
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 11
Information Integration

contributions by Jürgen Göres

Middleware for Heterogenous and Distributed Information Systems - WS07/08

Outline

Information Integration Challenges
Distribution
Autonomy
HeterogeneityHeterogeneity

Schema Matching
Classification of Approaches
Example: Cupid

Multidatabase Languages
SchemaSQL
FIRA/FISQL

Integration Planning
Cli

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Clio

Data Integration
Data Quality Problems
Causes and Consequences
Data Cleaning Approaches

2

Integration Challenges

Goal of Information Integration:
Provide a homogeneous, integrated view on multiple, distributed, autonomous
and heterogeneous data sources.
Three fundamental challenges:Three fundamental challenges:

Distribution
Autonomy
Heterogeneity

Orthogonal, but interrelated
Techniques to handle distribution discussed in previous chapters
In this chapter we focus on resolving heterogeneity

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
3

Distribution

Physical distribution
Data located on (geographically) separated systems
Challenges:

Addressing data across the globe (URLs)Addressing data across the globe (URLs)
Accessing data in different schemas (Multi-database languages, federated database systems)
Optimizing distributed queries (no topic of this lecture)

Logical distribution
Several possible storage locations for a given data item
Caused by (partial) redundancy due to overlapping intension of schema elements
Challenges:

Maintaining consistency among redundant data
Provide metadata to enable data localization
Detect and resolve duplicates }

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Detect and resolve duplicates
Detect and resolve data inconsistencies and conflicts

Physical and logical distribution are orthogonal:
Data can be logically distributed and physically on the same system (and vice versa)

} Data Cleaning

4

Autonomy

Design Autonomy
Administrators of data sources can freely decide in which way they model data
Data model, formats, units, …
Leads to heterogeneity among sourcesLeads to heterogeneity among sources

Interface Autonomy
Freedom to decide how technical access is provided
Protocols (HTTP, JDBC, SOAP, …), supported query languages (SQL, XQuery, …)

Access Autonomy
Freedom to decide whom to allow access to what data
Mode of Authentication (Certificates, Username/Password)
Authorization (boolean, R/W, Access Control Lists, …)

Judicial Autonomy

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Judicial Autonomy
Freedom to prohibit integration of data by others
Intellectual property (IP) issues

Autonomy is the major cause of integration problems

5

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Forms of Heterogeneity

Middleware for Heterogenous and Distributed Information Systems - WS07/08

Heterogeneity

Translated from [LeNa07]:
“Two information systems that do not provide the exact same methods,
models and structures to access their data are called heterogeneous.”
Causes for heterogeneity among IS:Causes for heterogeneity among IS:

Specific requirements
Independent development
Developer preferences
...
All aspects result from autonomy

Heterogeneity of metadata and data
Two main approaches:

T t l h t it h d d

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Try to resolve heterogeneity when needed
Enforce homogeneity/limit heterogeneity by establishing standards (not in this lecture)

No real solution to the problem
Only creates “spheres of homogeneity”, any participants that have existing systems or
requirements not conforming to the standards have to resolve heterogeneity locally

7

Technical Heterogeneity

Refers to differences in the options to access data, e.g.
Communication protocols (HTTP, SOAP, …)
Exchange formats (binary, text, XML, …)
APIs (JDBC ODBC proprietary)APIs (JDBC, ODBC, proprietary)
Query mechanism

Forms, canned queries
Query languages

Query language
SQL, XQuery, …

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
8

Data Model Heterogeneity

Caused by the use of different data models among data sources
hierarchical, relational, XML, …

Data models can have different expressiveness, e.g. support of
InheritanceInheritance
Types and degree of associations between entities/application concepts
Multi-valued attributes
Different atomic data types

Mapping from semantically richer to poorer models in general results in a loss
of information
Approaches to bridge data model heterogeneity

SQL/XML (see later chapter)
W /M di t (Ch t 9)

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Wrappers/Mediators (Chapter 9)

9

Syntactic Heterogeneity

Differences in the representation of identical facts
Binary representations (little/big endian, number formats)
Encodings (ASCII, ISO-8859-1, EBCDIC, Unicode, …)
Separators (Tab-delimited vs CSV)Separators (Tab delimited vs. CSV)
Textual representation

Not to be mixed up with semantic heterogeneity!
Usually easy to resolve (if used consistently)
Examples:

“20070201” vs. “Februar 1st, 2007” vs. “02-01-07”
“123.45” vs. “1.2345x102”

Data Fusion

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
10

Caused by modeling identical application concepts differently using the same
elements in the same data model
Example - denormalized relational schema

Structural Heterogeneity

EmpDept

EmpNo Name DoB Deptname DeptNo

4711 Bob 1978-03-20 Accounting 11

0815 Jane 1975-11-05 Sales 7

1234 Joe 1954-05-26 Accounting 11

Employee

EmpNo Name DoB DeptNo

4711 Bob 1978-03-20 11

0815 Jane 1975-11-05 7

1234 Joe 1954-05-26 11

Department

DeptNo Name

7 Sales

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Easily resolved using relational operators:
SELECT e.EmpNo, e.Name, e.DoB, d.name as deptname, d.deptno
FROM Employee e, Department d WHERE e.deptno = d.deptno

11 Accounting

11

Structural Heterogeneity (cont.)

Example: inverted hierarchy

<bib>
<book title=“a”>

<bib>
<author name=“y”>

Easily resolved using XQuery

<author name=“x”/>
<author name=“y”/>

</book>
<book title=“b”>

<author name=“x”/>
</book>

</bib>

<book title=“a”/>
</author>
<author name=“x”>

<book title=“a”/>
<book title=“b”/>

</author>
</bib>

bib {

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

<bib> {
for $a in distinct-values(doc("BookAuthor.xml")//author/@name)
return <author name="{$a}"> {

for $b in doc("BookAuthor.xml")//book
where $b/author/@name = $a
return <book title="{$b/@title}"/>
} </author>

} </bib>

12

Schematic Heterogeneity

Often considered a special case of structural heterogeneity
Caused by modeling identical application concepts using different data model
concepts of the same data model
E l tt ib t l l ti fli tExample: attribute value – relation name conflict

Person

ID Name Gender

1234 Bob male

4567 Jane female

Men

ID Name

1234 Bob

Women

ID Name

categorical attribute

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Problems of this kind cannot be resolved generically with SQL
How to handle an unknown/variable number of values for categorical attributes?

Multi-database languages

4567 Jane

13

Semantic Heterogeneity

“Semantics” = interpretation of data and metadata
Different representation of identical application concepts, (e.g. synonyms)
Identical representation of different application concepts (e.g. homonyms)

fe.g. Lotus (the car) vs. Lotus (the flower)

Ambiguities – unclear whether two elements refer to the same concept (are
synonyms) or refer to broader/narrower terms (hypernyms)

hypernym or synonym?
car – (motor) vehicle
person – employee
product – item

decision depending on context

Perhaps the biggest challenge in II

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Perhaps the biggest challenge in II
Resolving semantic heterogeneity is a prerequisite for many integration tasks
Many attempts to automate
Schema Matching

14

Bridging/Resolving Heterogeneity

Real-world integration scenarios suffer from all kinds of heterogeneity
Techniques and concepts already discussed in previous chapters and the
primary issues they address:

Wrappers (data model heterogeneity technical heterogeneity syntactic heterogeneity)Wrappers (data model heterogeneity, technical heterogeneity, syntactic heterogeneity)
Garlic (technical heterogeneity, structural heterogeneity, distribution)
SQL/XML (data model heterogeneity) – see subsequent chapter
DB Gateways (technical heterogeneity)
ETL tools (structural heterogeneity, technical heterogeneity, syntactic heterogeneity)
focus on data access/transformation infrastructure (i.e., as a runtime platform)

Further techniques discussed in this chapter
Schema Matching and Integration (semantic heterogeneity, structural heterogeneity)
Multi-database languages (schematic heterogeneity technical heterogeneity distribution)

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Multi-database languages (schematic heterogeneity, technical heterogeneity, distribution)
Data Cleaning/Fusion (syntactic heterogeneity, semantic heterogeneity (in data))
focus on integration planning, resolving schematic heterogeneity

15

Information Integration Tasks

Information integration subsumes numerous tasks (and has numerous names
for most of them...):
1. Schema Merging/Schema Integration
2 Design of the integrated target schema2. Design of the integrated target schema
3. Schema Matching/Schema Mapping
4. Integration Planning/Schema Mapping/Schema Integration/Mapping Generation/Mapping

Interpretation
5. Data Cleaning
6. Data Fusion/Record Matching/Entity Resolution/Instance Disambiguation
7. Wrapping/Data model transformation

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
16

Information Integration Phases [Gö05b]

Analysis – Determine the requirements on the integrated schema:
Desired data model, integration strategy (virtual or materialized)
Relevant data (which application concepts should be present)

Discovery Find/identify relevant data sourcesDiscovery – Find/identify relevant data sources
In classical scenarios sources are often known implicitly
Challenging aspect of Dynamic information integration

Planning – Resolve heterogeneity
Technical heterogeneity (enable access to sources)
Semantic heterogeneity Schema Matching
Data model, structural and schematic heterogeneity

develop data transformation specification (integration plan)

Deployment

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Deployment
Set up integration plan in a runtime environment that provides the integrated data
e.g., federated DBMS, data warehouse, stylesheets, scripts

Runtime
React to changes in the data sources/requirements

17

Information Integration Approaches

Bottom-up design
Used to completely integrate a well-known set of data sources
Assumes that changes of the number and properties of the data sources are rare
Integrated schema is created based on the data sources (Schema Merging)
No distinguished discovery and analysis phases
Common in enterprise integration scenarios

Top-down design
Used when the available data sources are not known a priori
The number and properties of candidate data sources for integration are changing
constantly
Integrated schema is designed independently from the sources, based only on the
application requirements
Analysis phase precedes discovery phase
D i I f ti I t ti

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Dynamic Information Integration
Hybrid design

Selection of data sources based on requirements
Design of integrated schema influenced by requirements and data source schemas
Analysis and discovery are intertwined

18

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Schema Matching

Middleware for Heterogenous and Distributed Information Systems - WS07/08

Schema Matching

Goal: Identify semantically related elements across different schemas
Schema element: table, column, element, attribute, class, etc.
Result: set of matches or (value) correspondences (a mapping)
Essential preparation step for most subsequent integration tasksEssential preparation step for most subsequent integration tasks
Different expressiveness of correspondences

Match Degree (also: local cardinality)
1:1 semantic relationship of one element of schema A with one element of schema B
1:n semantic relationship of one element of schema A with a set of elements of schema B
n:m semantic relationship between sets of elements from schemas A and B

Match Semantics
Basic matches do not carry additional semantics, they only indicate “some relationship”
Advanced matches can indicate abstraction concepts (inheritance, composition, etc.) or
functions (e.g., “A is equivalent to the sum of B1 and B2”)

“ h d ” d

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

“Higher order” correspondences
Connect different types of schema elements (e.g. a department table corresponding to a
department attribute)
Connect metadata with data (e.g., categorical attributes)

Does not refer to the relationship between the instances of the matched
concepts (e.g. instances are identical/subsumed/disjoint/overlap)

20

Schema Matching – Terminology Disambiguation

Mapping
A set of correspondences between two schemas
The process of creating a set of correspondences (schema matching, see below)
But alsoBut also

A function or transformation describing how data is transformed (Integration plan)
The process to create a function/transformation (Integration planning)

Schema Matching
The process of obtaining a mapping
An automatic process to obtain a mapping

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
21

Schema Matching – Challenges

Identification of matches difficult
Very large schemas (102-103 relations, 103-104 attributes)
Complex schemas
Initially unknown and undocumented schemas
Ambiguities (Synonyms, Hypernyms, Abbreviations, …)
Foreign languages
Cryptic identifiers

Time-consuming and expensive
Element-wise “comparing” a schema A with n elements with a schema B with m
elements requires n·m/2 comparisons
For n ≈ m: O(n2)
Even higher complexity if sets of elements are compared (O(22n)), e.g. to obtain 1:n/n:m
matches practical approaches limit sets to a maximum size k

N h h hi

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Numerous approaches to automate schema matching
Error-prone (false-positives and false-negatives)
At best semi-automatic (for good results, domain experts must review, amend and revise
matches)
Used as a preparation step for a human domain expert to reduce search space

22

Schema Matching – Classification of Approaches

Schema Matching Approaches

Individual Matchers Combining Matchersg

Schema-only based Instance-based

Element-level Structure-level

Linguistic Constraint-
based

Schema-only based

Element-level

Linguistic Constraint-
based

Hybrid matchers Composite matchers

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

based on [RaBe01]

23

Individual vs. Combining Matchers

Individual matchers exploit only one kind of information for identifying
matches
Combining matchers use several:

Hybrid:Hybrid:
Different approaches “hard-wired” into one (parameterizable) component to create a
single mapping between the schemas
Reuse of individual elements in combination with other matchers or extension with new concepts
and approaches to matching is difficult

Composite
Retroactively combine mappings from different (individual and combining) matchers
Common methods: (weighted) average, max, min

Schema Matching Approaches

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Individual Matchers Combining Matchers

Schema-only based Instance-based

Element-level Structure-level

Linguistic Constraint-
based

Schema-only based

Element-level

LinguisticConstraint-
based

Hybrid
matchers

Composite
matchers

24

Schema-only vs. instance-based matching

Schema-only techniques operate solely on metadata:
table/column/element/attribute/… identifiers and comments or annotations
data types
constraintsconstraints
element structuring

Instance-based techniques also consider properties of the data
Can only be used among data sources
In order to use with target schema, sample data can be provided
Uses statistical information on data values

Actual value ranges of attribute values (e.g., ints in the interval [0,120])
Enumeration of values actually present in the data
Histograms (Number of occurrences of individual attribute values)
R l i d ibi l ({ } f G i d)

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Regular expressions describing value patterns (e.g. [0..9]{5} for German zip codes)

Schema Matching Approaches

Individual Matchers Combining Matchers

Instance-based

Element-level Structure-level

Linguistic Constraint-
based

Schema-only based

Element-level

LinguisticConstraint-
based

Hybrid
matchers

Composite
matchers

25

Linguistic Matching – String Similarity

String distance or similarity measures [CRF03]
Based on the lexical similarity of schema element identifiers
Often used after applying string preprocessing techniques

fTokenization: split identifiers based on case, punctuation, etc.
Stemming: reduce identifiers to word stem (e.g. “computer” “comput”)
Note: Stemming algorithms are language-dependent (for English: Porter’s algorithm)
Stopword elimination

Edit-distance-like functions, e.g.
Levenshtein distance:

Count the number of edit operations (insert, modify, delete) to turn string a into string b
Example:
kitten
i i

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

sitting
2 replacements, 1 insertion LevenshteinDist(“kitten”,“sitting”) = 3

Weighting of operations possible (e.g. replace more expensive than delete)
Normalization to interval [0,1] by dividing result through max(length(String A), length(string B))

Other measures: Monge-Elkan, Jaro-Winkler, ...

26

Linguistic Matching – String Similarity (cont.)

Token-based functions, e.g.
Applied on sets of tokens of identifiers

Tokenization based on word separators (white space, punctuation, special characters, case)
e.g. “Web-of-trust” {“Web”, “of”, “trust”}, “CamelCaseIdentifier” {“Camel”, “Case”,”Identifier”}

Tokenization based on n gramsTokenization based on n-grams
Tokens created by sliding a window of size n over the string
e.g. 3-grams for “Information” {“Inf”, “nfo”, “for”, “orm”, “rma”, “mat”, “ati”, “tio”, “ion”}

Jaccard similarity – describes the similarity of two sets

Example:
ProductPrice A= {Product, Price}, PriceOfProduct B = {Price, Product, Of}
JaccardSimilarity(A,B) = 2/3

TFIDF (Term frequency/inverse document frequency) methods
Measure originally developed for information retrieval
Here: document = (tokenized) identifier term = token

()
BA
BA

BA
∪
∩

= ,ilarityJaccardSim

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Here: document = (tokenized) identifier, term = token
Determines a weight ws(t) for each token t of a string S based on its frequency in the identifier
(term frequency, tfS(t)) and the inverse of its frequency in all identifiers (inverse document
frequency, idf(t))
Idea: Tokens occurring frequently in the string S have a high weight, while tokens occurring in
almost every string receive a low weight
Basic weight formula: ws(t) = tfs(t) · idf(t)

27

Linguistic Matching – String Similarity (cont.)

TFIDF (continued)
Many different approaches to calculate tfS(t) and idf(t)
e.g., with nS,x being the number of occurrences of term x in document S, T being the set of all
terms in S, N being the total number of documents, and Nt being the number of documents that
contain term t (at least once):

tSn ⎞
⎜
⎛ N

Identifiers can be interpreted as vectors in n-dimensional space (with n being the number of
different tokens), with the term weights ws(t) as vector components/elements
The similarity between the identifiers is the similarity of the direction (ignoring length) of their
respective vectors, i.e., the greater the angle between their vectors, the smaller the similarity
Applying the cosine on the angle, we normalize the difference in angle to [0,1]: for an angle of
0°, the cosine is 1 (maximum similarity), for an angle of 90° the cosine is 0
Then the similarity function between two identifiers S1 and S2 is defined using the cosine measure

)(max
)(

,

,

iSTi

tS
s n

n
ttf

∈

= 1log)(⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

t
es N

Ntidf

∑
=

⋅
=

n

t
SS ww

SS 1
21

21),(cosine

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Hybrid approaches
use a secondary similarity function to determine similarity between tokens

Problem of all approaches based on lexical similarity:
Lexical similarity does not necessarily indicate semantic similarity! (and v.v.)

∑∑
==

⋅
n

t
S

n

t
S twtw

1

2
2

1

2
1

21

)()(
)(

28

Linguistic Matching – Ontology-based approaches

Use a Dictionary/Thesaurus/Ontology1 to store knowledge about application
domain terms and concepts and their relationships, e.g.

Synonymy
Hypo/hypernymy sub/superclassesHypo/hypernymy, sub/superclasses
Aggregation
Opposite terms/concepts

Can contain alternative forms for terms (word stem, abbreviations)
Distance of two terms within the thesaurus is translated to similarity value
Can be extended to handle different languages
Ontologies can be domain-specific or generic and vary in the level of detail

Design of a good ontology is a daunting task

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Depending on their specific point of view and their level of detail, ontologies will often
disagree on terms and their relationships, e.g.:
Is “car” a special type of “vehicle” (hyponym), or are the terms synonyms?

1 These and similar terms are not used consistently throughout the literature.
See e.g. http://www.metamodel.com/article.php?story=20030115211223271 for an attempt
at a definition of these terms.

29

Structural Schema Matching

Exploit the relationships (structure) among schema elements to improve the
quality of matches
Usually require an initial set of correspondences provided by (non-structural)
schema matchersschema matchers

Practical implementations are usually hybrid matchers (although they could
be built as combining matchers)

Examples:
Cupid [MBR01]
Similarity Flooding [MGR02]

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
30

Cupid

Developed by Microsoft Research [MBR01]
Hybrid approach:

Element-based: linguistic and data type similarity
Structure based: TreeMatch algorithmStructure-based: TreeMatch algorithm

Three phases
Linguistic matching

Determine initial matches based on schema element identifiers

Structure matching
Modify initial values based on element structure

Creation of mappings/matches
Choose the matches to return as result
Method depends on the intended use for the matches, e.g.

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Prune matches below a given threshold
Return only leaf-level matches

31

Cupid Linguistic Matching

1. Normalization
Tokenization: split identifiers into tokens based on punctuation, case, etc.
e.g. POBillTo {PO, Bill, To}
five token types: number, special symbol, common word, concept, content
Expansion: expand acronyms with the help of a thesaurus/dictionaryExpansion: expand acronyms with the help of a thesaurus/dictionary
e.g. Qty Quantity
Elimination: discard prepositions, articles, etc. with the help of a stop word list
e.g. {PO, Bill, To} {PO, Bill}
Tagging: identifiers related to a known application concept are tagged with the concept
e.g. identifiers Price, Cost and Value are tagged with the concept Money

2. Categorization
Clusters elements into categories (= a group of elements identified by a set of keywords)
Goal: reduce comparisons to only those elements within compatible categories
One category for each:

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

g y
Concept tag
Data type (coarse grained, e.g., number, string, date, ...)
Container (e.g., address contains city, state, and street)

Elements can belong to multiple categories
Categories are compatible, if their respective sets of keywords are “name similar”

32

Cupid Linguistic Matching (cont.)

Name similarity:
The name similarity of two token sets T1 and T2 is the average of the best similarity of each
token in set T1 with a token in set T2

To determine the similarity of two tokens t1 and t2, a thesaurus lookup is performed
If no thesaurus entry is present for a pair of tokens substring matching is used to identifyIf no thesaurus entry is present for a pair of tokens, substring matching is used to identify
common pre- and suffixes

3. Comparison
Determines the linguistic similarity coefficient lsim(s,t) s ∈ S, t ∈ T, for pairs of elements
of the two schemas S and T
For each pair of elements s, t from compatible categories

1. Calculate the name similarity of the element tokens per token type
2. Calculate the weighted mean of the per-token-type name similarity (concept and content tokens

are assigned a higher weight)
3. Calculate lsim for the pair by scaling the result of 2. with the maximum name similarity of the

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

3. Calculate lsim for the pair by scaling the result of 2. with the maximum name similarity of the
categories of s and t

Result: a table of linguistic similarity coefficients lsim(s,t) in the range [0,1]

33

Cupid Linguistic Matching – Problems

Linguistic matching does not consider context:
e.g., false positive: Emp/Name is as similar to
Employee/Name as it is to Department/Name
Linguistically dissimilar, but semantically related
l t d t d (d b i i

HR

Emp

JobName CityName

Dept

Dept DeptNoEmpNo
elements are underrated (caused by missing or
incomplete thesaurus)
e.g. Dept/City – Department/Location

C typ pp

OccupationName LocationNameID

0.5

Hours

0.9

1.0

1.0

0.9

1.0

1.0 0.10.0

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Personnel

Employee Department

(not all matches shown)

34

Cupid Structural Matching

Based on a tree representation of the structure of the schema
TreeMatch algorithm
Basic intuitions

f f f1. A pair of leaves from two trees is similar, if
a) they are individually similar (linguistic, data type, …)
b) their neighbors (ancestors and siblings) are similar

2. A pair of non-leaves is similar, if
a) they are linguistically similar
b) their subtrees are similar

3. A pair of non-leaves is structurally similar, if their respective leaves are highly similar (not
necessarily their direct children)

Initialize ssim for all leaves using a data type compatibility matrix (range

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

[0,0.5])
Stronglink: similarity between two leaves is above threshold thaccept

based on wheighted similarity (see next chart)

35

Cupid Structural Matching (cont.)

Iterate over the tree nodes in post-order (bottom-up calculation)
For each pair s,t:

Calculate ssim(s,t) as the fraction of leaves in the two subtrees below s and t that have
at least one stronglink to a leaf in the other subtreeat least one stronglink to a leaf in the other subtree
Calculate a weighted similarity measure wsim(s,t):
wsim(s,t) = wstruct·ssim(s,t) + (1-wstruct)·lsim(s,t)
If wsim(s,t) is above threshold thhigh, increase the similarity of each pair of leaves in the
subtrees of s and t by a factor cinc (not exceeding 1)
If wsim(s,t) is below threshold thlow, decrease the similarity of each pair of leaves in the
subtrees of s and t by a factor cdec (but never below 0)

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
36

HR

Emp

JobName CityName

Dept

Schema A

Cupid Structural Matching – Example

Initialization:
ssim set to 0.0 for all non-leaf nodes
ssim set to data type similarity for leaves

Parameters:Dept DeptNoEmpNo City
thaccept = 0.5
wstruct = 0.7
thhigh= 0.7, cinc = 1.2
thlow = 0.3, cdec = 0.8

p pp

OccupationName LocationNameID

1.0
0.5
0.7

1.0
0.5
0.7

1.0
0.5
0.7

0.5
0.5
0.5

0.9
0.5
0.6

0.1
0.5
0.4

0.9
0.0
0.3

0.0
0.0
0.0

1.0
0.5
0.7

Hours

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

lsim
ssim
wsim

Personnel

Employee Department

(not all matches shown)

Schema B

37

Cupid Structural Matching – Example (cont.)

Iteration for
s = Emp, t = Employee:

Calculate ssim:
3 out of 4 leaves of Emp have stronglinks to
leaves of Employee 3 out of 3 leaves of Employee

HR

Emp

JobName CityName

Dept

DeptNoEmpNo

Schema A

Dept

s

leaves of Employee, 3 out of 3 leaves of Employee
have stronglinks to Emp
ssim(s,t) = 6/7 ≈ 0.9
Calculate wsim:
wsim(s,t) = wstruct·ssim(s,t) + (1-wstruct)·lsim(s,t)

= 0.7 · 0.9 + 0.3 · 0.9 = 0.9
Modify structural similarity for leaves of s and t:
wsim(s,t) = 0.9 > thhigh= 0.7

increase ssim for each pair (ls,lt),
ls ∈ leaves(s) and lt ∈ leaves(t):
ssimnew(ls,lt) = ssimold(ls,lt) · cinc = 0.5 · 1.2 =0.6
(wsim for leaf-pairs is left unchanged)

C typp

OccupationNameID

1.0
0.6
0.7

0.5
0.6
0.5

0.9
0.6
0.6

0.9
0.9
0.9

p

LocationName

1.0
0.5
0.7

Hours

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Personnel

(wsim for leaf pairs is left unchanged)

Result:
Similarity between s and t increased, because
children are similar (intuitions 2b and 3)
Similarity between the child nodes increased,
because their neighbors (here: ancestors) are
similar (intuition 1b)

lsim
ssim
wsim

Employee Department

Schema B

t

38

Cupid Structural Matching – Example (cont.)

Iteration for
s = Emp, t = Department:

Calculate ssim:
ssim(s,t) = 2/7 ≈ 0.3
(1 out of 4 leaves of Emp have stronglinks to

HR

Emp

JobName CityName

Dept

DeptNoEmpNo

Schema A

Dept

s

(1 out of 4 leaves of Emp have stronglinks to
leaves of Department, 1 out of 3 leaves of
Department have stronglinks to leaves of Emp)
Calculate wsim:
wsim(s,t) = wstruct·ssim(s,t) + (1-wstruct)·lsim(s,t)

= 0.7 · 0.3 + 0.3 · 0.0 = 0.21 ≈ 0.2
Modify structural similarity for leaves of s and t:
wsim(s,t) = 0.2 < thlow= 0.3

decrease ssim for each pair (ls,lt),
ls ∈ leaves(s) and lt ∈ leaves(t):
ssimnew(ls,lt) = ssimold(ls,lt) · cdec
(wsim for leaf-pairs is left unchanged)

Citypp

OccupationNameID

p

0.0
0.9
0.6

0.0
0.3
0.2

LocationName

1.0
0.4
0.7

Hours

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

(wsim for leaf pairs is left unchanged)

Result:
Similarity between Emp/Name and
Department/Name decreased, because their
ancestors are not similar

lsim
ssim
wsim

Employee

Personnel

Department

Schema B

t

39

Cupid – Summary

TreeMatch exploits a schema element‘s context to modify similarity values
Helps to discern between pairs that were rated identical by linguistic
matching:

Confidence of false positives reduced:Confidence of false positives reduced:
Match confidence between leaves with dissimilar ancestors decreases
Match confidence of linguistically similar non-leaves with different children decreases

Confidence of false negatives or uncertain matches increased
Match confidence of leaf-pairs with similar ancestor increases
Match confidence of linguistically dissimilar non-leaves with similar children increases

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
40

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Multi-database languages/
Schematic Query Languages

Middleware for Heterogenous and Distributed Information Systems - WS07/08

Standard SQL is unable to generically solve most forms of schematic
heterogeneity
Comp. Person – Men/Women example

Limitations of SQL

PersonS h A h

Can be solved with relational view(s)...

Person
ID Name Gender

1234 Bob male

4567 Jane female

Men
ID Name

1234 Bob

Women
ID Name

4567 Jane

CREATE VIEW Men AS
SELECT ID, Name
FROM Person
WHERE Gender='male'

CREATE VIEW (ID, Name, Gender)
AS
SELECT ID, Name, 'male'
FROM Men

Schema A Schema B

A to B B to A

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

… but only because the number of different “categories” (here: genders) is
known a priori (and fixed)

CREATE VIEW Women AS
SELECT ID, Name
FROM Person
WHERE Gender='female'

FROM Men
UNION
SELECT ID, Name, 'female'
FROM Women

42

e.g., replace gender with department:

Limitations of SQL (cont.)

Person
ID Name Department

1234 Bob Accounting

Schema A
Accounting
ID Name

Sales
ID Name

Schema B
Service

NameID

Departments might change over time
When using static views as before

Each new department in A requires its own view definition to transform to schema B
Each new department in B requires a modification of the view to transform to schema A

Expensive maintenance

g

4567 Jane Sales

CREATE VIEW Accounting AS
CREATE VIEW (ID, Name, Department)
AS

1234 Bob 4567 Jane Joe9876

Joe Service9876

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

…
CREATE VIEW Sales AS
…

AS
SELECT ID, Name, 'Accounting'
FROM Accounting
UNION
SELECT ID, Name, 'Sales'
FROM Sales

A to B B to A

UNION
SELECT ID, Name, 'Service'
FROM Service

CREATE VIEW Service AS
SELECT ID, Name
FROM Person
WHERE Department ='Service'

43

Schematic Query Languages

Solution: Extend SQL to be able to transform data to metadata (and v.v.)
Schematic Query Languages (a.k.a. Multi-database QLs)
Examples

SchemaSQL
FIRA/FISQL

Challenge:
The schema of the result of a query is now dependent on the data actually present in the
input relations
To allow such dynamic schemas, schematic query languages have to extend the
relational model

In addition, schematic query languages provide mechanism to access different
databases in a single query

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

databases in a single query

44

Example Databases

AvgSales

Store TV Computer Hifi

Quadrate 205000 234000 108000
Kaiserslautern (KL)

Mannheim (MA)

Quadrate 205000 234000 108000

Kaefertal 90000 76000 87000

Sandhofen 73000 81000 98000

Eisenbahnstr

Dept AvgSales

TV 67000

Computer 51000

180000ComputerGewerbegbt

156000ComputerInnenstadt

118000HifiInnenstadt

112000TVGewerbegbt

Sales

Hifi

TV

Department

139000Innenstadt

57000Gewerbegbt

AvgSalesStore

Hauptstr

Dept AvgSales

TV 74000

Computer 103000

Trier (TR)

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Computer 51000

Hifi 78000

Computer 103000

Hifi 89000

45

SchemaSQL

Lakshmanan, Sadri & Subramanian [LSS96, LSS01]
First approach addresses the issue of schematic heterogeneity with SQL
Built on top of SQL by providing an extended FROM clause:

f fSpecify range variables (“aliases”) not only over tuples of relations, but also over
the databases of the (M)DBMS ->

the relation names of a database db->

attribute names of a relation db::rel->

tuples of a relation (-> SQL) db::rel

distinct values of an attribute db::rel.attr

Elements of the FROM clause can be nested, e.g.
FROM xdb-> xdbtables, xdbtables-> atts
to iterate over the relations of database xdb and then over the relations’ attributes
Variables in the FROM clause can be used in view definitions for dynamic result schemas

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Variables in the FROM clause can be used in view definitions for dynamic result schemas

46

SchemaSQL – Example

Transform KL database to MA format:
CREATE VIEW KL2MA::AvgSales(Store, KD) AS

SELECT KS.Store, KS.AvgSales

FROM KL::Sales KS KS Department KD

1

3

1. Dynamic result schema: number of attributes depends on number of attribute values in
the source relation‘s department attribute

2. Nesting of sets in FROM clause
3. A source tuple‘s value for AvgSales is placed in the result column depending on the value

of the tuple‘s Department attribute (merge into one result tuple is implicit)

Problem: Operation (the merge) is not well-defined for all source relations
What happens if there was an additional tuple (“Innenstadt”,“Hifi“, 97500) in the KL
d b ? Whi h l (11800 97500) l i h “Hifi” l ?

FROM KL::Sales KS, KS.Department KD

2

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

database? Which value (11800 or 97500) to place into the “Hifi” column?
SchemaSQL does not answer this question

47

SchemaSQL – Example (cont.)

Aggregation over a variable number of columns
e.g. “What are the average sales of the Mannheim stores, across all
departments?”
N b f d t t t d t b fi d!Number of departments cannot assumed to be fixed!

Use of attribute set in aggregate function

SELECT MS.Store, AVG(MSAtts)

FROM MA::AvgSales MS, MA::AvgSales-> MSAtts

WHERE MSAtts<>'Store'

GROUP BY MS.Store

M h i (MA)

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

AvgSales

Store TV Computer Hifi

Quadrate 205000 234000 108000

Kaefertal 90000 76000 87000

Sandhofen 73000 81000 98000

Mannheim (MA)

48

SchemaSQL – Criticism

Semantics of a SchemaSQL SELECT statement differs depending on context:
e.g., query from Example 2, placed in a view definition:

CREATE VIEW MA::PerDeptAvgs(Store, MSAtts) AS

Query now computes the averages for each department individually!

SELECT MS.Store, AVG(MSAtts)

FROM MA::AvgSales MS, MA::AvgSales-> MSAtts

WHERE MSAtts<>'Store'

GROUP BY MS.Store

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
49

FIRA/FISQL

Presented by Wyss and Robertson [WyRo05]
Extends the relational model to the federated relational model

Number of output relations and their attributes is fully dynamic

P id t d d SQL t (F d t d I t bl SQL FISQL)Provides an extended SQL syntax (Federated Interoperable SQL, FISQL)
Provides a sound theoretical foundation by specifying the underlying algebra
operators (Federated Interoperable Relational Algebra, FIRA)
FIRA/FISQL is transformationally complete:

Transform any form of relational metadata to data and v.v.

relation names

attribute names

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

FISQL allows nesting of queries

data

50

FIRA/FISQL Data Model

Federated relational data model:
Extends the relational model to incorporate metadata

A federated tuple is a mapping from a finite set of names S (=attribute names) to values;
S is known as the schema of the tuple.
A federated relation has a name and contains a finite set of federated tuples
A federated database has a name and consists of a finite set of federated relations
A federation consists of a finite set of federated databases
The schema of a federated relation is the union of the schemas of the tuples

Operations that add/change/delete tuples may modify the relation schema

Defines federated counterparts of the six standard relational operators, e.g.
Renaming of relations (in addition to attributes)
Cartesian product/union/difference of databases

Introduces six new operators

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

p
Most operators defined on federated relations and on federated databases,
i.e. operators take a relation/database as input and produce a
relation/database as output

51

Drop-projection A(R), A(D)
Two variants: one for relations, one for federated databases
Parameter A is the set of attributes to be removed from the relation/fed. DB
Required to generically handle relations/fed DBs with variable schema

FIRA/FISQL – Operators

π π

Required to generically handle relations/fed. DBs with variable schema

Down ↓I (R), ↓I (D)
Two variants: one for relations, one for federated databases
“Demotes” a table R’s metadata to data by creating a relation metadatai and
forming its crossproduct with R.
For a relation R with name N and attributes A1… An,
the relation metadatai is defined as:
Ignores metadata columns: ↓i(R) = metadatai(R) × (R)

Attribute Dereference ∆ (R)

ri ai

N A1

N A2

...
N

...
An

metadatai(R)=

ri,ai

π

B
A

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

()
The value of attribute B of the target tuple t is determined by using the value found in
the attribute named equal to t’s value in column A, values of all other attributes of t are
equal to the respective value of those in source tuple s
Let t[X] denote the value of attribute X of tuple t. The attribute values of a result tuple t
are obtained from the values of its respective source tuple s like this:

A

⎩
⎨
⎧ =

=
otherwise][

BX if]][[
][

Xs
Ass

Xt

52

FIRA/FISQL – Operators (cont.)

Generalized Union Σ(D)
Creates a relation holding the outer union of all relations in the database D

Transpose τ (R)
For each distinct value of the parameter column B in the input relation R create a

B
A

For each distinct value of the parameter column B in the input relation R, create a
column in the result relation (whose name is the respective value of B)
For each tuple t of the result relation, obtain the value of column X (denoted t[X]) from
the respective source tuple s like this:

i.e.: for each new attribute Ni, its value is that of the source tuple’s A attribute if the
source tuple’s B attribute value is equal to the name of attribute Ni, NULL otherwise

h ib i h d

⎪
⎩

⎪
⎨

⎧
∈
=

=
otherwise NULL

schema(s) X if][
][if][

][Xs
BsXAs

Xt

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

other attributes remain unchanged

Partition operator ℘A(R)
Roughly the opposite of Generalized Union
Creates a federated database with one relation for each distinct value in column A of
input relation R

53

FIRA/FISQL example – KL2TR

Transform the Kaiserslautern database to the format of the Trier database
Requires the Partition operator ℘A(R) and (drop) projection

Kaiserslautern (KL) KL2TR‘

I dSales
Store Department AvgSales
Innenstadt TV 139000
Innenstadt Computer 156000
Innenstadt Hifi 118000
Gewerbegbt TV 112000
Gewerbegbt Computer 180000
Gewerbegbt Hifi 57000

KL2TR’=℘Store(KL)

Innenstadt
Store Department AvgSales
Innenstadt TV 139000
Innenstadt Computer 156000
Innenstadt Hifi 118000

Gewerbegbt
Store Department AvgSales
Gewerbegbt TV 112000
Gewerbegbt Computer 180000
Gewerbegbt Hifi 57000KL2TR

Innenstadt
D t t A S l

GewerbegbtKL2TR= Store(KL2TR’)π

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

FISQL statement:
SELECT KS.Department AS Dept, KS.AvgSales INTO KS.Store
FROM KL.Sales KS

A

Department AvgSales
TV 139000
Computer 156000
Hifi 118000

g
Department AvgSales
TV 112000
Computer 180000
Hifi 57000

KL2TR Store(KL2TR)π

KL2TR=πDepartment, AvgSales(KL2TR’)

OR

54

FIRA/FISQL example – MA2KL

Transform the Mannheim database to the format of the Kaiserslautern
database
Requires a combination of the down and attribute deference operator

AvgSales
Store TV Computer Hifi
Quadrate 205000 234000 108000
Kaefertal 90000 76000 87000
Sandhofen 73000 81000 98000

Mannheim (MA)

S
r1 a1 Store TV Computer Hifi
AvgSales Store Quadrate 205000 234000 108000
AvgSales TV Quadrate 205000 234000 108000
AvgSales Computer Quadrate 205000 234000 108000
AvgSales Hifi Quadrate 205000 234000 108000
AvgSales Store Kaefertal 90000 76000 87000
AvgSales TV Kaefertal 90000 76000 87000
… … … … … …
AvgSales Hifi Sandhofen 73000 81000 98000

S=↓1 (MA.AvgSales)

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

S’=σ (S)

S’
r1 a1 Store TV Computer Hifi
AvgSales TV Quadrate 205000 234000 108000
AvgSales Computer Quadrate 205000 234000 108000
AvgSales Hifi Quadrate 205000 234000 108000
AvgSales TV Kaefertal 90000 76000 87000
… … … … … …
AvgSales Hifi Sandhofen 73000 81000 98000

a1<> ‘Store'

55

FIRA/FISQL – MA2KL (cont.)
S’’
r1 a1 Store TV Computer Hifi AvgSale

s
AvgSales TV Quadrate 205000 234000 108000 205000
AvgSales Computer Quadrate 205000 234000 108000 234000
AvgSales Hifi Quadrate 205000 234000 108000 108000
A S l TV K f l 90000 76000 87000 90000

S’’=∆ (S’)AvgSales
a1

AvgSales TV Kaefertal 90000 76000 87000 90000
… … … … … …
AvgSales Hifi Sandhofen 73000 81000 98000 98000

Cleanup:
MA2KL= πStore, Department, AvgSales ρa1->Department(S’’)

MA2KL
Store Department AvgSales
Quadrate TV 205000
Quadrate Computer 234000
Quadrate Hifi 108000
Kaefertal TV 90000

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

… …
Sandhofen Hifi 98000

56

FIRA/FISQL example – TR2KL

Use Down (on DB) with Generalized union, renaming and projection:
TR2KL= ρε->SalesπStore, Dept, AvgSales ρr1->Store Σ(↓1 (TR))

T i (TR) TR‘

Eisenbahnstr

Dept AvgSales

TV 67000

Computer 51000

Hifi 78000

Hauptstr

Dept AvgSales

TV 74000

Computer 103000

Hifi 89000

Trier (TR)

TR’ =↓1 (TR)

Eisenbahnstr

r1 a1 Dept AvgSales

Eisenbahnstr Dept TV 67000

Eisenbahnstr AvgSales TV 67000

Eisenbahnstr Dept Computer 51000

… … … …

Eisenbahnstr AvgSales Hifi 78000

Hauptstr

r1 a

Hauptstr D

Hauptstr A

… …

TR

ε

TR‘‘
Sales

TR2KL

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

 ε

r1 a1 Dept AvgSales

Eisenbahnstr Dept TV 67000

Eisenbahnstr AvgSales TV 67000

Eisenbahnstr Dept Computer 51000

… … … …

Hauptstr AvgSales Hifi 89000

Store Dept AvgSales

Eisenbahnstr TV 67000

Eisenbahnstr TV 67000

Eisenbahnstr Computer 51000

… … …

Hauptstr Hifi 89000

TR’’ =Σ (TR’)
TR2KL= ρε->Sales

πStore, Dept, AvgSales
ρr1->Store (TR’’)

57

FIRA/FISQL example – KL2MA

Transform the Kaiserslautern database to the format of the Mannheim
database
Requires the transpose and drop-projection operators:

Sales
Store Department AvgSales
Innenstadt TV 139000
Innenstadt Computer 156000
Innenstadt Hifi 118000
Gewerbegbt TV 112000
Gewerbegbt Computer 180000
Gewerbegbt Hifi 57000

Kaiserslautern (KL)
S
Store Department AvgSales TV Computer Hifi
Innenstadt TV 139000 139000 - -
Innenstadt Computer 156000 - 156000 -
Innenstadt Hifi 118000 - 118000
Gewerbegbt TV 112000 112000 - -
Gewerbegbt Computer 180000 - 180000 -
Gewerbegbt Hifi 57000 - - 57000

KL

S=τ (Sales)Department
AvgSales

KL

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

S‘
Store TV Computer Hifi
Innenstadt 139000 - -
Innenstadt - 156000 -
Innenstadt - 118000
Gewerbegbt 112000 - -
Gewerbegbt - 180000 -
Gewerbegbt - - 57000
Innenstadt - - 97500

S‘‘
Store TV Computer Hifi
Innenstadt 139000 156000 118000
Gewerbegbt 112000 180000 57000

S’= Department, AvgSales(S)π

Merge
?

58

FIRA/FISQL – Merging

Merging of tuples required
Merging is simple if no “conflicts” arise
Merge not uniquely defined if tuples conflict
Two tuples t1 t2 of a relation with n attributes are mergeable if eitherTwo tuples t1, t2 of a relation with n attributes are mergeable if either

t1[Ai] = t2[Ai] or
one of t1[Ai] or t2[Ai] is a null value

holds for 1≤i≤n

The merge t of two mergeable tuples t1, t2 (denoted t = t1 ⊙ t2) is defined as

Optimal tuple merge
For a relation schema R and two relations r1 and r2 that are instances of R, r2 is a tuple

ni
At

AtAt
At

i

ii
i ≤≤

⎩
⎨
⎧

= 1for
otherwise][

nullnot][if][
][

2

11

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

For a relation schema R and two relations r1 and r2 that are instances of R, r2 is a tuple
merge of r1, if it can be obtained from r1 by a finite sequence of merge operations of
mergeable tuples
A tuple merge r2 of r1 is an optimal tuple merge, if for every r3 that is also a tuple merge
of r1
|r2| ≤ |r3| holds

59

FIRA/FISQL – Merge Operator

(Unique optimal tuple) Merge Operator µ(R) [WyRo05b]
Let R be a relational schema, and r an instance of R
Let ØR denote the empty relation of schema R
Then the unique optimal tuple merge of r isThen the unique optimal tuple merge of r is

Merge was not part of the original FIRA/FISQL
No FISQL syntax specified

FISQL statement (without merge):

⎩
⎨
⎧

=
otherwise merge tupleoptimal unique the

r of merge tupleoptimal one than more is thereifØ
:)(

R

rµ

SELECT DROP (KS1.Department, KS1.Avgsales)
FROM (SELECT KS.*, KS.Avgsales ON KS.Department

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

(, g p
FROM KL.Sales AS KS)
AS KS1

S A B
S’

60

FIRA/FISQL example – KL2MA continued

S‘
Store TV Computer Hifi
Innenstadt 139000 - -
Innenstadt - 156000 -
Innenstadt 118000

KL

S’’=µStore(S’)
S‘‘
Store TV Computer Hifi
Innenstadt 139000 156000 118000

S‘
Store TV Computer Hifi
Innenstadt 139000 - -
Innenstadt - 156000 -
Innenstadt - 118000

KL

S‘‘
Store TV Computer HifiS’’=µStore(S’)

Innenstadt - 118000
Gewerbegbt 112000 - -
Gewerbegbt - 180000 -
Gewerbegbt - - 57000

µStore() Innenstadt 139000 156000 118000
Gewerbegbt 112000 180000 57000

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Gewerbegbt 112000 - -
Gewerbegbt - 180000 -
Gewerbegbt - - 57000
Innenstadt - - 97500

µStore()

61

FIRA/FISQL – Summary

Theoretically sound approach to resolve schematic heterogeneity
Open questions:

How does grouping/aggregation fit into the model?
Group by/aggregate over an unknown set of attributes ?Group by/aggregate over an unknown set of attributes ?
Could allow the user to solve the merge problem for relations with conflicting tuples by explicitly
specifying the desired merge semantics (using an aggregate function)

What does transformational completeness mean in the XML data model?

Sales

Store Department AvgSales

AvgSales

Store TV Computer Hifi

Quadrate 205000 234000 108000

Kaefertal 90000 76000 87000

Sandhofen 73000 81000 98000

Kaiserslautern (KL)

Mannheim (MA)

↓+∆

τ + + µπ

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Innenstadt TV 139000

Innenstadt Computer 156000

Innenstadt Hifi 118000

Gewerbegbt TV 112000

Gewerbegbt Computer 180000

Gewerbegbt Hifi 57000

Sandhofen 73000 81000 98000

Eisenbahnstr

Dept AvgSales

TV 67000

Computer 51000

Hifi 78000

Hauptstr

Dept AvgSales

TV 74000

Computer 103000

Hifi 89000

Trier (TR)

↓ ∆

↓+Σ

℘ + π/ π

62

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Schema Integration

Middleware for Heterogenous and Distributed Information Systems - WS07/08

Schema Integration

Goal: Create an integrated schema T from a set S of schemas that is:
complete (contains all concepts of S)
minimal (contains semantically equivalent concepts only once)
correct (each concept must correspond to a concept of at least one source)correct (each concept must correspond to a concept of at least one source)
intelligible (humans can understand the schema, e.g., names of concepts and their
attributes should be preserved where possible)

Schema Integration is not about transforming data from one schema to
another (Information integration, data fusion)
Also known as schema (or ontology) merging
Can be separated into four phases [BLN86]:

Preintegration
Choose schemas to integrate

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Choose schemas to integrate
Collect additional information (e.g., documentation of data sources)

Comparing the schemas
Schema Matching
Identify conflicts

64

Schema Integration (cont.)

"Conforming" the schemas
Resolve conflicts, e.g., by renaming attributes, restructuring (e.g., (de-)normalization))
At the end of the phase, identical concepts are represented identically in all schemas

Schema Merging and Restructuring
Superimpose schemas
Restructure to meet the four goals

Two main categories:
Binary approaches integrate exactly two schemas
n-ary approaches integrate an arbitrary number of schemas in one step

For binary approaches, the sequence in which they are applied to the n input
schemas can make a difference
Most approaches are not algorithms, but guidelines

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Even algorithms require manual conflict resolution
At best semi-automatic

Examples:
Rondo Merge Operator [PoBe03]
Generic Integration Model (GIM) [ScSa05]

65

Rondo Merge Operator – Schema Representation

A model L is a triple (E, Root, Re), with E being a set of elements, Root ∈ E
being the root element of the model, and Re being the set of relationships of
the model
Elements with required properties name and an internal IDElements with required properties name and an internal ID
Binary, directed relationships R(x,y) with cardinality constraints and five
different kinds:

Associates A(x,y) – elements x and y are associated in a (not further specified) manner
Contains C(x,y) – element x (container) contains element y (containee) (Containment)

Containees cannot exist on their own (i.e., delete on the container cascades to the containees)
transitive and acyclic

Has-a H(x,y) – element x has a subelement y (Aggregation)
weaker than contains: no cascading of deletes, cycles allowed

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Is-a I(x,y) – x is a specialization of y (Specialization/Generalization)
transitive and acyclic

Type-of T(x,y) – x is of type y
an element can be of at most one type (one-type restriction)

66

Rondo Merge Operator (cont.)

Metamodel-specific relationship implication rules to infer implicit relations
based on explicit relations, e.g.

If T(q,r) and I(r,s), then T(q,s) – an element q of type r is implicitly also an instance of
any of r’s superclasses sy p
If I(p,q) and H(q,r), then H(p,r) and If I(p,q) and C(q,r), then C(p,r) – an element
inherits aggregates and components from its superclasses

Mappings (=sets of correspondences) are themselves models
Contain mapping elements (two kinds: equality and similarity)
Contain mapping relationships M(x,y), indicating that mapping element x represents
element y
All model elements y represented by a single mapping element via M(x,y) are said to
correspond to one another

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
67

Rondo Merge Operator Requirements

Inputs:
Two models A and B
A mapping MapAB (=set of correspondences) between A and B
Optional: an indication which model is the preferred oneOptional: an indication which model is the preferred one

Output: a merged model G
Merge semantics based on Generic Merge Requirements
1. Each element e with e ∈ A ∪ B ∪ MapAB corresponds to exactly one element e’ in G

(Element preservation)
2. Two input elements are only mapped to the same element in G if the mapping indicates

that they are equal (Equality preservation)
3. Each input relationship is represented directly in G or implied by G (according to the rules

of the metamodel) (Relationship preservation)

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

4. Elements which are similar (but not equal) according to MapAB, remain separate in G and
are related by a relationship (Similarity preservation)

5. No other elements besides those specified in rules 1-4 exist (Extraneous item prohibition)
6. An element e in G has a property p if it has a corresponding element e’ in A or B that has

property p (Property Preservation)

68

Rondo Merge Algorithm

Form groups of elements for which an equality mapping exists (directly or
transitively)

Groups include the mapping elements themselves
For each group I, create an element e in G:g p ,

ID(e) is set to an unused ID value
For other properties p of e, p‘s value v is in order of precedence:

1. the value of property p of a mapping element in I for which property p is defined, otherwise
2. the value of property p of an element in I of the preferred model for which p is defined,

otherwise
3. the value of property p of any element of I for which p is defined.

If more than one value is possible in 1-3, one is chosen arbitrarily
Values of mappings take precedence over those of the preferred model over those of the other
model

For each pair of elements e’ and f’ in G that correspond to different groups E

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

and F
if for any two e ∈ F and f ∈ F a relationship R(x,y) of kind t exists in A resp. B
create a relationship R(e’,f’) of kind t in G
Relationships between elements of the same group are ignored
Remove implied relationships until a mincover remains

Resolve conflicts

69

Merging Example

Movie

ID Title Genre

Role

Name Desc ID Name Bio

Schema A Groups:
G0 {MovieDB}
G1 {A.Movie,B.Film, MapAB.#m8}
G2 {A.Movie.ID, B.Film.ID,

Map MID}

MovieDB

Actor

Firstname LastnameRole

#m1
(=)

MID
(=)

ActorName
(=)

#m5
(=)

#m4
(=)

Rolename
(=)

#m7
(=)

#m8
(=)

MapAB

MapAB.MID}
G3 {A.Movie.Title, B.Film.Title,

MapAB.#m1}
G4 {A.Movie.Genre}
G5 {A.Role}
G6 {A.Role.Name, B.Film.Actor.Role,

MapAB.Rolename}
G7 {A.Role.Desc}
G8 {A.Actor, B.Film.Actor, MapAB.#m7}
G9 {A.Actor.Name, MapAB.ActorName}

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Role

Film

ID Title Actor

Associates
Contains

Matches

Schema B

{ , pAB }
G10 {A.Actor.ID}
G11 {A.Actor.Bio}
G12 {B.Film.Actor.Firstname,

MapAB.#m4}
G13 {B.Film.Actor.Lastname,

MapAB.#m5}
<Name> Schema Element

<ID>|<Name>
(<Type>)

Mapping Element

70

Merging Example (cont.)

Merge(A,B, MapAB) with A as the preferred schema
One element for each group
replicate all associations between members of the groups as associations between the
new elements G0:MovieDB

Remove implied relationships to obtain minimum coverage of associations

G8:ActorG1:Movie

G3:Title G4:Genre

G5:Role

G9:ActorName

G11:Bio

G12:Firstname

G6:Rolename

G10:ID

G13:Lastname

G7:Desc

G2:MID

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
71

Fundamental conflicts (shared across all metamodels)
e.g. One-type restriction violated

Conflict resolution

Model A Model GMAPAB
ZIP ZipCode=

M
ZIP

Model B
Type-of

Resolve e.g. by introducing a new type that inherits from both Integer and String

Metamodel conflicts
Metamodel-dependent resolution rules

String Integer

Merge

IntegerString

Model G‘
ZIPString Integer

NewType

yp

Is-a

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

e.g., in most data models, an element can be containee
in at most one container

e.g. Rolename in the example
remove one containment relationship

SQL92 does not have the concept of subcolumn
(as needed for name(firstname, lastname))

G8:ActorG5:Role

G6:Rolename

72

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Integration Planning

Middleware for Heterogenous and Distributed Information Systems - WS07/08

Integration Planning – Goals

Creation of an “executable mapping”, i.e., a data transformation from source
to target schemas
Inputs

Source schemas (and data)Source schemas (and data)
Target schema (and sample data)
(Correspondences)

Output
An “executable mapping”, i.e., a specification for data transformation from the sources to
the target schema
e.g. SQL(/XML) queries/views, ETL scripts, XQuery statements etc.
Usually created manually with tool support

Many different approaches to partially automate the process

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Many different approaches to partially automate the process
Clio Query Discovery [MHH00]
Tupelo [FlWy06]
Integration Patterns [Gö05a]

74

Clio Query Discovery – Overview

Clio is a combined tool for schema matching and mapping
Creates executable mappings as SQL/XQuery statements for use in FDBMS
Uses value correspondences (VCs):

Essentially complex 1:n matches
A value correspondence vi is a tuple (fi,pi) with

a function fi describing how to derive a certain target attribute B from a set of source attributes Ak
(and possibly from source metadata):
fi: dom(A1) x dom(A2) x … dom(Aq) → dom(B)
a filter pi indicating which source values should be used:
pi: dom(A1) x dom(A2) x … dom(Ar) → boolean

Note: function and filter of a correspondence can be defined on different sets of
attributes

Idea: Divide the set of value correspondences V into subsets each of which

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Idea: Divide the set of value correspondences V into subsets each of which
determines one way to compute a given target relation Tk

75

Clio Query Discovery – Algorithm

Consists of four distinct phases
For each target relation Tk
1. Partition V into potential candidate sets {c1, … , cp} that contain at most one VC per

attribute of Tk:
The ci need not be disjoint
A ci is called complete if it includes a VC for every attribute in Tk

Prefer complete potential candidate sets, and further prefer those that use the smallest set of
source relations
Prune potential candidate sets that are subsets of another
Incomplete candidate sets are considered, as not every target attribute might have a VC

2. Prune those potential candidate sets that cannot be mapped to a “good” query
To create a query, a way of joining the source relations of the potential candidate set is needed
Search for join paths (i.e. foreign keys) between the relations
If several join paths exist, use the one for which the estimated difference in size of an outer and
an inner join is smallest, resulting in a minimum number of dangling tuples

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

an inner join is smallest, resulting in a minimum number of dangling tuples
If no join path exist, request the user to specify them
All potential candidate sets without a join path are removed
Result: Candidate sets for every target relation, representing different ways to obtain the values
of the target relation
Each candidate set can be mapped to a Select-Project-Join(-Group-by-Aggregate) query

76

Clio Query Discovery – Algorithm (cont.)

3. Find sets of the candidate sets (covers) that contain every VC at least once
Determine a minimum cover, i.e., eliminate all covers from which candidate sets can be removed
while still containing all VCs
Rank the remaining covers according to the inverse number of candidate sets they contain (less
candidate sets means less queries)candidate sets means less queries)
For those with an equal number of candidate sets, choose those that have the largest number of
target attributes in all candidate sets (i.e., minimize null values)
Present ranked covers as alternative mappings to the user

4. Create the query q for target relation Tk from the selected cover
For each candidate set ci in the cover, create a candidate query qi such that

All correspondence functions fk mentioned in ci appear in the SELECT clause
All source relations of the VCs in ci appear in the FROM clause
All predicates pi of the VCs in ci appear in the WHERE clause
All source relations needed for join paths appear in the FROM clause and the join predicates appear in the
WHERE clause

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

If ci contains aggregate functions, all attributes not in the aggregate function are selected as grouping
attributes. If the aggregate is in the correspondence function fk, it is placed in the SELECT clause. If it is in a
predicate, it is placed in a HAVING clause.

Combine all candidate queries qi into q by the use of UNION ALL

77

Clio Query Discovery – Example

S1.Movie MovieID Title Year Director
v1

v2

v3

S1.Actor ActorID Name Role Pay MovieID

T.Movie Title Year Director Budget

v4(SUM(Pay), SUM(Pay)>10M)

v5(id, genre<>“Documentary”)

v6
v

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

S2.Film FID Title Year Budget Genre

default for fi is id, default for pi is true

v7

Phase 1: Potential candidate sets
c1 = {v1, v2, v3, v4}
c2 = {v5, v6, v7}
c3 = {v1, v6, v3, v7}
c4 = {v5, v2, v3, v7}
...

78

Clio Query Discovery – Example (cont.)

Phase 2: Eliminate potential candidate sets that have no good query
e.g. c3 and c4 have no join paths, others are subsets
Only c1 and c2 remain

Phase 3: Find all minimum cover (sets of candidate sets that contain all VCs)Phase 3: Find all minimum cover (sets of candidate sets that contain all VCs)
{{c1,c2}}

Phase 4: Create candidate querys and combined query:
SELECT Title, Year, Director, SUM(Pay)
FROM S1.Movie m, S1.Actor a
WHERE m.MovieID = a.MovieID
GROUP BY Title, Year, Director
HAVING SUM(Pay) >10M

UNION ALL
SELECT Title Year null Budget

q1

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

SELECT Title, Year, null, Budget
FROM S2.Film
WHERE genre <> “Documentary”

q2

79

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Data Integration

Data Quality Problems
Causes and Consequences
Data Cleaning

Middleware for Heterogenous and Distributed Information Systems - WS07/08

Data Quality

All approaches discussed so far only resolve heterogeneity regarding the
schemas/metadata of the data sources
Problems in the data itself remain to be resolved:

Erroneous data (values outside domain, violated constraints)(,)
Data inconsistencies (Contradictions across and within a data source)
Duplicates (Are two tuples from different sources refering to the same real world object?)
Completeness (Does a data source deliver all data for a concept?)
Credibility (Is the source reliable, can the data be trusted?)
Timeliness (Is the data up-to-date?)

Many problems are similar to those for schema integration
Synonyms, homonyms ~ semantic heterogeneity

Do the tables “Person” and “Pers” refer to the same concept? ≈
Do “Gottlieb-Daimler-Straße” and “Gottl.-Daiml.-Str” refer to the same object?

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Considerable degree of uncertainty
Scale of the problem several orders of magnitude larger:

~102-103 schema elements, but 102-109++ instances
Resolving data quality (“Data Cleaning”) problems is extremely expensive
Today usually only done in replicating/materialized integration systems

81

Classification of Data Quality Problems

based on [RaDo00, LeNa07]

Data Quality Problems

Allocation of problems to categories is not always unambiguous
Instance level multi-source problems were previously subsumed as syntactic
heterogeneity
S h l l lti bl di d i i ti

Single-source Problems Multi-source Problems

Schema Level Instance Level (Schema Level) Instance Level

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Schema level multi-source problems were discussed in previous sections
(forms of heterogeneity)

82

Single-source schema level problems

Lack of integrity constraints: data source cannot enforce application
constraints that are not made explicit using the facilities of the data model

No unique constraints Duplicate values
No enforced referential integrity inconsistent referencesNo enforced referential integrity inconsistent references
Inadequate typing (e.g. String to represent dates) invalid values
Unspecified dependencies dependency violations

e.g. age = $today – birthdate

NOT NULL constraint omitted missing values

Bad Schema Design
e.g., redundancies in schema caused by denormalization
Inconsistencies due to insert/delete/update anomalies

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
83

Single-source data level problems (I)

Typos (e.g. “Gremany”)
can be resolved by spellcheckers or domain experts

Dummy values to “outwit” constraints
e.g. ZIP code 99999 used for “unknown value”
“John Doe” for an unidentified person
often resolvable for domain experts, but dummy values often not used consistently

Wrong values – value does not properly represent the real world
e.g. Movie(Title=“Lord of the Rings”, Year=“1928”)

Deprecated values
e.g. Germany(Founded=“1949”, Chancelor=“Gerhard Schröder”)

Cryptic values
encoded or abbreviated data values

Embedded values

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Embedded values
values embedded in other fields to compensate for missing fields
e.g. Movie(Title=“Fight Club, 1999”)

Wrong allocation
correct value entered into wrong field/swapped values
e.g. Actor(Name=“Tyler Durden”, Role=“Brad Pitt”)

84

Single-source data level problems (II)

Wrong reference
reference to an existing, but the wrong object

Contradictory values
Address(City “Kaiserslautern” ZIP “12345”)Address(City= Kaiserslautern , ZIP= 12345)
Student(Name=“Christian Meier”, Gender=“f”)

Transpositions
different sequences used for data items within a field
Person(“Hans Meier”), Person (“Müller, Karl”)

Duplicates
two or more data records representing the same real world object
techniques for duplicate detection and resolution

bl ith d t hi tit l ti i t di bi ti

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

a problem with many names: record matching, entity resolution, instance disambiguation
Data Conflicts

Duplicates contradict each other
Movie(Title=“Lord of the Rings”, Year=“1978”) vs. Movie(Title=“Lord of the Rings”, Year=“2001”)
How to separate two duplicates with a conflict from two correct entries?

85

Multi-source data level problems

Differentiation is difficult – therefore, multi-source data level problems
are new kinds of problems that typically occur during integration of several source (but can also be
present in a single source)
include many of the single-source data level problems, e.g. Transpositions, Duplicates when they occur
after integrationafter integration

Contradictory values
data from different sources contradict each other (≠Conflict!)
e.g. Source1.Person(ID=“1234”, Age=“47”) vs.

Source2.Person(ID=“1234”, DoB=“1983-06-03”)

Differing representations
e.g. Source1.Emp(ID=“1234”, Job=“Sales Mgr.”) vs.

Source2.Emp(ID=“1234”, Job=“S24”)

Different physical units
e.g. Source1.Person(Name=“Herbert Meier”, height=“183”) [cm] vs.

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

e g Sou ce e so (a e e be t e e , e g t 83) [c] s
Source2.Person(Name=“Herbert Meier”, height=“72”) [inches]

Different precision
e.g. Source1.Movie(Title=“Fight Club”, runtime=“2h19min”) vs.

Source2.Movie(Title=“Fight Club”, runtime=“2h19min12sec”)

Different levels of details
e.g. “all actors” vs. “only main cast”

86

Handling Data Quality Problems

Phase 1: Data Scrubbing (individual records)
Resolve errors within individual tuples/data items
Normalise data

unify case, stemming, stopword removal, acronym expansionunify case, stemming, stopword removal, acronym expansion
Formating: unify date formats, person names (“H. Schmidt” vs. “Schmidt, H.”), addresses

Conversions: convert numerical values to a single unit
simple for physical values (e.g.: length measures: conversion between m, cm, inch etc. is
constant)
difficult for currencies! (which exchange rate to use? Today‘s? The rate at the (maybe unknown)
insertion date?)

Remove outliers
test if data conforms to expectations (expressed as constraints, „sanity checks“)
perform lookup in reference data (e.g., telephone directories)

Vi l t d t i t

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Violated constraints
Test referential integrity

87

Handling Data Quality Problems (II)

Phase 2: Entity Resolution
Resolve problems involving multiple records
Detect duplicate entries

Pairwise comparison of tuples, calculation of a similarity valuePairwise comparison of tuples, calculation of a similarity value
If similarity above threshold -> duplicate detected
False positives and negatives
Determine quality of duplicate detection using

precision (percentage of identified duplicates that are really duplicates)
recall (percentage of actual duplicates found)

Very expensive: O(n2) (possibly very complex) comparisons
Partition data and only compare tuples within a partion

Data Fusion
Combine detected duplicates into one consistent tuple

Equality – tuples agree on all attributes

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

Equality tuples agree on all attributes
Subsumption – a tuple t1 subsumes tuple t2, if it has less null values than t2 and agrees with t2 on all non-
null values
Complementation – two tuples complement each other, if none subsumes the other and if for each non-null
value of one tuple, the other tuple either has a null value or the tuples agree on the value
Conflict – all other situations represent a conflict, i.e., if two duplicate tuples do not agree on at least one
attribute value

Subtlety of null value semantics (unknown, inapplicable, withheld …)

88

Data Cleaning – Summary

Creation of data cleaning mappings requires human interaction
Tools can suggest reasonable mappings

Many errors can not be resolved “in batch”
Either we decide for one source possibly introducing errors and losing correct dataEither we decide for one source, possibly introducing errors and losing correct data
Or we do not make a decision and leave conflicting duplicates in the result

Duplicate detection and resolution introduces uncertainties
Actual validity of individual tuples cannot reasonably be checked for all kinds
of data

Only limited availability of reference data for specific application concepts (e.g.
addresses)

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08
89

References (I)
[BLN86] Batini, C.; Lenzerini, M. & Navathe, S.B.: A comparative analysis of methodologies for database schema integration

ACM Comput. Surv., ACM Press, 1986, 18, 323-364
[CRF03] Cohen, W.W.; Ravikumar, P. & Fienberg, S.E.: A Comparison of String Distance Metrics for Name-Matching Tasks.

IIWeb, 2003, 73-78
[HeSt98] Hernandez, M.A. & Stolfo, S.J.: Real-world Data is Dirty: Data Cleansing and The Merge/Purge Problem

Data Mining and Knowledge Discovery, 1998, 2, 9-37
[FlWy05] Fletcher G H L & Wyss C M : Relational data mapping in MIQIS[FlWy05] Fletcher, G.H.L. & Wyss, C.M.: Relational data mapping in MIQIS

SIGMOD 2005, ACM Press, 912-914
[FlWy06] Fletcher, G.H.L. & Wyss, C.M.: Data Mapping as Search.

EDBT, 2006, 95-111
[GoDe07] Göres, J. & Dessloch, S.: Towards an Integrated Model for Data, Metadata, and Operations

BTW 2007, to appear
[Goe05b] Göres, J.: Towards Dynamic Information Integration

First VLDB Workshop on Data Management in Grids (DMG05), Trondheim, 2005, 16-29
[Goe05a] Göres, J.: Pattern-based Information Integration in Dynamic Environments

9th International Database Engineering Applications Symposium (IDEAS 2005), 125-134
[GPZ01] Greco, S.; Pontieri, L. & Zumpano, E.: Integrating and Managing Conflicting Data

PSI '02, Springer-Verlag, 2001, 349-362
[LeNa07] Leser, U. & Naumann, F.: Informationsintegration

dpunkt Verlag, 2007
[LSS96] Lakshmanan L V S ; Sadri F & Subramanian I N Vijayaraman T M

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

[LSS96] Lakshmanan, L.V.S.; Sadri, F. & Subramanian, I.N. Vijayaraman, T.M.
SchemaSQL: A Language for Interoperability in Relational Multidatabase Systems
VLDB 1996, 239-250

90

References (II)
[LSS01] Lakshmanan, L.V.S.; Sadri, F. & Subramanian, S.N.

SchemaSQL: An extension to SQL for multidatabase interoperability
Database Systems, 2001, 26, 476-519

[RaBe01] Rahm, E. & Bernstein, P.A.
A survey of approaches to automatic schema matching
VLDB Journal, 2001, 10, 334-350

[RaDo00] Rahm E & Do H H[RaDo00] Rahm, E. & Do, H.H.
Data Cleaning: Problems and Current Approaches.
IEEE Data Eng. Bull., 2000, 23, 3-13

[PoBe03] Pottinger, R. & Bernstein, P.A.
Merging Models Based on Given Correspondences.
VLDB, 2003, 826-873

[MBR01] Madhavan, J.; Bernstein, P.A. & Rahm, E.
Generic Schema Matching with Cupid
The VLDB Journal, 2001, 49-58

[MGR02] Melnik, S.; Garcia-Molina, H. & Rahm, E.
Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to Schema Matching.
ICDE 2002, 117-128

[MHH00] Miller, R.J.; Haas, L.M. & Hernández
Schema Mapping as Query Discovery
VLDB 2000, Morgan Kaufmann, 2000, 77-88

© Prof. Dr.-Ing. Stefan Deßloch

Middleware for Heterogenous and
Distributed Information Systems -

WS07/08

[ScSa05] Schmitt, I. & Saake, G.
A comprehensive database schema integration method based on the theory of formal concepts.
Acta Inf., 2005, 41, 475-524

[WyRo05] Wyss, C.M. & Robertson, E.L.
Relational languages for metadata integration
ACM Trans. Database Syst., ACM Press, 2005, 30, 624-660

[WyRo05b] Wyss, C.M. & Robertson, E.L.
A formal characterization of PIVOT/UNPIVOT
CIKM 2005, ACM Press, 602-608

91

