
WS 2008/09 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 8 – Web Services Foundations

Types of E-Business

Business To Consumer
(B2C)

Business To Business
(B2B)

Intra Business

• Relation between
enterprise and
customers
• Sales-related aspects
are predominant,
like product presentation,
advertising, service

• Relation between
processes of different
enterprises
• Predominant are
relation to suppliers,
and customer relations
to other enterprises

• Electronic
organization of
internal business
processes, like
realization within
workflow systems

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
2

advisory, shopping like industrial
consumers, retailers,
banks

WS 2008/09 2

B2B Integration – Conventional Middleware

 Middleware itself is (logically) centralized
 usually controlled by a single company
 now requires agreement on using, managing specific middleware platform across

companies ("third party")companies (third party)
 need to implement a "global workflow"
 problems

 lack of trust
 autonomy needs to be preserved
 business transactions are confidential

 Point-to-point solutions
 lack of standardization
 many partners involved -> heterogeneity of middleware platforms

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
3

 many partners involved > heterogeneity of middleware platforms

 Focus on LAN
 insufficient support for internet protocols
 problems with firewalls
 cannot work with multiple trust domains

What’s a Web Service?

 “A Web Service is programmable application logic accessible using standard Internet
protocols…”

Microsoft

“A Web Service is an interface that describes a collection of operations that are network A Web Service is an interface that describes a collection of operations that are network
accessible through standardized XML messaging …”

IBM

 "Web services are software components that can be spontaneously discovered,
combined, and recombined to provide a solution to the user’s problem/request. The
Java language and XML are the prominent technologies for Web services”

Sun

 "A Web Service is a 'virtual component' that hides 'middleware ideosynchracies' like the
underlying component model invocation protocol etc as far as possible"

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
4

underlying component model, invocation protocol, etc. as far as possible
Frank Leymann (IBM)

WS 2008/09 3

Web Services - Definition

 W3C Web Services Architecture WG
 produces WS Architecture Specification (working group note, 02/2004)

 provide a common definition of a web service
 define its place within a larger Web services framework to guide the community

 Definition
 "A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards."

 Earlier, more general definition:
“A Web service is a software application identified by a URI, whose interfaces and

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
5

A Web service is a software application identified by a URI, whose interfaces and
bindings are capable of being defined, described, and discovered as XML artifacts.
A Web service supports direct interactions with other software agents using XML
based messages exchanged via internet-based protocols.”

(October 2002)

Web Services

 New distributed computing platform built on existing infrastructure including
XML & HTTP
 Web services are for B2B what browsers are for B2C

Self contained self describing modular service that can be published located Self-contained, self describing, modular service that can be published, located
and invoked across the web
 Refer to open standards and specifications:

 component model (WSDL)
 inter-component communication (SOAP)
 discovery (UDDI)

 Platform- and implementation-independent access
 Described, searched, and executed based on XML

 Enable component-oriented applications

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
6

 Enable component-oriented applications
 Loose coupling from client to service
 Enable to integrate legacy systems into the web
 Useful for other distributed computing frameworks such as CORBA, DCOM, EJBs
 Web services as wrappers for existing IS-functionality

WS 2008/09 4

Service-Oriented Architecture (SOA)

 Definition (given by OASIS SOA Reference Model):
"A paradigm for organizing and utilizing distributed capabilities that may be under the

control of different ownership domains"
 Principal conceptsp p

 service – mechanism to enable access to one or more capabilities
 provider and consumer roles
 service opaqueness

 invocation interface, separate from implementation

 service-based interactions involve
 visibility (awareness, willingness, reachability)

 availability of service descriptions and policies
 interaction

 interaction modes
 information model – characterizes information exchange (syntax, semantics)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
7

g (y ,)
 behavior model – action model, process model

 real world effect
 return information and/or change some shared state

 service description
 policies and contracts – contrain the service use, reach service use agreement
 service execution context

Service-Oriented Architecture (SOA)

 Service Requestor
 Finds required services

via Service Broker
 Binds to services Binds to services

via Service Provider

 Service Provider
 Provides e-business services
 Publishes availability of these

services through a registry

 Service Registry
 Provides support for publishing

and locating services

Service
Provider

Service
Registry

Service
Requestor

Publish

Find

Bind

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
8

and locating services
 Like telephone yellow pages

WS 2008/09 5

Granularity of Services

 Services can be simple and composite
 check credit card number
 raise a mortgage

Simple services are Simple services are...
 ...provided as servlets, EJBs, Assembler programs,...

 Composite services are...
 ...provided via "choreography"

 referring to other fine grained services
 scripting fine grained services into business processes

 via workflow technology

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
9

Technologies: Service Description & Discovery

 Service Description
 Common Base Language (XML)
 Interfaces (WSDL)

 extend "traditional" IDLs properties and semantics

vertical standards

d

 interaction mode
 address/transport protocol info

 Business Protocols (WSCL, BPEL)
 describe possible conversations

 order of interactions

 Properties and Semantics
(UDDI, WS-Policy)

 descriptions to facilitate binding in a
loosely-coupled, autonomous setting

 e.g., non-functional properties (cost,
transactional & security support)
textual descriptions

 Service Discovery
 Directory/Repository for WS descriptions

common base language

interfaces

business protocols

directories

Service Description and Discovery Stack

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
10

 textual descriptions

 organize this information

 Vertical Standards
 interfaces, protocols, etc. specific to

application domains

 Directory/Repository for WS descriptions
 APIs and protocols for directory

interaction
 at design-time or run-time

WS 2008/09 6

Technologies: Service Interaction & Composition

 Service Interaction
 Transport

 lots of possibilities
 HTTP most common protocol infrastructure

middleware properties

 Basic and Secure Messaging
 standardize how format/package

information to be exchanged (SOAP)
 define how to extend basic mechanism to

achieve additional capabilities (WS-
Security)

 Protocol Infrastructure (meta-protocols)
 general infrastructure for business

interactions
 maintain state of conversation
 meta-protocols

which protocols do we use? Service Composition

transport

basic and secure messaging

Service Interaction Stack

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
11

 which protocols do we use?
 who is coordinating?

 Middleware Properties (horizontal
protocols)

 properties similar to those of
conventional middleware

 reliability, transactions, …

 Service Composition
 Implement web service by invoking

other web services
 Similar to workflow management, only

for web services

Web Service System Architecture

service provider

 Common internal architecture leveraging conventional middleware

internal web service
middleware

web services interface

access to internal systems

conventional middleware

client

service provider

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
12

other tiers

conventional middleware

other tiers

WS 2008/09 7

External Web Services Architecture

web services
li t web servicetransaction transaction

Service ProviderService Requestor
external middleware

client

internal
middleware

other tiers

web service

internal
middleware

other tiers

transaction
management

other protocol
infrastructure

composition
engine

transaction
management

other protocol
infrastructure

composition
engine

service
d i tiservicei

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
13

descriptionsservice
descriptionsservice

descriptions

Directory Service Provider

Standards

 XML (eXtensible Markup Language)
 Underlying basic representation approach (common syntax)

 SOAP (Simple Object Access Protocol)
St d di d i t ti Standardized interaction

 common data format
 conventions for different forms of interaction (messaging, RPC)
 bindings to lower-level transport protocols (HTTP, SMTP)

 Messages (not RPCs) as the basic communication unit
 loose coupling, broad range of supported protocols

 WSDL (Web Services Description Language)
 Description of a service’s programming interface
 XML-based interface definition language

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
14

 XML-based interface definition language

 UDDI (Universal Description, Discovery and Integration)
 Registry of and search for web services information

 equivalent of a naming and directory service in conventional middleware

WS 2008/09 8

SOAP – Simple Object Access Protocol

basic and secure messaging

protocol infrastructure

middleware properties

 Defines how to format information in XML so that it can be exchanged
between peers
 message format for stateless, one-way communication

 support loosely-coupled applications

 conventions for interaction patterns (RPC)

transport

Service Interaction Stack

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
15

 conventions for interaction patterns (RPC)
 implement "on top of" one-way messaging
 first message encodes the call, second (reply) message the result

 processing rules for SOAP messages
 how to transport SOAP messages on top of HTTP, SMTP

SOAP Envelope Framework

 Defines mechanism for identifying
 What information is in the message
 Who should deal with the information
 Whether this is optional or mandatoryp y

 Envelope element is the root element of the SOAP message, contains
 Optional header element
 Mandatory body element

 Body element
 Contains arbitrary XML

 application-specific
 Child elements are called body entries (or bodies)

 Some consequences

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
16

 Message body cannot contain general XML document, only elements
 Validation of application data (i.e., the body) requires separation from the

surrounding SOAP-specific XML
 Many web service engines support that

WS 2008/09 9

Sample SOAP Message

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>

<m:reservation xmlns:m="http://travelcompany.example.org/reservation"
env:role="http://www.w3.org/2003/05/soap-envelope/role/next "
env:mustUnderstand="true">

<m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference> q pq j /
<m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>

</m:reservation>
<n:passenger xmlns:n="http://mycompany.example.com/employees"

env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">

<n:name>Åke Jógvan Øyvind</n:name>
</n:passenger>

</env:Header>
<env:Body>
<p:itinerary xmlns:p="http://travelcompany.example.org/reservation/travel">

<p:departure>
<p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving>
<p:departureDate>2001-12-14</p:departureDate>

</p:departure>
<p:return>

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
17

p
<p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving>
<p:departureDate>2001-12-20</p:departureDate>

</p:return>
</p:itinerary>

<q:lodging xmlns:q="http://travelcompany.example.org/reservation/hotels">
<q:preference>none</q:preference>

</q:lodging>
</env:Body>

</env:Envelope>

SOAP Headers

 Primary extensibility mechanism in SOAP
 Additional facets can be added to SOAP-based protocols
 Mechanism to

provide additional "control" information (e g directives context information) provide additional control information (e.g., directives, context information)
 pass information that is orthogonal to the specific information to execute the request

 Any number of headers can appear in a SOAP envelope

 Usage areas
 Application-specific extensions (see previous example)

 e.g., reservation identification, customer identification and information, …

 Generic service extensions
 authentication, authorization, transaction management, payment processing, tracing,

auditing

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
18

 Header content
 Arbitrary XML
 Determined by the schema of the header element

WS 2008/09 10

SOAP Processing Model Terminology

 Sender
 Node that transmits a SOAP message.

 Receiver
 Node that accepts a SOAP message.p g

 Message path
 Set of SOAP nodes through which a single SOAP message passes. This includes the initial SOAP

sender, zero or more SOAP intermediaries, and an ultimate SOAP receiver.

 Initial sender
 Sender that originates a SOAP message at the starting point of a SOAP message path.

 Intermediary
 Both a receiver and a sender. Targetable from within a SOAP message. Processes the SOAP

header blocks targeted at it and acts to forward a SOAP message towards an ultimate
receiver.

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
19

 Ultimate receiver
 Final destination of a SOAP message. Responsible for processing the contents of the SOAP

body and any SOAP header blocks targeted at it. Cannot also be an intermediary for the same
SOAP message

SOAP Processing Model

 Describes logical actions taken by a node when receiving a SOAP message
 Every node has to

 check message for syntactical correctness
l SOAP ifi t analyze SOAP-specific parts

 envelope, header, body elements

 Role attribute (optional)
 governs further processing of header blocks
 node assumes one or more roles, selects headers targeted at these roles

 every node must assume the role "next"

 predefined roles ("next", "ultimate_receiver", …) vs. user-defined roles

 MustUnderstand attribute (optional)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
20

 if set to "true" for a selected header, a node assuming the target role MUST
understand and be able to process it

 generate fault if header cannot be processed, before any processing is started

WS 2008/09 11

SOAP Intermediaries

 SOAP intermediaries provide "value-added services"
 SOAP message can travel through multiple SOAP nodes

 Sender [-> Intermediary …] -> ultimate Receiver

 Intermediaries process one or more SOAP headers Intermediaries process one or more SOAP headers
 Header is removed from the message after processing (default behavior)

 can be reinserted by the intermediary, possibly with modified values

 Intermediary does not need to understand message body

reservation
client

cust-service
intermed.

reservation
server

•customer id
•reservation id
•body

•customer id
+ preferences

•reservation id
•body

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
21

 Relay attribute (optional)
 relayable headers that were targeted at the intermediary but were not processed

have to be forwarded
 non-relayable headers that were targeted at the intermediary but were not

processed have to be removed

Error Handling in SOAP

 SOAP Fault element
 Returned as the single element inside the body of the response

 Fault element indicates which error occurred and provides diagnostic
information through child elementsg
 Code element (required)

 Hierarchical namespace of faultcode values
 E.g., Client.AuthenticationFailure

 Top level codes:
 VersionMismatch
 MustUnderstand – a required header was not understood
 Client – likely cause is content or formatting of the SOAP message
 Server

 Reason element contains human-readable message
 Ability to signal a fault depends on the underlying message transfer

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
22

 Ability to signal a fault depends on the underlying message transfer
mechanism
 protocol binding has to specify the details

WS 2008/09 12

SOAP Data Encoding

 Encoding simple data types (e.g., strings, integers, booleans, …) is easy
 Use the corresponding XML Schema representation
 The xsi:type can be used to further describe the data type passed in the message

 Example: Example:
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol xsi:type=“xsd:string”>DEF</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

 For more complex types (e.g., arrays, arbitrary objects), one may want to use a specific
encoding
 Attribute encodingStyle can appear in any element in a SOAP message

 SOAP defines set of encoding rules, based on XML Schema
 SOAP-ENV:encodingStyle=http://schemas xmlsoap org/soap/encoding/

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
23

 SOAP ENV:encodingStyle http://schemas.xmlsoap.org/soap/encoding/
 SOAP arrays, structures, …

 Usage is not mandatory
 E.g., a vendor may support an optimized encoding format

SOAP-based RPCs

 SOAP is fundamentally a stateless, one-way message exchange paradigm
 …but applications can create more complex interaction patterns

 Request/response, request/multiple responses

 SOAP-based RPC
 Employs request/response message exchange pattern (MEP)

 MEPs define "templates" for more complex message eschanges

 Invocation is modeled as a struct of in/inout parameters
 <doCheck>

<product> … </product>
<quantity> … </quantity>

</doCheck>

 Response is modeled as a struct as well
 <doCheckResponse> … </doCheckResponse>

 All data is passed by-value

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
24

 Endpoint (address of target node) to be provided in a protocol binding-specific manner

 Protocol Bindings and RPC
 RPC not predicated to any protocol binding
 Binding to HTTP (synchronous protocol) makes RPC-style “natural”

 One-way exchange will use simple acknowledgement as HTTP response

WS 2008/09 13

A Simple SOAP/HTTP RPC

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: application/soap+xml ;
charset="utf-8"

Object Endpoint

charset= utf-8
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
< b l>DIS</ b l>

Method Name

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
25

<symbol>DIS</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Input Parameter

A Simple SOAP Response

HTTP/1.1 200 OK
Content-Type: application/soap+xml;
charset="utf-8„
Content Length: nnnnContent-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>
<m:GetLastTradePriceResponse xmlns:m="Some-URI">

<Price>34.5</Price> Standard

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
26

</m:GetLastTradePriceResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Standard
Suffix

WS 2008/09 14

More SOAP

 SOAP protocol bindings
 SOAP standard defines a binding to HTTP
 SOAP is transport-independent, can be bound to any protocol type

E g SMTP message queuing systems E.g., SMTP, message queuing systems, …

 SOAP with Attachments
 XML isn’t good at carrying non-XML things within it
 Introduces an outer multipart MIME envelope
 Root part is SOAP envelope
 Other parts can be anything: XML, images, …

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
27

Beyond SOAP – WS-Addressing

 Source and Destination information
 SOAP does not define them as part of the message itself

 relies on protocol-specific bindings

 Example: SOAP/HTTP Example: SOAP/HTTP
 endpoint reference is a URL encoded in the HTTP transport header
 destination of the response is determined by the return transport address

 Information might be lost
 transport connection terminates (timeout)
 message forwarded by an intermediary (e.g., a firewall)

 Response always goes to sender
 not possible to have response go somewhere else

 WS-Addressing

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
28

g
 provides a mechanism to place the target, source and other important address

information directly within the Web service message
 decouples address information from any specific transport model

 w3c recommendation

WS 2008/09 15

WS-Addressing Constructs

 Endpoint reference
 uniquely identifies WS endpoint

 Message information headers
 describe end-to-end message characteristics such as

d d ti ti d i t source and destination endpoints
 message identity

 Example
<S:Envelope xmlns:S="http://www.w3.org/2002/12/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<S:Header>

<wsa:MessageID>
http://example.com/6B29FC40-CA47-1067-B31D-00DD010662DA

</wsa:MessageID>
<wsa:ReplyTo>

<wsa:Address>http://business456.com/client1</wsa:Address>
</wsa:ReplyTo>

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
29

</wsa:ReplyTo>
<wsa:To>http://fabrikam123.com/Purchasing</wsa:To>
<wsa:Action>http://fabrikam123.com/SubmitPO</wsa:Action>

</S:Header>
<S:Body>

...
</S:Body>

</S:Envelope>

Web Services Description Language (WSDL)

 Provides all information necessary to programmatically access a service
 documentation for distributed systems
 recipe for automating the details involved in applications communication

WSDL specification WSDL specification
 standardization pursued by w3c

 http://www.w3.org/TR/wsdl

 V1.1 specification is a w3c note
 not an official standard, but most widely used

 WSDL 2.0 is a w3c recommendation

i f

business protocols

protocols and semantics

vertical standards

directo

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
30

common base language

interfaces

ries

Service Description and Discovery Stack

WS 2008/09 16

WSDL Goals

 Provides a description of the logical interface of a web service
 operations, parameters, …
 similar to IDL in conventional middleware

Also describes mechanism to access the web service Also describes mechanism to access the web service
 which protocol is used

 SOAP, …

 service location

 Support modular specifications
 same service interface can be provided through different protocols and data

formats, at different locations

 Defines interaction paradigms (message exchange patterns)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
31

 exchange of several asynchronous messages

Ingredients of WSDL

 Abstract part
 Types: Definitions of data types needed
 Message Exchange Pattern: Abstract definition of data exchanged

Operation: Abstract actions supported by the service Operation: Abstract actions supported by the service
 Interface: Interface defined as set of operations

 Concrete part
 Binding: Concrete protocol and data format used to implement an interface
 Endpoint: Single individual "end point" identified by a network address supporting

a particular binding
 Service: Collection of related "end points"

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
32

WS 2008/09 17

WSDL 2.0 Document Structure

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
33

Modularizing Service Definitions

 WSDL document defines a target namespace
 similar to XML Schema target namespace

 Import/Include
d i ti<description>

[<import namespace="uri" location="uri"/> | <include location="uri"/>]*
</description>

 Can be used to factor out any kind of definitions
 Types, Interface, Bindings,... or any combination of these
 Example:

 Import Interface and specify Binding
 Import Binding and specify Service

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
34

 Import, include differ regarding namespaces
 include: referenced WSDL document needs to have same target namespace
 import: referenced WSDL can have different target namespace

 components are referenced in importing document using qualified names

WS 2008/09 18

Message Exchange Patterns

 Define sequence and cardinality of messages in an operation
 abstract: not message types, no binding-specific information is specified
 minimal contract

Standard MEPs defined by WSDL specification Standard MEPs defined by WSDL specification
 in-bound MEPs

 In-Only, Robust In-Only, In-Out, In-Optional-Out

 out-bound MEPs
 Out-Only, Robust Out-Only, Out-In, Out-Optional-In
 Where to send to? Outside scope of WSDL

 Information could be provided through another (subscribe) operation or defined at deployment
time

 fault model

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
35

 robust*, *-optional-*: fault message may be sent as a reply
 In-Out, Out-In: fault message may replace a reply
 *-Only: do not generate fault messages

 Extensibility – possible to define new MEPs

Types

<description…>
<types>

<xsd:schema…/>*
</types></types>

</description>
 Type clause used to define types used in message exchange

 all message types (normal, fault) are single, top-level elements
 Default type system is XML Schema

 Special extensibility element foreseen to refer to other type system
 Example

<description targetNamespace= …> …
<types>

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
36

<types>
<xsd:schema …>

<xsd:complexType name=“registration”>
… </xsd:complexType>

<xsd:element name="registrationRequest" type="registration"/>
</xsd:schema>

</types>
…

WS 2008/09 19

Interface

 Interface is a set of abstract operations
 may extend other interfaces (i.e., multiple interface inheritance)

 faults, operations, etc. are inherited
 overloading of operations is not supported overloading of operations is not supported
 inheritance conflicts must not occur

 default style for operations can be specified

 Operation groups a set of abstract messages involved
 references a MEP that defines sequence of messages
 defines the structure of input, output, infault, outfault messages by referencing the

appropriate (schema) types
 optionally declares a style

 rules used for generating messages, e.g., RPC style

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
37

g g g , g , y

 may optionally be declared "safe"
 no further obligations result from an invocation

 Interface Fault
 definition of faults that can occur in the scope of this interface

Interface Syntax (Simplified)

<description targetNamespace="xs:anyURI" >
. . .

<interface name="xs:NCName" extends="list of xs:QName"?
styleDefault="list of xs:anyURI"? >styleDefault= list of xs:anyURI ? >

<fault name="xs:NCName" element="xs:QName"? > </fault>*
<operation name="xs:NCName" pattern="xs:anyURI" style="list of xs:anyURI"?

wsdlx:safe="xs:boolean"? >
<input messageLabel="xs:NCName"? element="union of xs:QName, xs:Token"? > </input>*
<output messageLabel="xs:NCName"? element="union of xs:QName, xs:Token"? > </output>*
<infault ref="xs:QName" messageLabel="xs:NCName"? > </infault>*
<outfault ref="xs:QName" messageLabel="xs:NCName"? > </outfault>*

</operation>*

</interface>*

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
38

. . .

</description>

WS 2008/09 20

RPC Style

 Designed to facilitate programming language bindings to WSDL
 ensure that the messages can be mapped to function/method signatures

 Can be used in combination with MEPs in-only, in-out
M h h t f ll th f ll i l Message schemas have to follow the following rules
 structure of input/output messages is defined as complex type with sequence
 no complex content models (e.g., choice, group, …) allowed with sequence
 only local elements allowed as sequence items (but may be nillable, have multiple

occurrence)
 local name of input message element corresponds to the operation name
 local name of output message element is a concatenation of operation name |

"Response"
tt ib t ll d f t t d l f i t/ t t

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
39

 no attributes allowed for content model of input/output messages
 …

Example
. . .
<types>
<xs:element name="checkAvailability">

<xs:complexType>
<xs:sequence>

<xs:element name="checkInDate"

<interface name = "reservationInterface" >
<operation name="checkAvailability"

pattern="http://www.w3.org/2006/01/wsdl/in-out"
style="http://www.w3.org/2006/01/wsdl/rpc"
wrpc:signature= "checkInDate #in

checkOutDate #in roomType #inout<xs:element name checkInDate
type="xs:date"/>

<xs:element name="checkOutDate"
type="xs:date"/>

<xs:element name="roomType"
type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="checkAvailabilityResponse">

<xs:complexType>
<xs:sequence>

<xs:element name="roomType"
t " t i "/

yp
rateType #out rate #return">

<input messageLabel="In"
element="tns:checkAvailability" />

<output messageLabel="Out"
element="tns:checkAvailabilityResponse" />

</operation>
. . .

</interface>
. . .

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
40

type="xs:string"/>
<xs:element name="rateType"

type="xs:string"/>
<xs:element name="rate"

type="xs:double"/>
</xs:sequence>

</xs:complexType>
</xs:element> …

</types>

WS 2008/09 21

Binding

 Interface, type elements define the abstract, reusable portion of the WSDL definition
 The binding element tells the service requestor how to format the message in a

protocol-specific manner
 interface can have one or more bindings

l ifi id d i bi di i Protocol-specific aspects are provided using binding extensions
<binding name="…" interface="…"?>

<-- extensibility element (1) -->*
<operation ref="…">*

<-- extensibility element (2) -->*
<input messageLabel="…"?>?

<-- extensibility element (3) -->*
</input>
<output messageLabel="…"?>?

<-- extensibility element (4) -->*
</output>
<infault ref="…" messageLabel="…"?>*

<-- extensibility element (5) -->*
</infault>

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
41

</infault>
<outfault ref="…" messageLabel="…"?>*

<-- extensibility element (6) -->*
</outfault>

</operation>
</binding>

 Standard binding extensions for SOAP/HTTP, HTTP GET/POST, SOAP w/MIME
attachments

SOAP Binding - Details

 <soap:binding>
 protocol: HTTP, SMTP, FTP, …
 mep: default SOAP message exchange pattern for operations

<soap:operation> <soap:operation>
 action: value of SOAPAction HTTP header (SOAP over HTTP only!)
 mep: actual mep for the operation

 e.g., soap-response for implementing an in-out WSDL MEP

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
42

WS 2008/09 22

Endpoint and Service

 Endpoint
 Specifies the network address of the endpoint hosting the web service

 Service
 Contains a set of related endpoint elementsp

 Group endpoints related to the same service interface but expressed by different protocols (bindings)

 Example
<service name="StockQuoteService"

interface="StockQuoteInterface">

<endpoint name="StockQuoteEndpoint“

binding="tns:StockQuoteSoapBinding">

<address="http://myservice.com/stockquote"/>

</port>

</service>

implemented binding

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
43

address of the endpoint

Web Service Policies

 Web service capabilities and requirements need to be described as (machine-
readable) metadata
 examples: addressing, security, transactions, reliability
 allows tools to check for service compatibility, generate codep y, g

 WS-Policy
 express capabilities, characteristics of entities in a WS-based system

 policy assertions, expressions, statements
 example:

<All>
<wsam:Addressing>…</wsam:Addressing>
<ExactlyOne>

<sp:TransportBinding>…</sp:TransportBinding>
<sp:AsymmetricBinding>…</sp:AsymmetricBinding>

</ExactlyOne>
</All>

© Prof.Dr.-Ing. Stefan Deßloch

</All>
 allows senders, receivers to specify their security requirements and capabilities

 WS-PolicyAttachment
 associate policy expressions with subjects

 reference policies from WSDL definitions or inline them in bindings
 associate policies with UDDI entities

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
44

WS 2008/09 23

Universal Description
Discovery and Integration (UDDI)
 Goal: enable service discovery

 catalogue services based on published information of service providers
 maintain taxonomy(ies) to support searching for appropriate services in business

termsterms
 specify technical binding information to actually communicate with the selected

service

 UDDI registry serves as a directory of web services
 Allows searching “by what” and “by how” instead of just “by name”

 UDDI defines
 Set of schemas for describing businesses and their services

 UDDI data model

SOAP API for accessing a UDDI registry

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
45

 SOAP API for accessing a UDDI registry

 UDDI initiative
 Involves more than 300 companies
 http://www.uddi.org

UDDI Core Data Structures

businessEntity: information about the party
publishing service information

tModel: descriptions of specifications for services
or value sets; basis for technical fingerprints

businessService: descriptive information
about a family of technical services

bindingTemplate: technical information about
service entry point and implementation specs

contains
0 or more

contains
1 or more

references
to designate interface specifications
for a service

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
46

 UDDI key
 uniquely identifies each instance of core data structures within a registry
 basis for realizing the containment/referencing relationships (using foreign keys)

 XML Schema definition for UDDI Data Model

WS 2008/09 24

BusinessEntity

 Business key: UDDI key
 Descriptive information about the business entity offering services

 (multiple) name(s) and textual description(s), possibly in multiple languages
t t i f contact info

 names, phone numbers, e-mail addresses, postal addresses, descriptions

 known identifiers
 list of identifiers that a business may be known by, in different identifier systems

 tax number, D-U-N-S, …

 business categories describing specific business aspects
 categorization by industry, product, geographic region, …

 discovery URLs referring to other documents or resources describing the business
entity

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
47

 Business services, describing families of web services offered

BusinessService

 Services key: UDDI key
 Business key: identifies the provider of the service
 Information describing a logical service in business (not technical) terms

 (multiple) name(s) and textual description(s), possibly in multiple languages
 business categories describing the provided service (see businessEntity categories)

 categorization by industry, product, geographic region, …

 Binding templates providing technical descriptions of the web services
constituting the business service
 e.g., the set of web services implementing a logical financial service

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
48

WS 2008/09 25

BindingTemplate

 Binding Key: UDDI key
 Service Key: identifies the logical service implemented by the web service
 Information businesses an instance of a web service offered at a particular

t k ddnetwork address
 (multiple) textual description(s), possibly in multiple languages
 access point representing the network address (e.g., URL) for invoking the service
 categories describing specific aspects of the service

 tModelInstanceDetails
 points to one or more tModel information elements
 goal: provide a technical "fingerprint" for identifying compatible services

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
49

What Are tModels?

 A tModel (technology model) represents a concept, an idea, a well accepted
technical specification (taxonomy, interface…)...
 Its semantics should be clearly described
 UDDI comes with a set of predefined tModels UDDI comes with a set of predefined tModels

 Examples
 Taxonomies

 NAICS (industry codes), UNSPC (product & service codes), ISO3166 (geographic
locations) …

 Technical specifications
 RosettaNet, ebXML, EDI, standard ERP system interface,...

 Identifiers
 D&B numbers, US tax codes,...

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
50

, ,

 When registering a tModel it gets a globally unique identifier: tModelKey
 tModel data structure

 tModelKey, name, overviewDoc, descriptions, categories, identifiers, …
 overviewDoc may contain a URL child element that points to a WSDL file describing the

interface …

WS 2008/09 26

Using tModelKeys

 tModelKey is used to give references a semantics
<element name = "keyedReference">

<type content = "empty">
<attribute name = "tModelKey" type = "string"/>y yp g /
<attribute name = "keyName" minOccurs = "1" type = "string"/>
<attribute name = "keyValue" minOccurs = "1" type = "string"/>

</type>
</element>

 This allows to specify the semantics of a name-value pair, e.g.: Is the
identifier a US Tax Number, is it D&B number, is the name of an interface of
the system of a particular ERP vendor,...?
 Example: identify SAP AG by its Dun & Bradstreet D-U-N-S® Number, using the

di tM d lK ithi th UDDI B i R i t

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
51

corresponding tModelKey within the UDDI Business Registry
<keyedReference

tModelKey=”uddi:ubr.uddi.org:identifier:dnb.com:D-U-N-S”
keyName=”SAP AG”
keyValue=”31-626-8655” />

Important Registry APIs

 Inquiry API
 Find things

 find_business
 find_service

fi d bi di

 Publishers API
 Save things

 save_business
 save_service

bi di find_binding
 find_tModel

 Get Details about things
 get_businessDetail
 get_serviceDetail
 get_bindingDetail
 get_tModelDetail

 save_binding
 save_tModel

 Delete things
 delete_business
 delete_service
 delete_binding
 delete_tModel

 security…
 get_authToken
 discard_authToken

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
52

Provided as SOAP-based web services

WS 2008/09 27

Inquiry API

 FIND APIs
 Basic browsing/searching

 Can return a set of results

 Limited search capabilities Limited search capabilities
 Query is specified in an XML element with subelements for

 Values of properties to match (e.g., business name starts with ‘S’)
 Qualifiers that modify the search behavior (e.g., exactNameMatch, sortByNameDesc, …)

 Example: Find the latest two businesses that registered, and whose name starts with an
‘S’

 <find_business generic=“1.0” maxRows=“2” xmlns=“urn:uddi-org:api”>
<findQualifiers>

<findQualifier>sortByDateDesc</findQualifier>
</findQualifiers>
<name>S</name>

</find business>

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
53

</find_business>

 Return unique reference keys identifying the result “elements”

 GET APIs
 Based on unique reference keys, retrieve detailed information

Registry Types

 Different types of registries
 corporate/private (e.g., enterprise web service registry)

 operates within the boundaries of a single company (or for a restricted number of
partners)p)

 data is not shared with other registries

 affiliated (e.g., trading partner network)
 registry is deployed in a controlled environment
 limited access by authorized clients
 data may be shared with other registries in a controlled manner

 public (e.g., UDDI Business Registry)
 open, public access to registry data
 secured administrative access, content may be moderated

data may shared transferred among registries

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
54

 data may shared, transferred among registries

 UDDI Business Registry
 public, global registry of businesses and their services
 master directory of publicly available e-commerce services
 was initial focus of UDDI effort

WS 2008/09 28

Registry Architecture

 UDDI registry may consist of multiple UDDI nodes
 UDDI node

 supports interaction with UDDI data through (subset of) UDDI APIs
b l t tl UDDI i t belongs to exactly one UDDI registry

 interacts with other nodes in the same registry (through replication) to maintain a
single, complete logical copy of the registry data

 Affiliation of registries
 consists of multiple registries
 registries define policies for controlled copying of subsets of registry data among

each other
 registries share a common namespace for UDDI keys, have compatible policies for

assigning key values

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
55

assigning key values

 Enhanced set of APIs to support registry architecture, types of registries
 security, custody transfer, subscription, replication

Registry Affiliation – Example

UBRP i

Semi-Private
Domain

Shared
Domain

Public Domain

bli h UBR
Node 1

UBR
Node 2

Affiliated
Private
Registry

Affiliated
P i t

Private
Registry

Private
Domain

Shared
Domain

su
bs

cr
ip

tio
n

publish

publish

publish

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
56

Private
Registry

Private
Registry

WS 2008/09 29

Tooling Principles

UDDI

publish find

TransportProxy Stub

WSDL

publish find

generate

generate

generate

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
57

Requestor Service

Java API for XML Web Services (JAX-WS)

 API for building web services and clients based on remote procedure calls and
XML
 Goal: hide all the complexities of SOAP message processing
 APIs for supporting XML based RPC for the Java platformpp g p

 Define web service
 Use web service

 Defines
 WSDL/XML to Java mapping
 Java to XML/WSDL mapping
 Core APIs
 SOAP support (including attachments)
 Client and Server Programming models involving generated stub classes

 Client side invocation (standard programming model)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
58

 Application invokes web service through generated stub class
 JAX-WS runtime maps the invocation to SOAP, builds the SOAP message,

processes the HTTP request
 Server side processing

 JAX-WS runtime processes HTTP, SOAP message, maps to RPC and dispatches to
target (class implementing the web service)

WS 2008/09 30

Mapping WSDL <-> Java – Example

WSDL 1.1 interface definition:
<!-- WSDL Extract -->
<message name=”getLastTradePrice”>

<part name=”tickerSymbol”
type=”xsd:string”/>

Java service endpoint interface:

//Java
public interface StockQuoteProvider

type= xsd:string />
</message>
<message

name=”getLastTradePriceResponse”>
<part name=”result”

type=”xsd:float”/>
</message>
<portType

name=”StockQuoteProvider”>
<operation
name=”getLastTradePrice”

extends java.rmi.Remote {
float getLastTradePrice(

String tickerSymbol)
throws java.rmi.RemoteException;

}

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
59

parameterOrder=”tickerSymbol”>
<input message=

”tns:getLastTradePrice”/>
<output message=

”tns:getLastTradePriceResponse”/>
</operation>

</portType>

J2EE Architecture

Web service support

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
60

Source: Web services for
J2EE Specification 1.0

WS 2008/09 31

Summary

 Service-oriented architectures
 definition, access, discovery of (web) services

 SOAP
d fi SOAP t t d i f k defines SOAP message structure and messaging framework

 stateless, one-way
 more complex patterns "on top" (e.g., request/response)

 provides convention for doing RPCs using SOAP
 support for extensibility, error-handling, flexible data representation
 independent of transport protocols

 binding framework for defining protocol-specific bindings
 SOAP/HTTP

 extensions beyond SOAP for addressing, reliable messaging (see next chapter)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
61

e te s o s beyo d SO o add ess g, e ab e essag g (see e t c apte)

Summary (cont.)

 WSDL
 supports description of all information needed to access a web service

 interface, operation, message types
 binding to specific protocol (e.g., SOAP) binding to specific protocol (e.g., SOAP)

 protocol extensions

 endpoint, service

 UDDI
 registry

 publish information about business, services provided, and the way to use them
 white, yellow, green pages

 tModels provide infrastructure for business and service "name space"
 identification, classification of business, services, protocols, …

 can "point to" detailed service descriptions such as WSDL files

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
62

 can point to detailed service descriptions such as WSDL files

 APIs for manipulating and inquiring about registry content
 provided as web services

WS 2008/09 32

Summary (cont.)

 Application development
 Integration with programming languages, existing middleware
 Tooling support

 Programming language binding
 WSDL as the "IDL for web services" WSDL as the IDL for web services
 Mapping WSDL to PL (e.g., Java)

 enables generation of client proxies, server stubs for web services invocation
 Mapping PL to WSDL

 "publish" existing functionality as a web service
 Example: JAX-RPC

 Web services support based on conventional middleware
 define standards for reusing/extending existing programming models and middleware

infrastructure to support web service
 J2EE: use/publish servlets, stateless session beans to implement web services

 JAX-WS and SAAJ APIs
 basic web services interoperability support

W b S i f J2EE ifi ti

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
63

 Web Services for J2EE specification
 describes the packaging and deployment requirements for J2EE applications that provide and use web services

 EJB specification
 extended to support implementing web services using stateless session beans.

 JAXR API
 access to registries and repositories.

 JAXP API
 processing XML documents

 Java interfaces to XSLT, SAX, DOM-parsers

