
Architectural Approaches of XDBMS Realization

Muhammad Mainul Hossain

University of Kaiserslautern, AG DBIS

Abstract. Since the introduction of XML in the late 90’s, emerging number of
documents written in this format are being generated. A high demand for
efficient storing, indexing and querying for such documents is evolving. In
recent years, several efforts have been made in both research and industry areas
to cope with this demand. We investigated the architectural aspects of some
well-known efforts for the realization of storing and querying techniques of
XML documents.

1 Introduction

Relational database management systems (RDBMSs) have enjoyed a widespread
success in the last two decades. Huge number of these systems is already deployed
and the data stored on them may exist many years to come. Numerous
implementation techniques and efficient algorithms have been introduced successfully
for these systems. On the other hand, thousands of XML documents are being
generated currently every day causing strong demand for efficient storage and
retrieval of such documents. An evolutionary rather than revolutionary approach
would guarantee hybrid storage of relational and XML data. Various efforts have
been made to reuse the current RDBMS techniques for storing, indexing and querying
XML documents by mapping the data to the relational tables.

The extreme variability in size and unpredictability of use and update frequency of
XML documents may reduce performance substantially and could cause huge
resource overhead. Traversing a gigabyte document to retrieve a small sub-tree or
rewrite it to the disk whenever a single byte is changed is expensive [2]. To store
XML documents effectively and to support efficient retrieval, modification and
update of these documents or parts of them, developing a native XML base
management system (XDBMS) is necessary.

Traditional RDBMSs are designed with the so-called layered architecture [11] and
queried with SQL language. The relational data is structured in nature. On the
contrary, XML documents contain both structured and semi-structured data. There are
several standardized interfaces and languages for the navigational and declarative
access to these documents – DOM [13], SAX [29], XQuery [3], and XPath [1]. This
work investigates architectural aspects of several well-known XML database systems,
including research projects and commercial products and is structured as follows. In
Section 2, we explain various possible strategies of XDBMS implementation that are
observed in the literature. In Section 3, we give an overview of an “ideal” XDBMS,
following [11]. Subsequent sections, Section 4 to Section 13, explain various

Architectural Approaches of XDBMS Realization 3

approaches which are currently implemented or in progress for XDBMS systems. We
focus on the storage model, index structures, data access system, transaction
management and concurrency control of these systems. In Section 14, we make a
high-level comparison on all approaches, trying to summarize the main issues of each
one and showing similarities and differences. Section 15 concludes this work.

2 Implementation Strategies

Five possible implementation strategies have been observed in literature and in
commercial implementations for storing and querying XML documents. None of
them is superior to the others. Each one has positive and negative points.

First, XML over Relational (XOR) shreds the XML documents into atomic values
and stores them in individual columns of relational tables. Existing RDBMS systems
components can be reused without modifications (or more realistic, with minor
modifications) in this approach. But translating powerful XQuery queries into SQL
queries is extremely complex and in many cases very inefficient [22]. Moreover,
normalizing XML documents into relational tables as columns may substantially
increase storage overhead.

Second, XML documents are stored as BLOB or CLOB columns into the RDBMS.
The BLOB value is queried through an XQuery processor. The entire XML document
must be brought into memory even to read a simple attribute before processing which
may create a huge memory overhead.

Third, in Side-By-Side approach query fragments are translated and exchanged
between XQuery and SQL processors while XML documents are stored side-by-side
with relational data. This approach is more efficient than the previous two with more
efficient query translation and increased degrees of freedom in the evaluation [2]. But
it requires definitions of equivalent components in both worlds: Relational (SQL) and
XML (XQuery) for the efficient combination and correlation of query fragments
which can be extremely complex.

Fourth, in Relational over XML (ROX) approach the XML documents are put into
a native store and an XQuery engine is built on top of it. The SQL requests are first
translated into equivalent XQuery request and query on data is performed through
XQuery Engine. The main challenge in this approach is the equivalent SQL-to-
XQuery translation due to the semantic differences of these languages.

The last approach is a purely native XDBMS system implementation. These
systems support only XQuery and do not support SQL or relational storage. So no
query translation between SQL and XQuery is required and the storage and query
system can be optimized for XML documents. Timber and XTC, described in section
5 and 7 respectively, are two examples of such systems.

3 Architecture of an ideal XDBMS

An “ideal” XDBMS should support all proven-effective database properties of
RDBMS. The ACID properties, scalability, availability, usability, concurrency must

4 Muhammad Mainul Hossain

be supported. The system should index XML data for efficient node traversal and
additionally for full-text search capabilities. Query compilation should generate
optimized execution plans.

It should employ the famous layered architecture [11] which is widely applied in
realization of RDBMS. The basic idea behind this architecture is creating a dynamic
abstraction from the level of physical storage up to the user interface in five steps, as
seen in Table 1.

Table 1. DBMS mapping hierarchy of layered architecture

 Layer Abstraction Objects

Data
system

L5 Nonprocedural Access Nodes, Documents, views

L4 Navigational Access
Sequences, (logical) Records,

hierarchies, networks
Access
system

L3 Access Path Physical records, access path

Storage
system

L2 Propagation Control Segments, pages

L1 File Management Files, blocks

Abstraction begins in layer 1 (L1) on the non-volatile storage devices and stepwise

moves upward providing cleaner objects and allowing more powerful operations.
During runtime these five layers can be optimized into three layers – storage system,
access system, and data system. Haustein & Härder [10] proposed an architecture for
native XDBMS based on the layer model which we will cover in section 5. In next
sections, we detail each layer.

2.1 Storage System

Layers 1 and 2 at the bottom are responsible for the management of external storage
devices and DB buffers. The repository must support rollback and recovery. Efficient
retrieval and update of XML fragments must be guaranteed. Small documents could
be stored completely in a single page while large documents are stored in the
consecutive pages to exploit the sequential locality. Efficient buffer management with
page replacement algorithms tailored to specific workload is necessary for
optimization. Furthermore, related documents can be clustered together to exploit the
larger pre-fetching chunks that relatively slower disk arms requirements, or possibly
de-cluster them to spread across multiple arms for greater I/O parallelism [2].

2.2 Access System

To guarantee scalability in concurrent operations, XML documents must be stored in
such a way that fine-granular management and locking is facilitated. The access
system must enable arbitrary insertions and removals of XML fragments at any time.
Various node labeling schemes have been proposed for the access model [20, 12].

Architectural Approaches of XDBMS Realization 5

Two classes of schemes are mainly found in the literature: range-based and prefix

based. In range-based schemes, positions of nodes are marked by (DocNo,

LeftPos:RightPos, LevelNo) where LeftPos and RightPos indicate labeling range in
each node with its sub-tree, generated by a depth-first traversal of the tree. If RightPos
of a node exceeds the LeftPos of its sibling due to insertions, the whole tree must be
relabeled. Even leaving large gaps in the numbering range, the immutability of node
labels cannot be guaranteed in the general case. Prefix-based schemes directly
encode the parent of a node as a prefix of its label. The node labels are immutable but
in deep trees these labels length may grow largely requiring efficient compression
techniques on these schemes.

Indexing for node traversal and full-text search must be optimized to quickly locate
the intended elements. Similar to relational counterpart variants of B*-trees can be
applied here. The integrity constraints and relationships among multiple documents
must be realized here. XML data has either highly dynamic schema which changes
frequently or no schema at all. A schema-less approach during document storage and
application of schema during data retrieval may simplify querying of data. A schema-
aware approach is useful to type inference and some situations in query optimization.
A strict schema-based approach may restrict the flexibility of XML whereas allow to
explore more storage and query optimization opportunities. Nevertheless, the issue on
what would be a real XML database schema, and what kind of benefits could be
derived from, is open so far.

2.3 Data System

The data system consisting of uppermost two layers provides navigational access to
the internal representation of physical records and declarative operations to the
XDBMS. Query operations are targeted to some logical object representation
independent of the access path. Various scan operations can be implemented for
record-at-a-time processing of physical record set which in turn supports sequence-at-
a-time processing of XQuery and XPath. Various plan operators must be implemented
for selection, join, projection and update in a single document or across multiple
documents.

2.4 Transactions

The support of effective transaction is mandatory in databases. Adoption of
transaction related activation and surveillance tasks must be implemented in the layer
4. For performance reasons, layer crossing information is allowed for transaction. At
storage system, effective concurrency control and efficient logging/recovery
techniques can be applied to achieve atomicity [8]. Collaborative use of XML
documents in multi-user environment is guaranteed by fine-granular concurrency
control and efficient lock management must be implemented to achieve it [12, 10].

6 Muhammad Mainul Hossain

4 ROX

ROX [9] is an experimental model to query XML documents through both SQL and
XQuery. It proposes storing XML documents natively and building up an XQuery
engine to query them. SQL is implemented on top of this engine providing SQL-to-
XQuery translation.

The key to this coexistence of relational and XML data is the degree of translation
between SQL and XQuery languages. The SQL language is defined over the
relational model [32], where queries operate over column values. On the contrary,
XQuery [3] is defined over XQuery Data Model (XDM) [5] which manipulates
ordered, heterogeneous sequences of values and node references. XDM is more
powerful and elaborated than its relational counterpart. So XQuery-to-SQL translation
can only represent a subset of this data model. Along with the differences in data
model, there exist also differences in operational semantics such as the document
order preserving semantics of XQuery.

Despite the different focus of each language, they both include many similar
concepts including set-based and sequence-based processing, joins, selections,
projections, and quantification [2]. XQuery is a powerful functional language
designed to query both structured and unstructured data. Therefore, there are
considerable conceptual overlaps in the functionality of SQL and XQuery. When
constrained over structured data, many XQuery operations have semantics close to
that of SQL [2]. Many SQL predicates can effortlessly be translated into equivalent
XQuery predicates. So some architecture like ROX considers SQL-to-XQuery as a
viable candidate for running SQL queries over XQuery engine.

To avoid huge task of implementing the complex ROX architecture, a prototype
infrastructure on top of some existing products has been proposed in [9] as depicted in
Fig 1. For the native storage of XML documents a prototype XML store is developed.

Row

Reply

XML Node
reference

Lookup

Request
Query
Optimizer

Query
Runtime

XML
Index

SQL parse tree

Optimized plan

Relational
result set

XMLStore

XML
Navigation

Node Get
Node

XQuery

Result

XML
Wrapper

Fetch

Fig. 1. ROX Architecture

Architectural Approaches of XDBMS Realization 7

The data are first parsed and stored in this store as a native tree format. A modified
version of XML Wrapper, part of IBM DB2 Information Integrator [23], is used as an
interface to this store.

XML Wrapper parses XML documents stored as text files on Disk with Xerces
[33] XML parser and query data with Xalan XPath evaluator [34]. In DB2, CREATE
NICKNAME statement queries XML documents and creates relational rows using
this product. To comply with the parent-child relationship, XML wrapper allows
specific columns to be specified as the PRIMARY_KEY or FOREIGN_KEY for a
nickname which can be used for SQL joins.

The actual XML Wrapper is modified such that it works on the XML store rather
than on the XML disk files. Xerces parser and Xalan XPath evaluator are no more
needed. The PRIMARY_KEY option is implemented through an internally generated
XML node identifier.

To run SQL queries over an XQuery implementation it is necessary to translate
SQL queries to XQuery. Due to the semantic differences of these languages, special
care must be taken during translation. SQL value comparison operators have similar
semantics as those of XQuery. Furthermore, many SQL predicates over numeric types
and strings can be translated into XQuery functions. The authors of [2] are convinced
that with minor implementation efforts a large set of SQL predicates over numeric
types and strings can be translated into equivalent XQuery predicates.

The native storage of XML documents permits both normalization and
denormalization of XML documents. So the decision whether to normalize or
denormalize the data is left to the database designer. The techniques of materialized
views applied in the relational world to speed up evaluation of queries can be reused
here. XML indexing is proposed to find documents that contain a certain value in a
certain location which facilitates efficient value-based and selection joins.

5 Timber

Timer [15] is a native XML database built on top of Shore [31], a popular storage
manager. For the efficient processing on large databases, a bulk (set-oriented) algebra,
called TAX, has been developed which provides set-a-time processing of trees.
Timber architecture is shown Fig. 2.

5.1 XML storage

The XML document enters into the system through the Data Parser which converts it
into a parse tree. The data manager transforms each node of the parse tree into an
internal representation and stores into Shore. There is a node for each element whose
attributes are stored into a single child node, and the content into another child node.
If the node is of a mixed type, each content part is pulled into a separate child node.
Current Timber version ignores all processing instructions, comments etc. It employs
a node labeling scheme with start, end, and level labels (a variant of the range-based
labeling). It is possible to assign a doc label if document boundary is important for a
multi-document model. The same can be achieved in a single model by using a

8 Muhammad Mainul Hossain

predefined range of label values for each document. Elements and sub-elements are
clustered together. The XML documents are normally stored without any schema. But
a metadata store is developed to store information regarding attribute types, data set
sizes and indices if schema is available.

Fig. 2. Timber Architecture

5.2 Indexing

Timber uses B-Tree index facility provided by Shore to store indexes. Value indices
are constructed on attribute values and element content, term-based inverted indices
are built on element content for large text, and index on tag name is implemented to
return all elements with the specified tag. Index returns list of start, end and level
labels. If metadata store contains schema information of a document, index manager
uses the information to select appropriate index structures and optimize query.

5.3 Query

The Query Parser parses XQuery into an algebraic operator tree made from TAX
algebra operators. The Query Optimizer reorganizes this tree and maps from logical to
physical operators creating a query plan which is evaluated by the Query Evaluator.
Each operator of the bulk algebra, TAX, takes one or more sets of trees as input and
produces a set of trees as output. It supports operators for selection, projection,
reordering, grouping, product, set union, set difference, and renaming [16].

A tuple in relational algebra can be uniquely referenced by the attribute name or
position. The same referencing is more difficult for trees due to their complex
structures. TAX uses pattern trees to specify homogeneous tuples of node bindings. It
is possible to find the matching sub-trees using this pattern. The return tree is also

Query Parser

Query Optimizer

Metadata Manager

Output API

Query Evaluator

Index Manager

Data Manager

Data Parser

Storage Manager

Data

Loading Data
Retrieval Data

Architectural Approaches of XDBMS Realization 9

homogeneous and is called witness tree, since it bears witness to the success of the
pattern match on the input tree of interest. Pattern trees can hold various conditions
and simplify XPath query evaluation.

6 Natix

Fig. 3. Natix Engine Architecture

Natix [5] provides native storage of XML and support of XQuery, XPath, SAX and
DOM interfaces. The native architecture is based on three layers: storage layer,
service layer and binding layer as shown in Fig. 3.

6.1 Storage layer

Storage layer provides an abstraction from the block devices to manage the persistent
data structures for storing XML documents and recovery log. The storage is
comprised of partitions which manipulates disk pages. Disk pages are grouped into
segments and their contents are accessed by page interpreters. A buffer manager
synchronizes multithreaded access to the data pages and exploits referential locality to
avoid expensive I/O operations.

Subtrees in Natix storage are clustered together in a record retaining the inner
structure. The clustering can be tuned together to meet specific application
requirements using a split matrix. The segment interface for XML allows accessing an
unordered set of trees. A wrapper maps logical data model to XML model and vice
versa. Nodes are labeled with a symbol taken from an alphabet ΣTags. Leaf-nodes are,
in addition to this symbol, labeled with arbitrary long strings. A record is stored only
in a single page. The logical data tree is partitioned into subtrees each of which is
stored in a record. Large documents are split semantically into subtrees based on the
tree structure and stored into several records which are linked by a special type of tree
node called proxy node.

Storage Layer

Service Layer

Binding Layer
Java/C++

SAX Binding
Apache

mod_WebDAV
Filesystem
Driver

Java/C++
DOM Binding

Query
Execution

Transaction
Management

Object
Manager

Query
Compiler

Natix Engine Interface

Storage Engine

10 Muhammad Mainul Hossain

Natix introduced a split algorithm if a sub-tree exceeds page size due to update.
The sub-tree of one record is partitioned into a left partition, a right partition and a
separator. The separator is moved to the parent and uses proxies to point to the new
records to indicate where the descendant nodes were moved due to split operator. The
desired ratio of the size of left and right partitions is configurable and used by split
algorithm to determine the separator.

6.2 Service layer

Service layer provides Natix Engine Interface for all DBMS services to communicate
with each other. Each request is first sent to the DBMS and then forwarded to the
appropriate components for processing. The service components are namely Natix
query execution engine (NQE), query compiler, XPath compiler, Transaction
management, object management.

6.3 Binding layer

Binding layer enables various applications to bind to the Natix Engine Interface. A
request to this interface can be made using C++ data types as well as through a
language independent string which is parsed by a parser and transforms into a request
objects allowing a simple control interface to manipulate the Natix system.

6.4 Indexing

Natix uses inverted files for full text index and extends it for semi-structured XML
data. It provides a framework for incorporating different index types through a special
component called ContextDescription. A special index called eXtended Access
Support Relation (XASR) is developed to preserve parent/child, ancestor/descendant,
and preceding/following relationships through a variant of range based labeling
scheme. The tree is traversed depth first and each node is label with a dmin value and
dmax value. dmin is the value the node is first entered and dmax is the value when the
node is finally left. The dmin, dmax along with the element tag and document ID are
stored as an entry in XASR table which facilitates identification of a node directly.

6.5 Transaction Management

ACID properties are supported through making storage engine transaction aware and
developing a special transaction management module. A tuned version of ARIES
protocol [22] is used for recovery. The recovery log describes each log record with a
unique log-sequence-number (LSN). Segments and page interpreters, described in
section 6.1, contain logging and recovery code in their data structures. Physiological
logging [8] – physical to a page, logical within a page is implemented in Page
interpreters. They keep a private, subsidiary log, which can be modified, reordered
before publishing to log manager. This mechanism reduces log size and increases

Architectural Approaches of XDBMS Realization 11

concurrency. During insertion operation the log entries for the subsidiary log are not
explicitly stored but the data pages are used as a representation for log records before
publishing them to the recovery log and thus further reduce log size. The log manager
reads and writes log records and synchronizes concurrent access to them. The
recovery manager performs redo, undo and checkpoint operations. The transaction

manager provides interfaces to the application programs to mark operations for
transactions.

Natix reduces log size and increases performance of logging/recovery for undo by
implementing annihilator undo. Specific operations are marked as annihilators and
undo for the subsequent operations are skipped in case of rollback avoiding the entry
of nextUndoLSN chain of that transaction which will not be undone explicitly, but
implicitly by the annihilator. Selective undo and selective redo further optimize
logging/recovery of a data page which is updated by a single transaction through
undo. It avoids loading and modification of pages which belong to loser transactions.

6.6 Concurrency Control

Natix uses tuned versions of multi granularity locking (MGL) [8] protocol with an
arbitrary number of levels for concurrency control. Lock granularity addresses at the
segment, document, sub-tree and record level. A document can be split into records
using split matrix and parts of document with high probability of concurrent access
can be stored in different records providing configurable concurrency control.

7 XTC

XTC [10] is based on the layered architecture [11], which is successfully used in
numerous relational systems. XML documents are stored natively and languages like
SAX, DOM, XPath and XQuery are used to access data. The data model is based on
DOM with an appropriate node labeling scheme, called SPLID – a variation of the
DeweyID-based [4] labeling. The architecture of XTC is shown in Figure 4.

7.1 Storage system

Storage system consisting of L1 and L2 of the layer model hides the varying external
block device properties and provides pages of fixed-length which are mapped onto
physical data blocks stored on secondary storage devices (disks). Each page, in turn,
is compound of variable-length records representing element/attribute nodes in a
XML document. Text values (text nodes, in XTC terminology) can be stored in-lined
(in the same record) with their corresponding element nodes, or in a separate
record/page. Buffer management employs specific page replacement algorithms
tailored to the application needs.

12 Muhammad Mainul Hossain

Fig. 4. XTC Architecture

7.2 Access System

The access system at L3 has been implemented using B- and B*-trees with several
enhancements for single- or multi document stores, key compressions and optimal
handling of short documents.

XTC employs a prefix-based labeling scheme based on the DeweyID. The scheme
is flexible enough to allow arbitrary insertions and deletions without reorganizing
labels already assigned. Each node label consists of divisions of integers separated by
dots. The children retain the label from the parent and add one or more divisions.
Initially, odd integers are used for division values and a distance is kept among the
numbers to reduce overflow caused by insertions. The overflow is handled by
introducing even integers. Various compression measures have been applied to reduce
the storage size for long DeweyIDs. Hoffman encoding scheme is used for the
distribution of distance values to reduce frequent overflows which create longer IDs.

A node together with its value part has a size limit of max-val-size. Any text node
exceeding this limit is stored in reference mode where it is split into parts and stored
into chained pages.

Indexing for documents in XTC is implemented by a document store. First node of
each data page in the document container is indexed in a B-tree called document

index. The document container consists of a set of chained data pages and preserves
the order and cluster property of each document. All node formats are of variable
length. Additionally, an element index has been developed using B*-tree to index all

Architectural Approaches of XDBMS Realization 13

elements of XML documents in a name directory. A node reference index provided
for each element addresses the corresponding element using the DeweyIDs.

7.3 Data System

The data system at L4 and L5 consists of several node processing and XML
processing services. The order of two nodes in the document can exclusively be
determined by comparing two DeweyIDs. It facilitates the efficient evaluation of the
eight axes parent/child, ancestor/descendent, following-sibling/preceding-sibling,
following/preceding for declarative queries through XQuery and XPath. Furthermore,
labeling scheme together with element indexes supports five basic navigational axes
of DOM - parent, previous-sibling, following-sibling, first-child, and last-child.

Each node in the document store is mapped to a node handled by the node
manager. During navigational axes evaluation, the desired node resides in the page of
the context node in the best case. In the worst case, the number of pages to be
accessed limits to 3-4 via document index. On the other hand, element index increases
declarative query processing via XQuery. For query evaluation XTC uses tuned
variants of structural joins and twig joins. L5 produces Query Execution Plans (QEP)
i.e. translate, optimize, and bind the multi-lingual request from the navigational to the
operations available at L4.

7.4 Transaction management

The transaction manager is responsible for providing ACID properties to XTC. Log
data is collected and persisted during normal operation and used by recovery
operation after system crash or media failure. Physical logging and Physiological
logging combined with LSN implemented at storage layer guarantees A (atomicity)
and D (durability) of ACID properties. All layers must participate to guarantee C
(consistency) while L3 to L5 are responsible for achieving I (isolation). Transaction
manager together with lock manager provides fine-granular locking for isolation
which is described in the next section.

7.5 Concurrency Control

A lock manager, supported by 20 operations at the access model, is responsible for
the collaborative processing of XML documents through fine-granular locking. It
transforms the DOM tree into a so called taDOM tree introducing two new node
types: AttributeRoot and String Node. AttributeRoot attaches all attributes of an
element allowing a single lock to lock all attributes during a DOM(SAX)
getAttributes() call. String node contains the value of an element/attribute node
allowing avoiding lock during an existence test. Thus, with the taDOM tree, XTC
enhances the transaction parallelism. Application call to access XML documents are
interpreted by the lock manager to apply appropriate intention lock allowing multiple
transaction to operate on single node with different lock modes.

14 Muhammad Mainul Hossain

The lock manager is realized by configurable semaphore tables which maintain the
semaphore dynamically acquired for a specified maximum number of transactions
and lockable objects. Several techniques have been applied to optimize performance
and reduce memory requirements. Each transaction requests semaphore which
performs a compatibility check through the compatibility matrix provided during
semaphore table initialization. If the semaphore is compatible it is immediately set.
Otherwise, it is added to the lock chain with state waiting and the requesting
transaction must sleep until incompatible semaphores are removed or replaced by
compatible ones. Pending transactions are reported to the transaction manager to
detect and resolve deadlocks.

8 System RX

System RX [2] provides an experimental implementation of a hybrid database system
of both relational and XML data (Figure 5). It proposes a native storage for efficient
storing and querying of XML data. System RX uses SQL/XML language to
manipulate and query XML data. SQL/XML is an industry standard language for
creating and querying XML data fragments as well as relational data. It provides
XML publishing functions, a new XML data type and some mapping rules between
SQL and XML. The XML data type has an implementation dependent internal format
different from LOB-based types. SQL/XML defines second-order query functions e.g.
XMLTable, XMLQuery that take an XQuery statement as input and execute it over
the XML values passed from SQL. It also provides functions to construct new XML
data and convert between XML and relational data types. Several commercial e.g.
Oracle [36], DB2 [26] DBMSs have already implemented SQL/XML.

Fig. 5. System RX architecture

Query Evaluation

SQL/XML
Parser Hybrid

SQL/XQuery
Compiler XML Navigation

XQuery
Parser

Architectural Approaches of XDBMS Realization 15

8.1 Storage Model

System RX stores the XML documents in the native storage as instances of XDM [5]
in a structured, type annotated tree to avoid repeated parsing and validation of
documents while preserving salient features like digital signatures. Node addressing
and traversal are simplified through assigning unique address to each node and
keeping pointers to parent and children. Related nodes are stored in standard fixed-
size buffered pages. Redundant namespace URIs and node names are compressed
through a dictionary which maps strings to identifiers to improve evaluation of path
expressions. A set of child slots associated with each element node contains hints for
fast navigation to find qualifying children without actually visiting each child node.
Each child can be pointed to directly via a row identifier (RID) plus an index into
child slot array. Regions of nodes are grouped together on pages and linked by a
logical regions index which enables access without traversing from the root by
looking up the region that contains the node in the region index using node’s
identifier. Nodes can be updated without affecting most of other nodes in the
document. The regions that are updated are versioned, leaving multiple version of a
node in the regions index. New readers will always get the latest version. Regions can
be fragmented during updates. A data reorganization utility is offered to re-cluster the
regions of a document.

8.2 Indexing

System RX supports three classes of XML indexes – Structural indexes, full-text
indexes and value indexes with special focus on the last type. The XML index is
implemented with two B+ trees. The path index maps each distinct reverse path to a
generated path identifier. The paths are stored from leaf to root for efficient
processing of descendent queries. The value index consists of the key (pathId, value,
nodeId, rid). The nodeId uniquely identifies a node in a document using Dewey node
identifier. The rid identifies a row in the table. The pathId allows quick retrieval of
specific path queries keeping the order of the keys in the value index.

For full-text indexes, relational text indexing support [21] is extended to include
XML data. To escape indexing the sheer amount of information that may arrive in
XML documents; System RX supports indexing of nodes that are returned from a
simple XQuery through CREATE INDEX command. Due to dynamic schema
supports of XML documents, it is difficult to infer the data type associated with
indexed nodes. So user must specify the data type of nodes during indexing. The
index is created on the cast of the node to the indexed type, taking into consideration
the node’s type annotation which is derived during validation.

8.3 Query

System RX supports query compilation and evaluation for SQL/XML [14] and
XQuery. Data definition (DDL) operations are performed through SQL/XML.
Queries enter the system through either language and are then compiled into an

16 Muhammad Mainul Hossain

internal Query Graph Model (QGM) [27] which is then normalized, simplified and
optimized through rewrite transformation. The optimizer generates a physical
execution plan using this graph which is translated into executable code by code
generation. The rich data-flow modeling is exploited to perform cross-language
optimization. The QGM for relational system is augmented with native constructs for
XML. In QGM, each path expression is represented as a pattern tree in which there is
only one bound variable to represent each data flow explicitly, so that semantics and
rewrite analysis, which is built on explicit data flow representation, can reason about
the query more efficiently. This approach allows representing not only path
expression but also other FLWOR [3] expressions and supporting full functionality of
XQuery. During rewrite transformations, many techniques from the relational world
are reused. It is tried to consolidate all path expression in a single FLWOR block into
one pattern tree that is annotated with several flags to represent FOR vs. LET paths.

9 eXist

eXist [24] provides schema-less native storage of XML documents. XPath and
XQuery languages are used to query these documents. Application binding is
provided for HTTP, XML-RPC, SOAP and WebDAV. Four index files build the
basic storage and indexing infrastructure for eXist: collections.dbx, dom.dbx,

elements.dbx, words.dbx.

9.1 Storage Model

XML document nodes are stored as the root of DOM tree in dom.dbx. Top level
elements of a document are indexed with a B+ tree which keeps a unique identifier of
a node in the document to the storage address in the data pages. Access to other nodes
is provided by traversing the nearest available ancestor stored in the index tree.

9.2 Indexing

The numbering scheme, based on [19], models the document tree as a k-ary tree,
where k is the maximum number of child nodes of an element in the document. A
unique identifier, generated through level-order traversal of the tree, is assigned to
each element. To overcome the restriction on the maximum document size, the
completeness constraint in the original scheme [19] is dropped in favor of
recomputing the number of children that may occur at each level. All axes of XPath
can be efficiently evaluated through this numbering scheme.

Collection.dbx manages the collection hierarchy which organizes the indexes for
elements, attributes and keywords. Elements.dbx serves for the mapping of elements
and attributes names to unique identifiers to locate a name in the documents.
Words.dbs provides inverted index support which uses unique node identifier to
associate words or phrases with their occurrences and locations in the documents.

Architectural Approaches of XDBMS Realization 17

9.3 Querying

The index structures along with the numbering scheme provides flexible framework
for query evaluation. eXist employs an enhanced version of path join algorithm
discussed in XISS system [20]. The path expression is first decomposed into several
sub-expressions which are then evaluated and ancestor-descendant path join algorithm
is applied on the result set. eXist does not need the actual DOM nodes in the XML
except to process the equality operator which requires the values of the DOM nodes.

10 Tamino XML Server

 Tamino [30] is a purely native commercial XDBMS implementation from Software
AG. XML data is stored natively and queried through standard XQuery and XPath-
based Tamino X-Query languages. The system consists of several components. X-

Machine, consisting of native XML Data Store and XML Engine, is the central
component of the Tamino architecture. XML Data Map component stores all schema
information. X-Node connects to the external data sources. The system can be
extended and customized through X-Tension framework. Fig. 6 depicts the
architecture of Tamino XML Server.

Fig. 6. Tamino XML Server Architecture

X-Machine

Data Store Kernel

XML

Data Store

Meta Data

Data Map

X
-N

o
d

e

X
-T

en
si

o
n

XML Engine

HTTP
XQuery/Xpath,

Tamino X-Query

External
Data Source

A
pp

ll
ic

at
io

n

XML Server

18 Muhammad Mainul Hossain

10.1 Storage Model

Incoming documents are parsed, validated against XML schemas from data map,
transformed into an internal native format and stored into the XML data store. Non-
XML data such as graphics and video files can also be stored. Fail-over and crash
recovery are supported.

10.2 Indexing

Tamino supports three types of indexing: value index, full-text index and structural

index. Schema information is exploited to define the scope of indexing.

10.3 Query

XML documents are queried through XQuery and Tamino X-Query, an extension to
the XPath semantic to simplify multiple document querying. A well-formed XML
document has only one root. If a query returns multiple XML documents (or
document fragments), Tamino provides a pseudo-root element to guarantee well-
formedness of the resulting XML document. Complex queries, including join,
involving single or across multiple documents are efficiently evaluated. Insert, update
and delete operations on XML document fragments are optimized, leaving the rest of
the document unchanged.

10.4 Schema support

The metadata store Data map is responsible for storing the Tamino’s schemas. The
schemas determine how the objects, both residing in XML documents or externally
(legacy databases), can be mapped to physical structures. The schema information is
used for validation during insert or update operation. Besides, Tamino schema
provides a homogeneous view of external non-XML data such as legacy database as
XML data to the end-user. Tamino supports both XML schema and DTD.

10.5 Transaction Management and Concurrency Control

Tamino XML server supports transaction management based on a two-phased
concurrency control protocol. The data store can participate in distributed transaction
scenarios while providing client-controlled, session-based support for distributed
transactions. In this case, a 2PC (two-phased commit) protocol is used to guarantee
transaction consistency. Tamino server establishes an indirect communication channel
via a special product called Universal Transaction Platform (UTX) which
communicates with transaction coordinator. Fine granular isolation is provided by
hierarchical locking technique. Tamino defines four levels of locking granularities:
database, collection, doctype, and document. It introduced six lock types divided into
two groups: exclusive lock and intention lock. Locks in exclusive group affect the

Architectural Approaches of XDBMS Realization 19

object directly and those in intention group represent an intention to lock further
object at a finer granularity. Locks are initially tried to set as fine-grained as possible,
even on the node or sub-tree level. A weaker lock set can be escalated to a stronger
lock. This facilitates fine-grained locking management in multi-user environment.

11 Native XML Support in DB2

DB2 Universal Database has been extended to support native XML based on System
RX, described in section 8. XML and relational data are stored and queried side-by-
side. SQL and XQuery can be combined and correlated during querying. XQuery,
SQL/XML and SQL queries are first parsed by different parsers and processed by
DB2 engine with a single compiler [26]. XML documents, defined as XML type, can
be stored as column values along with relational data into the same table. In contrast
to BLOB or CLOB type, values of type XML are processed in an internal native
representation. XMLSERIALIZE and XMLPARSE functions can be used to convert
XML to string and vice versa. Transaction management and fine-granular
concurrency control are also supported for XML documents.

11.1 Storage Model

As described in the section 7, the XML data is inserted into the database as column
values and stored as an XDM tree. A new catalog table SYSXMLSTRINGS is
developed to map the unique tag names to distinctive StringIDs which are used to
represent tags in the documents. A document tree, too large to fit on a page, is split
into multiple regions connected by the regions index. A region index is a system
index and is created for each table which contains XML columns.

11.2 Indexing

DB2 supports path-specific value indexes and full-text indexing. Usual CREATE
INDEX command is used with xmlpattern as path for identifying XML nodes to
define a value index. Xmlpattern supports a subset of XPath. Like System RX, user
must explicitly specify the data type in the “as sql <type>” clause.

To accommodate the XML type system in the existing DB2 index manager, some
values are specially handled, i.e. +0, -0, +INF (positive infinity), -INF (negative
infinity) and NaN (not a number). There may be zero, one or multiple index entries
for a single row that match the xmlpattern. In contrast, relational system returns at
most one entry.

DB2’s full-text search capabilities have been extended to accommodate the XML
type. The documents in the XML column can be fully or partially indexed. The search
can be restricted to a specific element. Standard text search features like scoring and
ranking of search results as well as thesaurus-based synonym search are also
provided.

20 Muhammad Mainul Hossain

11.3 XML Schema Support

XML schema validation is supported during insert, update, and query operations.
Limited support for DTDs [35] is also provided. The schemas and DTDs are first
registered via DB2 commands, stored procedures, or language specific APIs and
stored in XML Schema Repository (XSR). The type annotation produced during
validation is persisted together with the document and used at query compilation and
execution. Documents can be validated in SQL statements with XMLVALIDATE
function. A schema can be explicitly referenced by its schema URI or by its schema
identifier. Each inserted document can potentially be validated against a different
XML schema for the same column values.

DB2 supports certain degree of schema evolution in the XSR. Schema evolution is
a sequence of changes in an XML schema over time. If new schema is compatible
with the old schema, then the old schema can be replaced with the new schema. This
only supports additions of optional elements and attributes. DB2 also allow the old
and new schemas to coexist side-by-side, under different names. One can insert
documents conforming to any of the schemas in the same column of a table.

DB2 provides a decomposition product to shred XML document into relational
tables. It uses an annotated schema for the decomposition. The annotations enable the
user to control the decomposition process such as inserting whole or part of
document, defining foreign key relationship, conditional insertion etc.

12 Oracle XML DB

Oracle XML DB [36, 18] provides native storage and querying of XML documents
built on a relational and object relational framework. XML data is integrated into the
existing Oracle DBMS, and complete transparency and interchangeability between
the XML and SQL data views are supported. XML schema registration and validation
are supported as well. XML processing is based on a native XMLType datatype.
Figure 6 shows the architecture of XML DB and following subsections detail various
aspects of it.

12.1 XML Storage

Multiple storage options are available with XMLType. LOB-based storage assures
complete textual fidelity ensuring high data integrity and low regeneration cost. The
native structured XML storage is a shredded decomposition of XML into underlying
object-relational structures for better SQL queriability. It loses whitespace
information but maintain fidelity to DOM. In hybrid storage, XML data is split into
structured and CLOB part. The XML data can be stored in an XMLType column or
using an XMLType table. Oracle XML DB Repository, based on WebDAV [7]
standard, makes it possible to view all of XML content stored in the database using a
File-Folder metaphor. It uses the WebDAV resource model to define the basic
metadata that is maintained for each document stored in the repository.

Architectural Approaches of XDBMS Realization 21

Fig. 7. Oracle XML DB Architecture

12.2 Querying

To Query XML Tables, XML DB provides several functions such as extract(),
existsNode(), and extractValue() that use XPath to locate and extract data from XML
documents. updateXML() can be used to update, replace elements, attributes and
other nodes with new values. It is also possible to retrieve XML as a CLOB,
VARCHAR, or NUMBER using getClobVal(), getStringVal(), or getNumberVal()
functions respectively. When XMLType is stored in structured storage (object
relational) using an XML schema and queries using XPath are used, they are rewritten
to go directly to the underlying object-relational columns. This enables the use of
B*Tree or other indexes to be used in query evaluation by the Optimizer.

12.3 Indexing

XMLType tables and views can be indexed using B*Tree, Oracle Text, function-
based, or bitmap indexes. Oracle Text index has been extended in Oracle9i to work
on XMLType columns. Operations such as CONTAINS and SCORE can be
performed on XML data. CONTAINS has been enhanced with two new operators:
INPATH (checks if the given word appears within the path specified) and HASPATH
(checks if the given XPath is present in the XML document). Queries can be speed up
by building function-based indexes on existsNode() or those portions of the XML
document that use extract(). New XPath extension functions defined within the
Oracle XML DB namespace, enables a richer set of text search capabilities. They can

Direct HTTP
Access

Oracle Net
Services Access

WebDAV
Access

FTP Access

Browser Application

JDBC Application
Desktop
Tool

FTP Tool

Oracle Database

Oracle XML DB
Repository

XML Type Tables
and Views

Oracle XML DB

22 Muhammad Mainul Hossain

be used within XPath queries appearing in the context of extract(), existsNode(), and
extractValue() functions operating on XMLType instances.

13 Microsoft SQL Server 2005 XML

SQL Server 2005 integrates native XML management capabilities into the existing
DBMS both extending and leveraging the relational storage and query infrastructure
[28]. The XML processing is based on a native XML data type. It also provides a new
metadata object called XML Schema collection to register schema and validate and
enforce XML data type values with them. The architecture of SQL Server 2005 XML
is depicted in Figure 7.

Fig. 8. SQL Server 2005 XML Architecture

13.1 Storage Model

The logical model of XML data type is based on XDM [5] which simplifies XQuery
support and validation and type of data via XML schema. The physical model of
XML data type is a byte level representation of the logical concepts such as element
and attribute node. This internal representation can be considered as a binary
encoding of XML data providing closer representation of XDM.

FOR XML

XML Parser

Schema validatoin
& Typing

XML

xml datatype

modify() Relational
Rowsets

Open XML/ nodes()

Node
Table

value()

Primary XML Index

PATH

VALUE

PROPERTY

Architectural Approaches of XDBMS Realization 23

13.2 Querying

Querying for XML data is performed by four methods of XML data type: query, path,
exists, nodes. Each of these methods takes an XQuery expression as parameter. The
query() executes a query by evaluating an XQuery expression against the elements
and attributes in an XML instance and returns an untyped XML. The value() is used
to extract node values from an XML instance. The exists() method checks the
existence of a specific XML fragment in an XML instance. The nodes() method
shreds XML instance into relational data and generates a single column row per node
that the XQuery expression returns. The modify() method xml type allows insert,
update and delete content within XML instance. SQL Server 2005 introduces XML
Data Modification Language (XML DML) to enhance XQuery by allowing insert,
update, and delete access anywhere the xml data type is used.

13.3 Indexing

SQL Server supports two types of indexing for XML data: primary and secondary. A
primary XML index is a shredded version of what is in the xml column. When this
index is created, it writes several rows of data for each XML BLOB in the column. A
secondary index further improves query performance on large amount of data. There
are three types of secondary XML indexes: PATH, VALUE, and PROPERTY. PATH
index is used to index the paths and node values as the key fields. VALUE index is
useful if the queries are based on values or the path is not fully specified. The
PROPERTY index is built on the key columns of the primary XML index such as
Primary Key, path, or node values.

14 Comparisons

In this section, we provide a summary comparison of all approaches studied so far.
Furthermore, we comment on issues, regarding comparison, of the approaches,
sometimes contrasting them, sometimes pointing out similarities. We have chosen six
criteria, namely, storage, indexing, query support, API support, transaction processing
and XML schema support to compare the approaches. Table 2 shows the comparison
information.

The major commercial databases started the support for XML data with shredding
and LOB-based storage in the relational tables. Some (e.g DB2, Oracle) supported
SQL/XML to query data while some (e.g. Microsoft) used OpenXML/FOR XML for
that. As the databases have been enhanced with native XML processing, they
continue to support former techniques to maintain backward compatibility and extend
their respective relational storage engine, index facilities, transaction management and
concurrency control to work with XML. Pure native approaches, on the other hand,
supports only XQuery and XPath to query data. The database engine is adapted to
transaction management and concurrency control targeting XML operations like
insert, update, and delete of nodes and/or sub-trees.

24 Muhammad Mainul Hossain

Architectural Approaches of XDBMS Realization 25

The focus of pure native approaches is to build up an XML document store and
process queries over this store. Because of that, and to provide safe multi-user access,
a hierarchical multi-granular locking mechanism is chosen by the most pure native
XDBMS to deal with concurrency control (e.g., taDOM3+ protocol of XTC). In
contrast, XML operations in hybrid databases (e.g., commercial databases and
Timber) are generally performed over relational tables using a native XML data type.
Each XML document is represented in a table column. It is not clear whether a row is
completely locked (thus locking the whole document) or, in addition, a fine-grained
hierarchical locking on document nodes is performed. Among all studied XDBMS,
Tamino is the only one claiming to support distributed XML documents.

Range-based labeling scheme came up earlier than prefix based scheme. It is very
good for query processing, but not very effective for concurrency control. Earlier
approaches have mostly used range-based scheme and focused mainly on query
processing (for example, Timber and Natix). Even commercial products have
preferred to use range-based labeling from which we can infer that commercial
XDBMS do not provide specific locking mechanism for XML data or they expect that
XML documents are not volatile. The preference for prefix-based scheme is
increasing as it is effective for both query processing and concurrency control. In our
study, only XTC provides such a labeling mechanism.

Strong tendency to support path and value indexes has been observed. In fact
almost all approaches have both indexes types, whether to accelerate the document
access or to keep structural characteristics of documents. Moreover, most XDBMSs
also support full-text index through inverted index structure. B- and B*-trees are the
most preferred data structures for storage and indexing. Some XDBMS (e.g., eXist)
focuses on quick retrieval of information and expects low rate of document
modification. They use B+-trees for storage structure and indexing techniques.

Most of approaches use a schema-aware storage with XML schema or DTD. Only
two of them, namely, XTC and Natix, use a schema-less storage. Some XDBMSs
store XML schemas as metadata in a separate storage space and validate XML data
values during load, insert and update operations. Furthermore, query processing can
have benefits of schema information. For example, to select index structures and to
optimize query execution plans. However, it is not clear if these stored XML schemas
are used only for data type inference/validation or they are extended to capture other
important information on database (e.g., number of node instances, indexes on
nodes/paths, statistics, etc) and, so, can be viewed as authentic XML metadata. This
separation of data and schema information enables the so-called dynamic schema

evolution. Using this characteristic, hybrid XDBMS, mostly commercial products
(excepting Tamino), can use different XML schemas applied to a set of XML
documents. Schema-less approaches need to scan XML documents to get metadata
information, including data types and document structure. Moreover, statistics on
document are gathered in the same way. However, as there is no validation in
document load process, this metadata information may be out-of-date for query
processing as document updates take place.

26 Muhammad Mainul Hossain

15 Conclusions

A lot of research efforts is being made for the optimal storage and querying of XML
documents. Most of them are not yet mature enough for the enterprise applications.
All major database vendors have enhanced their respective DBMS architectures to
support XML processing natively. The enterprise adoption of XDBMS is increasing
day-by-day. The gap of efficiency and effectiveness between proven RDBMS and
emerging XDBMS tends to be narrowed in the near future.

References

1. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, J
Siméon. XML Path Language (XPath) 2.0. W3C Recommendation. 2007

2. K. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein, G. Lapis, G. Lohman, B. Lyle, F.
Özcan, H. Pirahesh, N. Seemann, T. Truong, B. Van der Linden, B. Vickery, C. Zhang.
System RX: One Part Relational, One Part XML. Proc. of ACM SIGMOD 2005.

3. S. Boag, D. Chamberlin, M. Fernanadez, D. Florescu, J. Robie and J. Simeon, “XQuery
1.0: An XML Query Language”, February 2005, http://www.w3.org/TR/xquery

4. M. Dewey. Dewey Decimal Classification System,
http://www.mtsu.edu/~vvesper/dewey.html

5. M. F. Fernandez, A. Malhotra, J. Marsh, M. Nagy and N. Walsh. XQuery 1.0 and Xpath
2.0 Data Model. http://www.w3.org/TR/xpath-datamodel/. 2007

6. T. Fiebig, S. Helmer, C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, T. Westmann:
Anatomy of a native XML base management system. VLDB Journal, Vol. 11. 2002

7. Y. Goland, W. Whitehead, A. Faizi, S. Carter, D. Jensen. RFC2518: HTTP Extensions for
Distributed Authoring – WEBDAV. Internet RFCs. 1999

8. J. Gray, A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann.
ISBN 1-55860-190-2. 1993

9. Alan Halverson, Vanja Josifovski, Guy Lohman, Hamid Pirahesh, Mathias Mörschel.
ROX: Relational Over XML. Proc. of VLDB 2004, Toronto (2004)

10. M. Haustein, T. Härder. An Efficient Infrastructure for Native Transactional XML
Processing. Data & Knowledge Engineering 61:3, 500-523, Elsevier, (2007)

11. T. Härder. The Layer Model and its Evolution. Datenbank-Spektrum, Heft 13, 45-57, 2005
12. T. Härder, M. Haustein, C.Mathis, M.Wagner. Node Labeling Schemes for Dynamic XML

Documents Reconsidered. Data & Knowledge Engineering, 2006
13. A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion, Steve Byrne.

Document Object Model (DOM) Level 3 Core Specification, W3C Recommendation 2004
14. International Organization for Standardization (ISO). Information Technology–Database

Language SQL-Part 14: XML-Related Specification (SQL/XML).
15. H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman, S.

Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Yuquing Wu, Cong Yu. Timber:
A native XML database. VLDB J., Volume 11, Number 4, p.274-291 (2002)

16. H.V. Jagadish, L.V.S Lakshmanan, D.Srivastava, K. Thompson. TAX: A Tree algebra for
XML. In: Proc. of DBPL Conference, Rome, Italy. 2001

17. S. Klein. Professional SQL Server™ 2005 XML, Wiley Publishing, Inc. 2006
18. M. Krishnaprasad, Z. H. Liu, A. Manikutty, J. W. Warner, V. Arora, S. Kotsovolos. Query

Rewrite for XML in Oracle XML DB. Proc. of the VLDB 2004.
19. Y. K. Lee, S. Yoo, K. Yoon, P. B. Berra. Index Structures for Structured Documents. In

Proc. of ACM DL Conference, March 20-23 1996

Architectural Approaches of XDBMS Realization 27

20. Q Li, B. Moon. Indexing and Querying XML Data for Regular Path Expressions. Proc. of
VLDB 2001, 2001

21. A. Maier and D. E. Simmen. DB2 Optimization in Support of Full Text Search, IEEE Data
Engineering, Bull. 24(4), 2001

22. I. Manolescu, D. Florescu and D. Kossmann. Answering XML Queries on Heterogeneous
Data Sources. VLDB 2001

23. N. M. Mattos. Integrating Information for On Demand Computing. Proc. of the 29th Int.
Conf. on VLDB. 2003

24. W. Meier: eXist: An Open Source Native XML Database. LNCS 2593, 2003
25. C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwarz. ARIES: a transaction

recovery methods supporting fine-granularity locking and partial rollbacks using write-
ahead logging. ACM Trans Database System 17(1):94-162. 1992

26. M. Nicola, B. van der Linden. Native XML Support in DB2 Universal Database. Proc. of
the VLDB 2005

27. H. Pirahesh, J. M. Hellerstein, W. Hasan. Extensible/Rule Based Query Rewrite
Optimization in Starburst, ACM SIGMOD 1992, pages 39-48

28. M. Rys. XML and Relational Database Management Systems: Inside Microsoft SQL
ServerTM 2005. Proc. of ACM SIGMOD 2005. 2005.

29. SAX Home Page. http://saxproject.org/. 2007
30. Dr. Harald Schöning. Tamino - A DBMS Designed for XML, Proceedings of 17th

International Conference on Data Engineering, 2001
31. Shore – A High-Performance, Scalable, Persistent Object Repository.

http://www.cs.wisc.edu/Shore
32. Database Language SQL – Part 2: Foundations (SQL/Foundations), ISO Final Draft

International Standard, ISO 1998.
33. Xerces: a validating XML Parser. http://xml.apache.org/xerces-c/index.html
34. Xalan: an XSL Processor. http://xml.apache.org/xalan-c/index.html
35. XML 1.0. W3C Recommendation. 2006 http://www.w3.org/TR/REC-xml
36. XML Database Developer’s Guide - Oracle XML DB. http://www.oracle.com

