
Middleware for Heterogeneous and Distributed Information Systems 1

AG Heterogene Informationssysteme
Prof. Dr.-Ing. Stefan Deßloch
Fachbereich Informatik
Technische Universität Kaiserslautern

Middleware for Heterogeneous and Distributed
Information Systems – Handout to Exercise Sheet 2
Wednesday, November 5, 2008 – 10:00 to 11:30 – Room 48-379

SQLJ Program Preparation
SQLJ is a standard for embedding SQL in the Java programming language. Unlike
JDBC, which is a call-level interface (CLI), SQLJ is a language extension. The prepa-
ration of SQLJ programs involves a series of steps1. The preparation process is de-
picted in Figure 1. The straight lines indicate compile time dependencies while the
dashed lines indicate runtime dependencies.

Figure 1: The SQLJ Program Preparation Process

• Create a SQLJ source file.

• Precompile the SQLJ source file using the SQLJ translator (1). The translator
checks for correct Java and SQLJ syntax and replaces embedded SQL state-

1 See IBM Redbook DB2 for z/OS and OS/390: Ready for Java chapters 9, 10, and 11 available at
http://www.redbooks.ibm.com/abstracts/sg246435.html

Middleware for Heterogeneous and Distributed Information Systems 2

ments in the SQLJ program with valid Java statements. The output of the pre-
processing step is a compilable Java source file and one or more serialized
profile files. Profiles contain information about all the SQL statements in the
program. A profile consists of one or more profile entries, each of which de-
scribes one SQL statement.

sqlj -compile=false <sqlj_file>

• Optionally view the information stored in the serialized profile files. IBM DB2
is equipped with the profile printer utility that displays the information con-
tained in a serialized profile in human-readable form.

db2sqljprint <ser_file>

• Compile the java program (2). The compiled program is executable. However,
up to this point dynamic SQL is used, i.e. SQL statements are prepared and
executed dynamically using JDBC calls. An additional customization step is
necessary to run static SQL instead.

javac <java_file>

• Use the profile customizer to add customization information to the generated
profiles (3). You may want to run the profile printer utility again to inspect the
changes to the serialized profile file. Note that the customization process is
DBMS specific. In case of DB2 so called packages are created during profile
customization. Roughly speaking, packages are database objects that contain
executable forms of SQL statements. When the Java program is run after pro-
file customization, the SQLJ runtime uses the profile information to execute
the packages instead of the source SQL statements. That is, after profile cus-
tomization static SQL is used.

db2sqljcustomize –url <jdbc_url> -user <db_user>
 -password <db_ password> <ser_file >

• Run the java application (4).

java <class_file>

Middleware for Heterogeneous and Distributed Information Systems 3

X/Open DTP (Local Environment)
The X/Open Distributed Transaction Processing (DTP) model allows application pro-
grams to share resources provided by multiple resource managers and to coordinate
their work in global transactions using the two phase commit protocol.

Figure 2: Functional Components and Interfaces

The X/Open DTP model distinguishes three functional components involved in dis-
tributed transaction processing, namely the Application Program (AP), the Transac-
tion Manager (TM), and Resource Managers (RMs) as shown in Figure 2. The AP
defines the start and end of global transactions, accesses resources within transaction
boundaries, and normally makes the decision whether to commit or roll back the
transaction. The transaction manager (TM) assigns unique identifiers (XID) to trans-
actions, monitors their progress and coordinates participating Resource Managers dur-
ing transaction completion (commit or rollback). A Resource Manager (RM) manages
a shared resource that may be accessed by the AP using services that the RM pro-
vides. Examples of RMs are database management systems (DBMSs), file access
methods such as X/Open ISAM, or print servers.

Table 1: Functions of the TX interface (not complete)

tx_begin() Begin a global transaction.

tx_close() Close a set of resource managers.

tx_commit() Commit a global transaction.

tx_rollback () Roll back a global transaction.

Middleware for Heterogeneous and Distributed Information Systems 4

xa_commit() Tell the RM to commit a transaction branch.

xa_prepare() Ask the RM to prepare to commit a transaction branch.

xa_start() Start or resume a transaction branch - associate an XID with
future work that the thread requests of the RM.

ax_reg() Register an RM with a TM to join a transaction.

Table 2: Functions of the XA interface (not complete)

The components of the X/Open DTP model interact by means of standardized inter-
faces. The TX (Transaction Demarcation) interface2 allows the AP to call the TM to
demarcate global transactions and direct their completion. An (incomplete) list of the
functions of the TX interface is found in Table 1.

The XA interface3 is a bidirectional interface between the TM and the RM. It is used
by the RM to join a transaction managed by the TM. It is further used by the TM to
coordinate multiple RMs during transaction completion. An (incomplete) list of the
functions of the XA interface is found in Table 2.

X/Open DTP (Distributed Environment)
The X/Open DTP model has been generalized to support transactions in distributed
environments. That is, multiple TM domains may be involved in a global transaction.
A dedicated component, referred to as Communication Resource Manager (CRM), is
used to propagate transaction information across TM domains as shown in Figure 3.

Figure 3: Functional Components and Interfaces

2 See Distributed Transaction Processing: The TX (Transaction Demarcation) Specification available
at http://www.opengroup.org/onlinepubs/9694999599/toc.pdf
3 See Distributed Transaction Processing: The XA Specification available at
http://www.opengroup.org/onlinepubs/009680699/toc.pdf

Middleware for Heterogeneous and Distributed Information Systems 5

The XA interface has been extended to allow the CRM to propagate coordination in-
formation to subordinate TMs. The revised interface is referred to as XA+ interface4.
An (incomplete) list of the functions of the XA+ interface is found in Table 2.

ax_commit() Propagate transaction branch commitment to a trans-
action manager.

ax_prepare() Propagate transaction branch prepare to commit to a
transaction manager.

ax_rollback () Propagate transaction rollback to a transaction man-
ager.

ax_start() Notify the transaction manager to propagate or re-
sume a transaction branch association with this
thread of control.

Table 3: Functions of the XA+ interface (not complete)

Figure 4 illustrates the interactions between the functional components during transac-
tion processing in a distributed environment. The application program begins a global
transaction and accesses both, a local and a remote RM. The application then asks the
local TM to commit the transaction. No errors occur during the 2PC and hence, the
transaction completes successfully.

4 See Distributed Transaction Processing: The XA+ Specification Version 2 available at
http://www.opengroup.org/onlinepubs/8095979699/toc.pdf

Middleware for Heterogeneous and Distributed Information Systems 6

Application CMRMTM CM TM Server RM

tx_begin

xa_start (XID)

generate XID

TRPC Request

ax_reg

XID
Request (XID)

ax_start (XID)

xa_start (XID)

Request

RM Request

RM Response

Response

Response

TRPC Response

RM Request

RM Response

tx_commit

xa_prepare (XID)

Prepare (XID)

ax_prepare(XID)

xa_prepare(XID)

Ready

Ready

Ready

Ready

xa_prepare (XID)

Ready

xa_commit (XID)

Commit (XID)

ax_commit (XID)

xa_commit (XID)

Committed

Committed

Committed

Committed

Committed

xa_commit (XID)

Committed

A transaction identifier (XID) is assigned by the TM.
It represents the unique relationship between an AP,
the work it issues to RMs, and the global transaction
which the TM manages on behalf of the AP. The XID
lets the TM track and coordinate all of the work
associated with a global transaction.

Figure 4: Sample distributed transaction involving two TM domains (simplified representation)

