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Abstract. Since the introduction of XML in the late 90’s, emerging number of 
documents written in this format are being generated. A high demand for 
efficient storing, indexing and querying for such documents is evolving. In 
recent years, several efforts have been made in both research and industry areas 
to cope with this demand. We investigated the architectural aspects of some 
well-known efforts for the realization of storing and querying techniques of 
XML documents. 

1 Introduction 

Relational database management systems (RDBMSs) have enjoyed a widespread 
success in the last two decades. Huge number of these systems is already deployed 
and the data stored on them may exist many years to come. Numerous 
implementation techniques and efficient algorithms have been introduced successfully 
for these systems. On the other hand, thousands of XML documents are being 
generated currently every day causing strong demand for efficient storage and 
retrieval of such documents. An evolutionary rather than revolutionary approach 
would guarantee hybrid storage of relational and XML data. Various efforts have 
been made to reuse the current RDBMS techniques for storing, indexing and querying 
XML documents by mapping the data to the relational tables. 

The extreme variability in size and unpredictability of use and update frequency of 
XML documents may reduce performance substantially and could cause huge 
resource overhead. Traversing a gigabyte document to retrieve a small sub-tree or 
rewrite it to the disk whenever a single byte is changed is expensive [2]. To store 
XML documents effectively and to support efficient retrieval, modification and 
update of these documents or parts of them, developing a native XML base 
management system (XDBMS) is necessary. 

Traditional RDBMSs are designed with the so-called layered architecture [11] and 
queried with SQL language. The relational data is structured in nature. On the 
contrary, XML documents contain both structured and semi-structured data. There are 
several standardized interfaces and languages for the navigational and declarative 
access to these documents – DOM [13], SAX [29], XQuery [3], and XPath [1]. This 
work investigates architectural aspects of several well-known XML database systems, 
including research projects and commercial products and is structured as follows. In 
Section 2, we explain various possible strategies of XDBMS implementation that are 
observed in the literature. In Section 3, we give an overview of an “ideal” XDBMS, 
following [11]. Subsequent sections, Section 4 to Section 13, explain various 
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approaches which are currently implemented or in progress for XDBMS systems. We 
focus on the storage model, index structures, data access system, transaction 
management and concurrency control of these systems. In Section 14, we make a 
high-level comparison on all approaches, trying to summarize the main issues of each 
one and showing similarities and differences. Section 15 concludes this work. 

2 Implementation Strategies 

Five possible implementation strategies have been observed in literature and in 
commercial implementations for storing and querying XML documents. None of 
them is superior to the others. Each one has positive and negative points. 

First, XML over Relational (XOR) shreds the XML documents into atomic values 
and stores them in individual columns of relational tables. Existing RDBMS systems 
components can be reused without modifications (or more realistic, with minor 
modifications) in this approach. But translating powerful XQuery queries into SQL 
queries is extremely complex and in many cases very inefficient [22]. Moreover, 
normalizing XML documents into relational tables as columns may substantially 
increase storage overhead. 

Second, XML documents are stored as BLOB or CLOB columns into the RDBMS. 
The BLOB value is queried through an XQuery processor. The entire XML document 
must be brought into memory even to read a simple attribute before processing which 
may create a huge memory overhead. 

Third, in Side-By-Side approach query fragments are translated and exchanged 
between XQuery and SQL processors while XML documents are stored side-by-side 
with relational data. This approach is more efficient than the previous two with more 
efficient query translation and increased degrees of freedom in the evaluation [2]. But 
it requires definitions of equivalent components in both worlds: Relational (SQL) and 
XML (XQuery) for the efficient combination and correlation of query fragments 
which can be extremely complex. 

Fourth, in Relational over XML (ROX) approach the XML documents are put into 
a native store and an XQuery engine is built on top of it. The SQL requests are first 
translated into equivalent XQuery request and query on data is performed through 
XQuery Engine. The main challenge in this approach is the equivalent SQL-to-
XQuery translation due to the semantic differences of these languages. 

The last approach is a purely native XDBMS system implementation. These 
systems support only XQuery and do not support SQL or relational storage. So no 
query translation between SQL and XQuery is required and the storage and query 
system can be optimized for XML documents. Timber and XTC, described in section 
5 and 7 respectively, are two examples of such systems. 

3 Architecture of an ideal XDBMS 

An “ideal” XDBMS should support all proven-effective database properties of 
RDBMS. The ACID properties, scalability, availability, usability, concurrency must 
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be supported. The system should index XML data for efficient node traversal and 
additionally for full-text search capabilities. Query compilation should generate 
optimized execution plans. 

It should employ the famous layered architecture [11] which is widely applied in 
realization of RDBMS. The basic idea behind this architecture is creating a dynamic 
abstraction from the level of physical storage up to the user interface in five steps, as 
seen in Table 1. 

Table 1. DBMS mapping hierarchy of layered architecture 

 Layer Abstraction Objects 

Data 
system 

L5 Nonprocedural Access Nodes, Documents, views 

L4 Navigational Access 
Sequences, (logical) Records, 

hierarchies, networks 
Access 
system 

L3 Access Path Physical records, access path 

Storage 
system 

L2 Propagation Control Segments, pages 

L1 File Management Files, blocks 
 
Abstraction begins in layer 1 (L1) on the non-volatile storage devices and stepwise 

moves upward providing cleaner objects and allowing more powerful operations. 
During runtime these five layers can be optimized into three layers – storage system, 
access system, and data system. Haustein & Härder [10] proposed an architecture for 
native XDBMS based on the layer model which we will cover in section 5. In next 
sections, we detail each layer. 

2.1 Storage System 

Layers 1 and 2 at the bottom are responsible for the management of external storage 
devices and DB buffers. The repository must support rollback and recovery. Efficient 
retrieval and update of XML fragments must be guaranteed. Small documents could 
be stored completely in a single page while large documents are stored in the 
consecutive pages to exploit the sequential locality. Efficient buffer management with 
page replacement algorithms tailored to specific workload is necessary for 
optimization. Furthermore, related documents can be clustered together to exploit the 
larger pre-fetching chunks that relatively slower disk arms requirements, or possibly 
de-cluster them to spread across multiple arms for greater I/O parallelism [2]. 

2.2 Access System 

To guarantee scalability in concurrent operations, XML documents must be stored in 
such a way that fine-granular management and locking is facilitated. The access 
system must enable arbitrary insertions and removals of XML fragments at any time. 
Various node labeling schemes have been proposed for the access model [20, 12]. 
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Two classes of schemes are mainly found in the literature: range-based and prefix 

based. In range-based schemes, positions of nodes are marked by (DocNo, 

LeftPos:RightPos, LevelNo) where LeftPos and RightPos indicate labeling range in 
each node with its sub-tree, generated by a depth-first traversal of the tree. If RightPos 
of a node exceeds the LeftPos of its sibling due to insertions, the whole tree must be 
relabeled. Even leaving large gaps in the numbering range, the immutability of node 
labels cannot be guaranteed in the general case. Prefix-based schemes directly 
encode the parent of a node as a prefix of its label. The node labels are immutable but 
in deep trees these labels length may grow largely requiring efficient compression 
techniques on these schemes. 

Indexing for node traversal and full-text search must be optimized to quickly locate 
the intended elements. Similar to relational counterpart variants of B*-trees can be 
applied here. The integrity constraints and relationships among multiple documents 
must be realized here. XML data has either highly dynamic schema which changes 
frequently or no schema at all. A schema-less approach during document storage and 
application of schema during data retrieval may simplify querying of data. A schema-
aware approach is useful to type inference and some situations in query optimization. 
A strict schema-based approach may restrict the flexibility of XML whereas allow to 
explore more storage and query optimization opportunities. Nevertheless, the issue on 
what would be a real XML database schema, and what kind of benefits could be 
derived from, is open so far. 

2.3 Data System 

The data system consisting of uppermost two layers provides navigational access to 
the internal representation of physical records and declarative operations to the 
XDBMS. Query operations are targeted to some logical object representation 
independent of the access path. Various scan operations can be implemented for 
record-at-a-time processing of physical record set which in turn supports sequence-at-
a-time processing of XQuery and XPath. Various plan operators must be implemented 
for selection, join, projection and update in a single document or across multiple 
documents. 

2.4 Transactions 

The support of effective transaction is mandatory in databases. Adoption of 
transaction related activation and surveillance tasks must be implemented in the layer 
4. For performance reasons, layer crossing information is allowed for transaction. At 
storage system, effective concurrency control and efficient logging/recovery 
techniques can be applied to achieve atomicity [8]. Collaborative use of XML 
documents in multi-user environment is guaranteed by fine-granular concurrency 
control and efficient lock management must be implemented to achieve it [12, 10]. 
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4 ROX 

ROX [9] is an experimental model to query XML documents through both SQL and 
XQuery. It proposes storing XML documents natively and building up an XQuery 
engine to query them. SQL is implemented on top of this engine providing SQL-to-
XQuery translation.  

The key to this coexistence of relational and XML data is the degree of translation 
between SQL and XQuery languages. The SQL language is defined over the 
relational model [32], where queries operate over column values. On the contrary, 
XQuery [3] is defined over XQuery Data Model (XDM) [5] which manipulates 
ordered, heterogeneous sequences of values and node references. XDM is more 
powerful and elaborated than its relational counterpart. So XQuery-to-SQL translation 
can only represent a subset of this data model. Along with the differences in data 
model, there exist also differences in operational semantics such as the document 
order preserving semantics of XQuery. 

Despite the different focus of each language, they both include many similar 
concepts including set-based and sequence-based processing, joins, selections, 
projections, and quantification [2]. XQuery is a powerful functional language 
designed to query both structured and unstructured data. Therefore, there are 
considerable conceptual overlaps in the functionality of SQL and XQuery. When 
constrained over structured data, many XQuery operations have semantics close to 
that of SQL [2]. Many SQL predicates can effortlessly be translated into equivalent 
XQuery predicates. So some architecture like ROX considers SQL-to-XQuery as a 
viable candidate for running SQL queries over XQuery engine. 

To avoid huge task of implementing the complex ROX architecture, a prototype 
infrastructure on top of some existing products has been proposed in [9] as depicted in 
Fig 1. For the native storage of XML documents a prototype XML store is developed. 
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Fig. 1. ROX Architecture 
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The data are first parsed and stored in this store as a native tree format. A modified 
version of XML Wrapper, part of IBM DB2 Information Integrator [23], is used as an 
interface to this store. 

XML Wrapper parses XML documents stored as text files on Disk with Xerces 
[33] XML parser and query data with Xalan XPath evaluator [34]. In DB2, CREATE 
NICKNAME statement queries XML documents and creates relational rows using 
this product. To comply with the parent-child relationship, XML wrapper allows 
specific columns to be specified as the PRIMARY_KEY or FOREIGN_KEY for a 
nickname which can be used for SQL joins. 

The actual XML Wrapper is modified such that it works on the XML store rather 
than on the XML disk files. Xerces parser and Xalan XPath evaluator are no more 
needed. The PRIMARY_KEY option is implemented through an internally generated 
XML node identifier. 

To run SQL queries over an XQuery implementation it is necessary to translate 
SQL queries to XQuery. Due to the semantic differences of these languages, special 
care must be taken during translation. SQL value comparison operators have similar 
semantics as those of XQuery. Furthermore, many SQL predicates over numeric types 
and strings can be translated into XQuery functions. The authors of [2] are convinced 
that with minor implementation efforts a large set of SQL predicates over numeric 
types and strings can be translated into equivalent XQuery predicates. 

The native storage of XML documents permits both normalization and 
denormalization of XML documents. So the decision whether to normalize or 
denormalize the data is left to the database designer. The techniques of materialized 
views applied in the relational world to speed up evaluation of queries can be reused 
here. XML indexing is proposed to find documents that contain a certain value in a 
certain location which facilitates efficient value-based and selection joins. 

5 Timber 

Timer [15] is a native XML database built on top of Shore [31], a popular storage 
manager. For the efficient processing on large databases, a bulk (set-oriented) algebra, 
called TAX, has been developed which provides set-a-time processing of trees. 
Timber architecture is shown Fig. 2. 

5.1 XML storage 

The XML document enters into the system through the Data Parser which converts it 
into a parse tree. The data manager transforms each node of the parse tree into an 
internal representation and stores into Shore. There is a node for each element whose 
attributes are stored into a single child node, and the content into another child node. 
If the node is of a mixed type, each content part is pulled into a separate child node. 
Current Timber version ignores all processing instructions, comments etc. It employs 
a node labeling scheme with start, end, and level labels (a variant of the range-based 
labeling). It is possible to assign a doc label if document boundary is important for a 
multi-document model. The same can be achieved in a single model by using a 
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predefined range of label values for each document. Elements and sub-elements are 
clustered together. The XML documents are normally stored without any schema. But 
a metadata store is developed to store information regarding attribute types, data set 
sizes and indices if schema is available. 

Fig. 2. Timber Architecture 

5.2 Indexing 

Timber uses B-Tree index facility provided by Shore to store indexes. Value indices 
are constructed on attribute values and element content, term-based inverted indices 
are built on element content for large text, and index on tag name is implemented to 
return all elements with the specified tag. Index returns list of start, end and level 
labels. If metadata store contains schema information of a document, index manager 
uses the information to select appropriate index structures and optimize query. 

5.3 Query 

The Query Parser parses XQuery into an algebraic operator tree made from TAX 
algebra operators. The Query Optimizer reorganizes this tree and maps from logical to 
physical operators creating a query plan which is evaluated by the Query Evaluator. 
Each operator of the bulk algebra, TAX, takes one or more sets of trees as input and 
produces a set of trees as output. It supports operators for selection, projection, 
reordering, grouping, product, set union, set difference, and renaming [16]. 

A tuple in relational algebra can be uniquely referenced by the attribute name or 
position. The same referencing is more difficult for trees due to their complex 
structures. TAX uses pattern trees to specify homogeneous tuples of node bindings. It 
is possible to find the matching sub-trees using this pattern. The return tree is also 
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homogeneous and is called witness tree, since it bears witness to the success of the 
pattern match on the input tree of interest. Pattern trees can hold various conditions 
and simplify XPath query evaluation. 

6 Natix 

Fig. 3. Natix Engine Architecture 

Natix [5] provides native storage of XML and support of XQuery, XPath, SAX and 
DOM interfaces. The native architecture is based on three layers: storage layer, 
service layer and binding layer as shown in Fig. 3. 
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requirements using a split matrix. The segment interface for XML allows accessing an 
unordered set of trees. A wrapper maps logical data model to XML model and vice 
versa. Nodes are labeled with a symbol taken from an alphabet ΣTags. Leaf-nodes are, 
in addition to this symbol, labeled with arbitrary long strings. A record is stored only 
in a single page. The logical data tree is partitioned into subtrees each of which is 
stored in a record. Large documents are split semantically into subtrees based on the 
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node called proxy node. 
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Natix introduced a split algorithm if a sub-tree exceeds page size due to update. 
The sub-tree of one record is partitioned into a left partition, a right partition and a 
separator. The separator is moved to the parent and uses proxies to point to the new 
records to indicate where the descendant nodes were moved due to split operator. The 
desired ratio of the size of left and right partitions is configurable and used by split 
algorithm to determine the separator. 

6.2 Service layer 

Service layer provides Natix Engine Interface for all DBMS services to communicate 
with each other. Each request is first sent to the DBMS and then forwarded to the 
appropriate components for processing. The service components are namely Natix 
query execution engine (NQE), query compiler, XPath compiler, Transaction 
management, object management. 

6.3 Binding layer 

Binding layer enables various applications to bind to the Natix Engine Interface. A 
request to this interface can be made using C++ data types as well as through a 
language independent string which is parsed by a parser and transforms into a request 
objects allowing a simple control interface to manipulate the Natix system. 

6.4 Indexing 

Natix uses inverted files for full text index and extends it for semi-structured XML 
data. It provides a framework for incorporating different index types through a special 
component called ContextDescription. A special index called eXtended Access 
Support Relation (XASR) is developed to preserve parent/child, ancestor/descendant, 
and preceding/following relationships through a variant of range based labeling 
scheme. The tree is traversed depth first and each node is label with a dmin value and 
dmax value. dmin is the value the node is first entered and dmax is the value when the 
node is finally left. The dmin, dmax along with the element tag and document ID are 
stored as an entry in XASR table which facilitates identification of a node directly. 

6.5 Transaction Management 

ACID properties are supported through making storage engine transaction aware and 
developing a special transaction management module. A tuned version of ARIES 
protocol [22] is used for recovery. The recovery log describes each log record with a 
unique log-sequence-number (LSN). Segments and page interpreters, described in 
section 6.1, contain logging and recovery code in their data structures. Physiological 
logging [8] – physical to a page, logical within a page is implemented in Page 
interpreters. They keep a private, subsidiary log, which can be modified, reordered 
before publishing to log manager. This mechanism reduces log size and increases 
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concurrency. During insertion operation the log entries for the subsidiary log are not 
explicitly stored but the data pages are used as a representation for log records before 
publishing them to the recovery log and thus further reduce log size. The log manager 
reads and writes log records and synchronizes concurrent access to them. The 
recovery manager performs redo, undo and checkpoint operations. The transaction 

manager provides interfaces to the application programs to mark operations for 
transactions. 

Natix reduces log size and increases performance of logging/recovery for undo by 
implementing annihilator undo. Specific operations are marked as annihilators and 
undo for the subsequent operations are skipped in case of rollback avoiding the entry 
of nextUndoLSN chain of that transaction which will not be undone explicitly, but 
implicitly by the annihilator. Selective undo and selective redo further optimize 
logging/recovery of a data page which is updated by a single transaction through 
undo. It avoids loading and modification of pages which belong to loser transactions. 

6.6 Concurrency Control 

Natix uses tuned versions of multi granularity locking (MGL) [8] protocol with an 
arbitrary number of levels for concurrency control. Lock granularity addresses at the 
segment, document, sub-tree and record level. A document can be split into records 
using split matrix and parts of document with high probability of concurrent access 
can be stored in different records providing configurable concurrency control. 

7 XTC 

XTC [10] is based on the layered architecture [11], which is successfully used in 
numerous relational systems. XML documents are stored natively and languages like 
SAX, DOM, XPath and XQuery are used to access data. The data model is based on 
DOM with an appropriate node labeling scheme, called SPLID – a variation of the 
DeweyID-based [4] labeling. The architecture of XTC is shown in Figure 4. 

7.1 Storage system 

Storage system consisting of L1 and L2 of the layer model hides the varying external 
block device properties and provides pages of fixed-length which are mapped onto 
physical data blocks stored on secondary storage devices (disks). Each page, in turn, 
is compound of variable-length records representing element/attribute nodes in a 
XML document. Text values (text nodes, in XTC terminology) can be stored in-lined 
(in the same record) with their corresponding element nodes, or in a separate 
record/page. Buffer management employs specific page replacement algorithms 
tailored to the application needs. 
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Fig. 4. XTC Architecture 

7.2 Access System 

The access system at L3 has been implemented using B- and B*-trees with several 
enhancements for single- or multi document stores, key compressions and optimal 
handling of short documents. 

XTC employs a prefix-based labeling scheme based on the DeweyID. The scheme 
is flexible enough to allow arbitrary insertions and deletions without reorganizing 
labels already assigned. Each node label consists of divisions of integers separated by 
dots. The children retain the label from the parent and add one or more divisions. 
Initially, odd integers are used for division values and a distance is kept among the 
numbers to reduce overflow caused by insertions. The overflow is handled by 
introducing even integers. Various compression measures have been applied to reduce 
the storage size for long DeweyIDs. Hoffman encoding scheme is used for the 
distribution of distance values to reduce frequent overflows which create longer IDs. 

A node together with its value part has a size limit of max-val-size. Any text node 
exceeding this limit is stored in reference mode where it is split into parts and stored 
into chained pages. 

Indexing for documents in XTC is implemented by a document store. First node of 
each data page in the document container is indexed in a B-tree called document 

index. The document container consists of a set of chained data pages and preserves 
the order and cluster property of each document. All node formats are of variable 
length. Additionally, an element index has been developed using B*-tree to index all 
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elements of XML documents in a name directory. A node reference index provided 
for each element addresses the corresponding element using the DeweyIDs. 

7.3 Data System 

The data system at L4 and L5 consists of several node processing and XML 
processing services. The order of two nodes in the document can exclusively be 
determined by comparing two DeweyIDs. It facilitates the efficient evaluation of the 
eight axes parent/child, ancestor/descendent, following-sibling/preceding-sibling, 
following/preceding for declarative queries through XQuery and XPath. Furthermore, 
labeling scheme together with element indexes supports five basic navigational axes 
of DOM - parent, previous-sibling, following-sibling, first-child, and last-child. 

Each node in the document store is mapped to a node handled by the node 
manager. During navigational axes evaluation, the desired node resides in the page of 
the context node in the best case. In the worst case, the number of pages to be 
accessed limits to 3-4 via document index. On the other hand, element index increases 
declarative query processing via XQuery. For query evaluation XTC uses tuned 
variants of structural joins and twig joins. L5 produces Query Execution Plans (QEP) 
i.e. translate, optimize, and bind the multi-lingual request from the navigational to the 
operations available at L4. 

7.4 Transaction management 

The transaction manager is responsible for providing ACID properties to XTC. Log 
data is collected and persisted during normal operation and used by recovery 
operation after system crash or media failure. Physical logging and Physiological 
logging combined with LSN implemented at storage layer guarantees A (atomicity) 
and D (durability) of ACID properties. All layers must participate to guarantee C 
(consistency) while L3 to L5 are responsible for achieving I (isolation). Transaction 
manager together with lock manager provides fine-granular locking for isolation 
which is described in the next section. 

7.5 Concurrency Control 

A lock manager, supported by 20 operations at the access model, is responsible for 
the collaborative processing of XML documents through fine-granular locking. It 
transforms the DOM tree into a so called taDOM tree introducing two new node 
types: AttributeRoot and String Node.  AttributeRoot attaches all attributes of an 
element allowing a single lock to lock all attributes during a DOM(SAX) 
getAttributes() call. String node contains the value of an element/attribute node 
allowing avoiding lock during an existence test. Thus, with the taDOM tree, XTC 
enhances the transaction parallelism. Application call to access XML documents are 
interpreted by the lock manager to apply appropriate intention lock allowing multiple 
transaction to operate on single node with different lock modes. 
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The lock manager is realized by configurable semaphore tables which maintain the 
semaphore dynamically acquired for a specified maximum number of transactions 
and lockable objects. Several techniques have been applied to optimize performance 
and reduce memory requirements. Each transaction requests semaphore which 
performs a compatibility check through the compatibility matrix provided during 
semaphore table initialization. If the semaphore is compatible it is immediately set. 
Otherwise, it is added to the lock chain with state waiting and the requesting 
transaction must sleep until incompatible semaphores are removed or replaced by 
compatible ones. Pending transactions are reported to the transaction manager to 
detect and resolve deadlocks. 

8 System RX 

System RX [2] provides an experimental implementation of a hybrid database system 
of both relational and XML data (Figure 5). It proposes a native storage for efficient 
storing and querying of XML data. System RX uses SQL/XML language to 
manipulate and query XML data. SQL/XML is an industry standard language for 
creating and querying XML data fragments as well as relational data. It provides 
XML publishing functions, a new XML data type and some mapping rules between 
SQL and XML. The XML data type has an implementation dependent internal format 
different from LOB-based types. SQL/XML defines second-order query functions e.g. 
XMLTable, XMLQuery that take an XQuery statement as input and execute it over 
the XML values passed from SQL. It also provides functions to construct new XML 
data and convert between XML and relational data types. Several commercial e.g. 
Oracle [36], DB2 [26] DBMSs have already implemented SQL/XML. 

Fig. 5. System RX architecture 

 

Query Evaluation 

SQL/XML 
Parser Hybrid 

SQL/XQuery 
Compiler XML Navigation 

XQuery 
Parser 

 



Architectural Approaches of XDBMS Realization      15 

8.1 Storage Model 

System RX stores the XML documents in the native storage as instances of XDM [5] 
in a structured, type annotated tree to avoid repeated parsing and validation of 
documents while preserving salient features like digital signatures. Node addressing 
and traversal are simplified through assigning unique address to each node and 
keeping pointers to parent and children. Related nodes are stored in standard fixed-
size buffered pages. Redundant namespace URIs and node names are compressed 
through a dictionary which maps strings to identifiers to improve evaluation of path 
expressions. A set of child slots associated with each element node contains hints for 
fast navigation to find qualifying children without actually visiting each child node. 
Each child can be pointed to directly via a row identifier (RID) plus an index into 
child slot array. Regions of nodes are grouped together on pages and linked by a 
logical regions index which enables access without traversing from the root by 
looking up the region that contains the node in the region index using node’s 
identifier. Nodes can be updated without affecting most of other nodes in the 
document. The regions that are updated are versioned, leaving multiple version of a 
node in the regions index. New readers will always get the latest version. Regions can 
be fragmented during updates. A data reorganization utility is offered to re-cluster the 
regions of a document. 

8.2 Indexing 

System RX supports three classes of XML indexes – Structural indexes, full-text 
indexes and value indexes with special focus on the last type. The XML index is 
implemented with two B+ trees. The path index maps each distinct reverse path to a 
generated path identifier. The paths are stored from leaf to root for efficient 
processing of descendent queries. The value index consists of the key (pathId, value, 
nodeId, rid). The nodeId uniquely identifies a node in a document using Dewey node 
identifier. The rid identifies a row in the table. The pathId allows quick retrieval of 
specific path queries keeping the order of the keys in the value index. 

For full-text indexes, relational text indexing support [21] is extended to include 
XML data. To escape indexing the sheer amount of information that may arrive in 
XML documents; System RX supports indexing of nodes that are returned from a 
simple XQuery through CREATE INDEX command. Due to dynamic schema 
supports of XML documents, it is difficult to infer the data type associated with 
indexed nodes. So user must specify the data type of nodes during indexing. The 
index is created on the cast of the node to the indexed type, taking into consideration 
the node’s type annotation which is derived during validation. 

8.3 Query 

System RX supports query compilation and evaluation for SQL/XML [14] and 
XQuery. Data definition (DDL) operations are performed through SQL/XML. 
Queries enter the system through either language and are then compiled into an 
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internal Query Graph Model (QGM) [27] which is then normalized, simplified and 
optimized through rewrite transformation. The optimizer generates a physical 
execution plan using this graph which is translated into executable code by code 
generation. The rich data-flow modeling is exploited to perform cross-language 
optimization. The QGM for relational system is augmented with native constructs for 
XML. In QGM, each path expression is represented as a pattern tree in which there is 
only one bound variable to represent each data flow explicitly, so that semantics and 
rewrite analysis, which is built on explicit data flow representation, can reason about 
the query more efficiently. This approach allows representing not only path 
expression but also other FLWOR [3] expressions and supporting full functionality of 
XQuery. During rewrite transformations, many techniques from the relational world 
are reused. It is tried to consolidate all path expression in a single FLWOR block into 
one pattern tree that is annotated with several flags to represent FOR vs. LET paths. 

9 eXist 

eXist [24] provides schema-less native storage of XML documents. XPath and 
XQuery languages are used to query these documents. Application binding is 
provided for HTTP, XML-RPC, SOAP and WebDAV. Four index files build the 
basic storage and indexing infrastructure for eXist: collections.dbx, dom.dbx, 

elements.dbx, words.dbx. 

9.1 Storage Model 

XML document nodes are stored as the root of DOM tree in dom.dbx. Top level 
elements of a document are indexed with a B+ tree which keeps a unique identifier of 
a node in the document to the storage address in the data pages. Access to other nodes 
is provided by traversing the nearest available ancestor stored in the index tree. 

9.2 Indexing 

The numbering scheme, based on [19], models the document tree as a k-ary tree, 
where k is the maximum number of child nodes of an element in the document. A 
unique identifier, generated through level-order traversal of the tree, is assigned to 
each element. To overcome the restriction on the maximum document size, the 
completeness constraint in the original scheme [19] is dropped in favor of 
recomputing the number of children that may occur at each level. All axes of XPath 
can be efficiently evaluated through this numbering scheme. 

Collection.dbx manages the collection hierarchy which organizes the indexes for 
elements, attributes and keywords. Elements.dbx serves for the mapping of elements 
and attributes names to unique identifiers to locate a name in the documents. 
Words.dbs provides inverted index support which uses unique node identifier to 
associate words or phrases with their occurrences and locations in the documents. 
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9.3 Querying 

The index structures along with the numbering scheme provides flexible framework 
for query evaluation. eXist employs an enhanced version of path join algorithm 
discussed in XISS system [20]. The path expression is first decomposed into several 
sub-expressions which are then evaluated and ancestor-descendant path join algorithm 
is applied on the result set. eXist does not need the actual DOM nodes in the XML 
except to process the equality operator which requires the values of the DOM nodes. 

10 Tamino XML Server 

 Tamino [30] is a purely native commercial XDBMS implementation from Software 
AG. XML data is stored natively and queried through standard XQuery and XPath-
based Tamino X-Query languages. The system consists of several components. X-

Machine, consisting of native XML Data Store and XML Engine, is the central 
component of the Tamino architecture. XML Data Map component stores all schema 
information. X-Node connects to the external data sources. The system can be 
extended and customized through X-Tension framework. Fig. 6 depicts the 
architecture of Tamino XML Server. 

Fig. 6. Tamino XML Server Architecture 
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10.1 Storage Model 

Incoming documents are parsed, validated against XML schemas from data map, 
transformed into an internal native format and stored into the XML data store. Non-
XML data such as graphics and video files can also be stored. Fail-over and crash 
recovery are supported. 

10.2 Indexing 

Tamino supports three types of indexing: value index, full-text index and structural 

index. Schema information is exploited to define the scope of indexing. 

10.3 Query 

XML documents are queried through XQuery and Tamino X-Query, an extension to 
the XPath semantic to simplify multiple document querying. A well-formed XML 
document has only one root. If a query returns multiple XML documents (or 
document fragments), Tamino provides a pseudo-root element to guarantee well-
formedness of the resulting XML document. Complex queries, including join, 
involving single or across multiple documents are efficiently evaluated. Insert, update 
and delete operations on XML document fragments are optimized, leaving the rest of 
the document unchanged. 

10.4 Schema support 

The metadata store Data map is responsible for storing the Tamino’s schemas. The 
schemas determine how the objects, both residing in XML documents or externally 
(legacy databases), can be mapped to physical structures. The schema information is 
used for validation during insert or update operation. Besides, Tamino schema 
provides a homogeneous view of external non-XML data such as legacy database as 
XML data to the end-user. Tamino supports both XML schema and DTD. 

10.5 Transaction Management and Concurrency Control 

Tamino XML server supports transaction management based on a two-phased 
concurrency control protocol. The data store can participate in distributed transaction 
scenarios while providing client-controlled, session-based support for distributed 
transactions. In this case, a 2PC (two-phased commit) protocol is used to guarantee 
transaction consistency. Tamino server establishes an indirect communication channel 
via a special product called Universal Transaction Platform (UTX) which 
communicates with transaction coordinator. Fine granular isolation is provided by 
hierarchical locking technique. Tamino defines four levels of locking granularities: 
database, collection, doctype, and document. It introduced six lock types divided into 
two groups: exclusive lock and intention lock. Locks in exclusive group affect the 
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object directly and those in intention group represent an intention to lock further 
object at a finer granularity. Locks are initially tried to set as fine-grained as possible, 
even on the node or sub-tree level. A weaker lock set can be escalated to a stronger 
lock. This facilitates fine-grained locking management in multi-user environment. 

11 Native XML Support in DB2 

DB2 Universal Database has been extended to support native XML based on System 
RX, described in section 8. XML and relational data are stored and queried side-by-
side. SQL and XQuery can be combined and correlated during querying. XQuery, 
SQL/XML and SQL queries are first parsed by different parsers and processed by 
DB2 engine with a single compiler [26]. XML documents, defined as XML type, can 
be stored as column values along with relational data into the same table. In contrast 
to BLOB or CLOB type, values of type XML are processed in an internal native 
representation. XMLSERIALIZE and XMLPARSE functions can be used to convert 
XML to string and vice versa. Transaction management and fine-granular 
concurrency control are also supported for XML documents. 

11.1 Storage Model 

As described in the section 7, the XML data is inserted into the database as column 
values and stored as an XDM tree. A new catalog table SYSXMLSTRINGS is 
developed to map the unique tag names to distinctive StringIDs which are used to 
represent tags in the documents. A document tree, too large to fit on a page, is split 
into multiple regions connected by the regions index. A region index is a system 
index and is created for each table which contains XML columns. 

11.2 Indexing 

DB2 supports path-specific value indexes and full-text indexing. Usual CREATE 
INDEX command is used with xmlpattern as path for identifying XML nodes to 
define a value index. Xmlpattern supports a subset of XPath. Like System RX, user 
must explicitly specify the data type in the “as sql <type>” clause. 

To accommodate the XML type system in the existing DB2 index manager, some 
values are specially handled, i.e. +0, -0, +INF (positive infinity), -INF (negative 
infinity) and NaN (not a number). There may be zero, one or multiple index entries 
for a single row that match the xmlpattern. In contrast, relational system returns at 
most one entry. 

DB2’s full-text search capabilities have been extended to accommodate the XML 
type. The documents in the XML column can be fully or partially indexed. The search 
can be restricted to a specific element. Standard text search features like scoring and 
ranking of search results as well as thesaurus-based synonym search are also 
provided. 
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11.3 XML Schema Support 

XML schema validation is supported during insert, update, and query operations. 
Limited support for DTDs [35] is also provided. The schemas and DTDs are first 
registered via DB2 commands, stored procedures, or language specific APIs and 
stored in XML Schema Repository (XSR). The type annotation produced during 
validation is persisted together with the document and used at query compilation and 
execution. Documents can be validated in SQL statements with XMLVALIDATE 
function. A schema can be explicitly referenced by its schema URI or by its schema 
identifier. Each inserted document can potentially be validated against a different 
XML schema for the same column values. 

DB2 supports certain degree of schema evolution in the XSR. Schema evolution is 
a sequence of changes in an XML schema over time. If new schema is compatible 
with the old schema, then the old schema can be replaced with the new schema. This 
only supports additions of optional elements and attributes. DB2 also allow the old 
and new schemas to coexist side-by-side, under different names. One can insert 
documents conforming to any of the schemas in the same column of a table. 

DB2 provides a decomposition product to shred XML document into relational 
tables. It uses an annotated schema for the decomposition. The annotations enable the 
user to control the decomposition process such as inserting whole or part of 
document, defining foreign key relationship, conditional insertion etc. 

12 Oracle XML DB 

Oracle XML DB [36, 18] provides native storage and querying of XML documents 
built on a relational and object relational framework. XML data is integrated into the 
existing Oracle DBMS, and complete transparency and interchangeability between 
the XML and SQL data views are supported. XML schema registration and validation 
are supported as well. XML processing is based on a native XMLType datatype. 
Figure 6 shows the architecture of XML DB and following subsections detail various 
aspects of it. 

12.1 XML Storage 

Multiple storage options are available with XMLType. LOB-based storage assures 
complete textual fidelity ensuring high data integrity and low regeneration cost. The 
native structured XML storage is a shredded decomposition of XML into underlying 
object-relational structures for better SQL queriability. It loses whitespace 
information but maintain fidelity to DOM. In hybrid storage, XML data is split into 
structured and CLOB part. The XML data can be stored in an XMLType column or 
using an XMLType table. Oracle XML DB Repository, based on WebDAV [7] 
standard, makes it possible to view all of XML content stored in the database using a 
File-Folder metaphor. It uses the WebDAV resource model to define the basic 
metadata that is maintained for each document stored in the repository. 



Architectural Approaches of XDBMS Realization      21 

Fig. 7. Oracle XML DB Architecture 
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be used within XPath queries appearing in the context of extract(), existsNode(), and 
extractValue() functions operating on XMLType instances. 

13 Microsoft SQL Server 2005 XML 

SQL Server 2005 integrates native XML management capabilities into the existing 
DBMS both extending and leveraging the relational storage and query infrastructure 
[28]. The XML processing is based on a native XML data type. It also provides a new 
metadata object called XML Schema collection to register schema and validate and 
enforce XML data type values with them. The architecture of SQL Server 2005 XML 
is depicted in Figure 7. 

Fig. 8. SQL Server 2005 XML Architecture 
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13.2 Querying 

Querying for XML data is performed by four methods of XML data type: query, path, 
exists, nodes. Each of these methods takes an XQuery expression as parameter. The 
query() executes a query by evaluating an XQuery expression against the elements 
and attributes in an XML instance and returns an untyped XML. The value() is used 
to extract node values from an XML instance. The exists() method checks the 
existence of a specific XML fragment in an XML instance. The nodes() method 
shreds XML instance into relational data and generates a single column row per node 
that the XQuery expression returns. The modify() method xml type allows insert, 
update and delete content within XML instance. SQL Server 2005 introduces XML 
Data Modification Language (XML DML) to enhance XQuery by allowing insert, 
update, and delete access anywhere the xml data type is used. 

13.3 Indexing 

SQL Server supports two types of indexing for XML data: primary and secondary. A 
primary XML index is a shredded version of what is in the xml column. When this 
index is created, it writes several rows of data for each XML BLOB in the column. A 
secondary index further improves query performance on large amount of data. There 
are three types of secondary XML indexes: PATH, VALUE, and PROPERTY. PATH 
index is used to index the paths and node values as the key fields. VALUE index is 
useful if the queries are based on values or the path is not fully specified. The 
PROPERTY index is built on the key columns of the primary XML index such as 
Primary Key, path, or node values. 

14 Comparisons 

In this section, we provide a summary comparison of all approaches studied so far. 
Furthermore, we comment on issues, regarding comparison, of the approaches, 
sometimes contrasting them, sometimes pointing out similarities. We have chosen six 
criteria, namely, storage, indexing, query support, API support, transaction processing 
and XML schema support to compare the approaches. Table 2 shows the comparison 
information. 

The major commercial databases started the support for XML data with shredding 
and LOB-based storage in the relational tables. Some (e.g DB2, Oracle) supported 
SQL/XML to query data while some (e.g. Microsoft) used OpenXML/FOR XML for 
that. As the databases have been enhanced with native XML processing, they 
continue to support former techniques to maintain backward compatibility and extend 
their respective relational storage engine, index facilities, transaction management and 
concurrency control to work with XML. Pure native approaches, on the other hand, 
supports only XQuery and XPath to query data. The database engine is adapted to 
transaction management and concurrency control targeting XML operations like 
insert, update, and delete of nodes and/or sub-trees. 



24      Muhammad Mainul Hossain 

 



Architectural Approaches of XDBMS Realization      25 

The focus of pure native approaches is to build up an XML document store and 
process queries over this store. Because of that, and to provide safe multi-user access, 
a hierarchical multi-granular locking mechanism is chosen by the most pure native 
XDBMS to deal with concurrency control (e.g., taDOM3+ protocol of XTC). In 
contrast, XML operations in hybrid databases (e.g., commercial databases and 
Timber) are generally performed over relational tables using a native XML data type. 
Each XML document is represented in a table column. It is not clear whether a row is 
completely locked (thus locking the whole document) or, in addition, a fine-grained 
hierarchical locking on document nodes is performed. Among all studied XDBMS, 
Tamino is the only one claiming to support distributed XML documents. 

Range-based labeling scheme came up earlier than prefix based scheme. It is very 
good for query processing, but not very effective for concurrency control. Earlier 
approaches have mostly used range-based scheme and focused mainly on query 
processing (for example, Timber and Natix). Even commercial products have 
preferred to use range-based labeling from which we can infer that commercial 
XDBMS do not provide specific locking mechanism for XML data or they expect that 
XML documents are not volatile. The preference for prefix-based scheme is 
increasing as it is effective for both query processing and concurrency control. In our 
study, only XTC provides such a labeling mechanism. 

Strong tendency to support path and value indexes has been observed. In fact 
almost all approaches have both indexes types, whether to accelerate the document 
access or to keep structural characteristics of documents. Moreover, most XDBMSs 
also support full-text index through inverted index structure. B- and B*-trees are the 
most preferred data structures for storage and indexing. Some XDBMS (e.g., eXist) 
focuses on quick retrieval of information and expects low rate of document 
modification. They use B+-trees for storage structure and indexing techniques. 

Most of approaches use a schema-aware storage with XML schema or DTD. Only 
two of them, namely, XTC and Natix, use a schema-less storage. Some XDBMSs 
store XML schemas as metadata in a separate storage space and validate XML data 
values during load, insert and update operations. Furthermore, query processing can 
have benefits of schema information. For example, to select index structures and to 
optimize query execution plans. However, it is not clear if these stored XML schemas 
are used only for data type inference/validation or they are extended to capture other 
important information on database (e.g., number of node instances, indexes on 
nodes/paths, statistics, etc) and, so, can be viewed as authentic XML metadata. This 
separation of data and schema information enables the so-called dynamic schema 

evolution. Using this characteristic, hybrid XDBMS, mostly commercial products 
(excepting Tamino), can use different XML schemas applied to a set of XML 
documents. Schema-less approaches need to scan XML documents to get metadata 
information, including data types and document structure. Moreover, statistics on 
document are gathered in the same way. However, as there is no validation in 
document load process, this metadata information may be out-of-date for query 
processing as document updates take place. 
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15 Conclusions 

A lot of research efforts is being made for the optimal storage and querying of XML 
documents. Most of them are not yet mature enough for the enterprise applications. 
All major database vendors have enhanced their respective DBMS architectures to 
support XML processing natively. The enterprise adoption of XDBMS is increasing 
day-by-day. The gap of efficiency and effectiveness between proven RDBMS and 
emerging XDBMS tends to be narrowed in the near future. 
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