoint, service

 UDDI
 registry

 publish information about business, services provided, and the way to use them
 white, yellow, green pages

 tModels provide infrastructure for business and service "name space"
 identification, classification of business, services, protocols, …

 can "point to" detailed service descriptions such as WSDL files

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
62

 can point to detailed service descriptions such as WSDL files

 APIs for manipulating and inquiring about registry content
 provided as web services

WS 2008/09 32

Summary (cont.)

 Application development
 Integration with programming languages, existing middleware
 Tooling support

 Programming language binding
 WSDL as the "IDL for web services" WSDL as the IDL for web services
 Mapping WSDL to PL (e.g., Java)

 enables generation of client proxies, server stubs for web services invocation
 Mapping PL to WSDL

 "publish" existing functionality as a web service
 Example: JAX-RPC

 Web services support based on conventional middleware
 define standards for reusing/extending existing programming models and middleware

infrastructure to support web service
 J2EE: use/publish servlets, stateless session beans to implement web services

 JAX-WS and SAAJ APIs
 basic web services interoperability support

W b S i f J2EE ifi ti

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
63

 Web Services for J2EE specification
 describes the packaging and deployment requirements for J2EE applications that provide and use web services

 EJB specification
 extended to support implementing web services using stateless session beans.

 JAXR API
 access to registries and repositories.

 JAXP API
 processing XML documents

 Java interfaces to XSLT, SAX, DOM-parsers

