
Middleware for Heterogeneous and Distributed Information Systems 1

AG Heterogene Informationssysteme
Prof. Dr.-Ing. Stefan Deßloch
Fachbereich Informatik
Technische Universität Kaiserslautern

Middleware for Heterogeneous and Distributed
Information Systems – Exercise Sheet 11
Wednesday, January 21, 2009 – 10:00 to 11:30 – Room 48-379

Schema Integration
Schema integration (also referred to as schema merging) aims at combining given
source schemas into one integrated schema. Schema merging takes as input a set of
semantic correspondences between the source schema elements. These correspon-
dences are identified earlier during schema matching, either automatically or manu-
ally.

1. In class, several desirable properties of an integrated schema (the result of
schema merging) have been discussed. Name each of these properties and ex-
plain their importance!

2. Table 1 depicts two schema definitions of lecture catalogs. Try to think of an
integrated schema; what problems and ambiguities do you encounter? What
forms of heterogeneity cause these problems?

3. In class, a concrete schema merging algorithm1 has been presented. Here, as a
first step, data model heterogeneity between the source schemas is resolved by
translating each of them into an (extended) entity-relationship representation.
Transfer the sample schemas depicted in Table 1 into such an entity-
relationship representation! (Model primitive data types as entities and use the
relationship types composition, association, and type-of)

4. As a second step, create a mapping between the source schemas, i.e. perform
manual schema matching. We speak of a representational conflict if the same
real-world concept is modeled differently in different schemas. Do you see a
representational conflict between the sample schemas? Think of options to re-
solve this conflict! Use the mapping to specify the way the conflict is to be re-
solved!

5. Perform schema merging following the algorithm presented in class. A funda-
mental conflict occurs when the merged model is not a valid entity-
relationship model (i.e. it violates the meta-meta-model). Do you encounter
any fundamental conflicts? As a hint, consider that an entity must not have
more than one type. Resolve the fundamental conflict in the way presented in
class!

1 Rachel Pottinger, Philip A. Bernstein: Merging Models Based on Given Correspondences. VLDB
2003:826-873

Middleware for Heterogeneous and Distributed Information Systems 2

6. Finally, convert the merged entity-relationship model into a relational schema.
We speak of a meta-model conflict when any meta-model-specific constraints
are violated during such a conversion. Do you see any meta-model conflicts?
How could they be resolved?

a)
CREATE SCHEMA lectureCatalog;

CREATE TABLE lectureCatalog.prof (
 pid INTEGER PRIMARY KEY NOT NULL,
 firstName VARCHAR(255),
 lastName VARCHAR(255)
);

CREATE TABLE lectureCatalog.lecture (
 lid INTEGER PRIMARY KEY NOT NULL,
 title VARCHAR(255),
 lecturer INTEGER REFERENCES lectureCatalog.prof(pid),
 desc VARCHAR(255),
 room INTEGER
);

b)
<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="lectureCatalog">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="lecture">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="professor">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="department" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="title" type="xs:string" />
 <xs:element name="description" type="xs:string" />
 <xs:element name="roomNumber" type="xs:string" />
 <xs:element name="language" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Table 1: Two sample lecture catalog schemas

