
Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 3
DB-Gateways

Outline

 Coupling DBMS and programming languages
 approaches
 requirements

 Programming Model (JDBC) Programming Model (JDBC)
 overview
 DB connection model
 transactions

 Data Access in Distributed Information System Middleware
 DB-Gateways

 architectures
 ODBC
 JDBC

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 JDBC

 SQL/OLB – embedded SQL in Java
 Summary

2

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 2

Coupling Approaches – Overview

 Embedded SQL
 (static) SQL queries are embedded in the programming language

 cursors to bridge so-called impedance mismatch

 preprocessor converts SQL into function calls of the programming languagep ep ocesso co e ts SQ to u ct o ca s o t e p og a g a guage
 potential performance advantages (early query compilation)
 vendor-specific

 Dynamic (embedded) SQL
 SQL queries can be created dynamically by the program

 character strings interpreted as SQL statements by an SQL system

 Call-Level Interface (CLI)
 standard library of functions that can be linked to the program
 same capabilities as (static and dynamic) embedded

© Prof.Dr.-Ing. Stefan Deßloch

 SQL queries are string parameters of function invocation

 avoids vendor-specific precompiler

Middleware for Information Systems
3

Coupling Approaches (Examples)

 Embedded SQL
 static

 Example:
exec sql declare c cursor for

SELECT empno FROM Employees WHERE dept = :deptno var;SELECT empno FROM Employees WHERE dept :deptno_var;
exec sql open c;
exec sql fetch c into :empno_var;

 dynamic
 Example:

strcpy(stmt, "SELECT empno FROM Employees WHERE dept = ?");
exec sql prepare s1 from :stmt;
exec sql declare c cursor for s1;
exec sql open c using :deptno_var;
exec sql fetch c into :empno_var;

 Call-Level Interface (CLI)
 Example:

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

p
strcpy(stmt, "SELECT empno FROM Employees WHERE dept = ?");
SQLPrepare(st_handle, stmt, …);
SQLBindParam(st_handle, 1, …, &deptno_var, …);
SQLBindCol(st_handle, 1, …, &empno_var, …);
SQLExecute(st_handle);
SQLFetch(st_handle);

4

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 3

Standard Call Level Interfaces - Requirements

 Uniform database access
 query language (SQL)
 meta data (both query results and DB-schema)

 Alternative: SQL Information Schema
 programming interface

 Portability
 call level interface (CLI)

 no vendor-specific pre-compiler
 application binaries are portable
 but: increased application complexity

 dynamic binding of vendor-specific run-time libraries
 Dynamic, late binding to specific DB/DBS

 late query compilation
fl ibili f

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 flexibility vs. performance

5

Additional Requirements for DB-Gateways

 Remote data access
 Multiple simultaneously active

DB-connections within the
same application thread

presentation

client

same application thread
 to the same DB
 to different DBs
 within the same (distributed)

transaction

 Simultaneous access to
multiple DB/DBMS
 architecture supports use of

(multiple) DBMS-specific drivers

application
logic

resource
management

T

P

distributed TA

DB
gateway

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

(p) p
 coordinated by a driver manager

 Support for vendor-specific
extensions

management

DB1 DB2 DB3

DBS1 DBS2 DBS3

6

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 4

Historical Development

 ODBC: Open Database Connectivity

 introduced in 1992 by Microsoft

 quickly became a de-facto standard

 ODBC drivers available for almost any DBMS

 "blueprint" for ISO SQL/CLI standard

 JDBC

 introduced in 1997, initially defined by SUN, based
on ODBC approach

 leverages advantages of Java (compared to C) for the
API

 abstraction layer between Java programs and SQL

Java application

JDBC 4.0

SQL-92, SQL:1999,

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

abstraction layer between Java programs and SQL

 current version: JDBC 4.0 (Dec. 2006)

SQL 92, SQL:1999,
SQL:2003

(object-) relational DBS

7

JDBC – Core Interfaces

createStatement prepareCall

Connection

default:
<source>.<method> -> <target>

subclass subclass

prepareStatement
p p

executeQuery

IN:
PreparedStatement.
setXXX

IN/OUT/INOUT:
CallableStatement.
getXXX/setXXX

Data Types

Statement PreparedStatement CallableStatement

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

getXXXexecuteQuery
getResultSet
getMoreResults

ResultSet

8

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 5

Example: JDBC

String url = "jdbc:db2:mydatabase";
…
Connection con = DriverManager.getConnection(url, "dessloch", "pass");

DriverManager

Connection con DriverManager.getConnection(url, dessloch , pass);

String sqlstr = "SELECT * FROM Employees WHERE dept = 1234";
Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(sqlstr);

while (rs.next()) {

Connection

Statement

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

String a = rs.getString(1);
String str = rs.getString(2);
System.out.print(" empno= " + a);
System.out.print(" firstname= " + str);
System.out.print("\n");

}

ResultSet

9

JDBC – Processing Query Results

 ResultSet
 getXXX-methods
 scrollable ResultSets
 updatable ResultSets updatable ResultSets

 Data types
 conversion functions
 streams to support large data values
 with JDBC 2.0 support of SQL:1999 data types

 LOBS (BLOBS, CLOBS)
 arrays
 user-defined data types
 references

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
10

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 6

JDBC – Additional Functionality

 Metadata
 methods for metadata lookup
 important for generic applications

 Exception Handling Exception Handling
 Batch Updates
 Savepoints
 RowSets
 ...

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
11

Transactions in JDBC

 Connection interface – transaction-oriented methods for local TAs
 begin is implicit
 commit()
 rollback() rollback()
 get/setTransactionIsolation()

 NONE, READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE

 get/setAutoCommit()

 Here, the scope of the transaction is a single connection!
 support for distributed transactions requires additional extensions, interactions with a

transaction manager (see subsequent chapters)
 No

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
12

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 7

JDBC DataSource

 DataSource Interface
 motivation: increase portability by abstracting from driver-specific connection details
 application uses logical name to obtain connection, interacting with Java Naming and

Directory Service (JNDI)y ()
 connections can be created, registered, reconfigured, directed to another physical DB

without impacting the application
 example: connections are set up and managed by an application server administrator

 Steps
 DataSource object is created, configured, registered with JNDI

 using administration capability of application server
 outside the application component

 application component obtains a DataSource object
 JNDI lookup

© Prof.Dr.-Ing. Stefan Deßloch

 JNDI lookup
 no driver-specific details required

 application obtains a Connection object using DataSource
 DataSource.getConnection()

Middleware for Information Systems
13

Architecture

 Applications
 programs using DB-CLI functionality
 usage

 connect to data sources
execute SQL statements (e g queries) over data sources application execute SQL statements (e.g., queries) over data sources

 receive (and process) results

 Driver
 processes CLI calls
 communicates SQL requests to DBMS

 Alternative: does the entire processing of the SQL requests

 hides heterogeneity of data sources

 Driver Manager
 manages interactions between applications and drivers
 realizes (n:m)-relationship between applications and drivers

application

driver manager

Oracle
driver

DB2
driver

…

O/JDBC API

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 tasks
 load/unload driver
 mapping data sources to drivers
 communication/logging of function/method calls
 simple error handling

14

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 8

Driver Manager Tasks

application

d

request XYZ

application

d

disconnect

application

d

connect

driver manager

error
detection

not OK OK

driver manager

driver still
needed?

no yes

driver manager

driver
loaded?

no yes

mapping
data source-> driver

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

driver

request XYZ

driver

unload driver

driver

load driver

15

ODBC only!

Driver – Tasks and Responsibilities

 Connection Management
 Error handling

 standard error functions/codes/messages, ...

T l ti f SQL t Translation of SQL requests
 if syntax of DBMS deviates from standard SQL

 Data type mapping
 Meta data functions

 access (proprietary) system catalogs

 Information functions
 provide information about driver (self), data sources, supported data types and DBMS

capabilities

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 Option functions
 Parameter for connections and statements

(e.g., statement execution timeout)

16

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 9

Realization Alternatives

 ODBC driver types
 one-tier
 two-tier
 three-tier three tier

 JDBC driver types
 Type 1: JDBC-ODBC bridge
 Type 2: Part Java, Part Native
 Type 3: Intermediate DB Access Server
 Type 4: Pure Java

 Application does not "see" realization alternatives!

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
17

Single-Tier Driver

 Used to access flat files,
ISAM files, desktop
databases

 Data resides on the same application application

accessing ISAM files
or desktop DBs

accessing flat files

 Data resides on the same
machine as the driver

 Functionality:
 complete SQL processing

(parse, optimize, execute)
 often lacks multi-user and

transaction support

application

driver manager
driver

file I/O calls

application

driver manager
driver

file I/O calls

ISAM/DTDB engine

engine calls

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

file system file system

18

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 10

Two-Tier Driver

 Classical client/server support
 driver acts as a client interacting with

DBMS (server) through data protocol

 Implementation alternatives application

client
Direct data protocol support

 Implementation alternatives
1. direct data protocol support
2. mapping ODBC to DBMS-client API
3. middleware solution

 Direct data protocol support
 message-based or RPC-based
 utilizes DBMS-specific network libraries or

application

driver manager
two-tier driver

network data protocol

network libraries or RPC runtime

data protocol

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

RPC runtime
DBMS

server

19

Two-Tier Driver (continued)

 Mapping to DBMS-client API Middleware solution

application

client

application

client

driver manager
two-tier driver

network libraries or RPC runtime

data protocol

DBS runtime library

DBS-client API

driver manager
two-tier driver (MW-vendor)

data protocol (MW vendor)

network library or RPC runtime
(middleware vendor)

li ti

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

DBMS

network data protocol

network libraries or RPC runtime

server

DBMS
DBS runtime library

server

server application
(middleware vendor)

20

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 11

Three-Tier Driver

 Middleware Server
 connects and relays requests

to one or more DBMS servers

 Moves the complexity from

application

driver manager

h i d i

client

 Moves the complexity from
the client to the middleware
server
 client requires only a single

driver (for the middleware
server)

 Arbitrary number of tiers
possible

three-tier driver

network lib./RPC runtime

DB request server

driver manager

two-tier driver

ddtl t

data protocol 1

middleware
server

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

addtl. components

DBMS

data protocol 2

server

21

JDBC Driver Types

Partial Java
 Type 1: JDBC-ODBC bridge

 2-tier
 mapping to ODBC API

All-Java
 Type 3: Net-Protocol All-Java driver

 3-tier
 driver on client is pure Java mapping to ODBC API

 uses Java Native Interface (JNI)
 requires native binaries at the client

 Type 2: Native-API Partial-Java driver
 2-tier
 uses a native DBMS client library

 requires binaries at the client

 driver on client is pure Java
 communicates with JDBC

server/gateway
 no native binaries on client required

 applet-based DB access is possible

 Type 4: Native-Protocol All-Java
driver
 2-tier

pure Java

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 pure Java
 implements the network data protocol

of the DBMS
 directly connects to the data source
 no native binaries on client required

 applet-based DB access is possible

22

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 12

SQL Object Language Bindings (OLB)

 aka SQLJ Part 0
 Static, embedded SQL in Java

 Development advantages over JDBC
more concise easier to code more concise, easier to code

 static type checking, error checking at precompilation time

 Permits static authorization

 Can be used in client code and stored procedures
 SQLJ translator/customizer framework supports binary compatibility

 SQLJ translator implemented using JDBC
 produces statement profiles

 vendor-specific customizers
 can add different implementation, to be used instead of default produced by translator

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

p p y
 potential performance benefits

 resulting binary contains default and possibly multiple customized implementations

 Interoperability with JDBC
 combined use of SQLJ with JDBC for flexibility

23

SQL/OLB

 Static SQL authorization option
 Static SQL is associated with "program"

 Plans/packages identify "programs" to DB
 Program author's table privileges are used

dynamic SQL static SQL

check authorization
for package

g p g
 Users are granted EXECUTE on program

 Dynamic SQL is associated with "user"
 No notion of "program"
 End users must have table privileges
 BIG PROBLEM FOR A LARGE ENTERPRISE !!!

 Static SQL syntax for Java
 INSERT, UPDATE, DELETE, CREATE, GRANT,

etc.
 Singleton SELECT and cursor-based SELECT

parse SQL
statement

check table/view
authorization

calculate access path

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 Singleton SELECT and cursor based SELECT
 Calls to stored procedures (including result

sets)
 COMMIT, ROLLBACK
 Methods for CONNECT, DISCONNECT

execute statement execute statement

24

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 13

SQL/OLB vs. JDBC: Retrieve Single Row

 SQL OLB
#sql [con] { SELECT ADDRESS INTO :addr FROM EMP

WHERE NAME=:name };

 JDBC
java.sql.PreparedStatement ps = con.prepareStatement(

"SELECT ADDRESS FROM EMP WHERE NAME=?");
ps.setString(1, name);
java.sql.ResultSet names = ps.executeQuery();
names.next();
name = names.getString(1);
names.close();

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
25

Result Set Iterators

 Mechanism for accessing the rows returned by a query
 Comparable to an SQL cursor

 Iterator declaration clause results in generated iterator class
Iterator is a Java object Iterator is a Java object

 Iterators are strongly typed
 Generic methods for advancing to next row

 Assignment clause assigns query result to iterator
 Two types of iterators

 Named iterator
 Positioned iterator

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems
26

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 14

Named Iterators - Example

 Generated iterator class has accessor methods for each result column

#sql iterator Honors (String name, float grade);
Honors honor;Honors honor;
…
#sql [recs] honor =

{ SELECT SCORE AS "grade", STUDENT AS "name"
FROM GRADE_REPORTS
WHERE SCORE >= :limit AND ATTENDED >= :days
ORDER BY SCORE DESCENDING };

while (honor.next())
{

System out println(honor name() + " has grade "

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

System.out.println(honor.name() + has grade
+ honor.grade());

}

27

Positioned Iterator

 Use FETCH statement to retrieve result columns into host variables based on
position

#sql iterator Honors (String, float);#sql iterator Honors (String, float);
Honors honor;
String name;
float grade;
#sql [recs] honor =

{ SELECT STUDENT, SCORE FROM GRADE_REPORTS
WHERE SCORE >= :limit AND ATTENDED >= :days
ORDER BY SCORE DESCENDING };

while (true) {
#sql {FETCH :honor INTO :name :grade };

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

#sql {FETCH :honor INTO :name, :grade };
if (honor.endFetch()) break;

System.out.println(name + " has grade " + grade);
}

28

Middleware for Heterogeneous and
Distributed Information Systems

WS 2010/11 15

SQLJ - Binary Portability

 Java as a platform-independent language
 Use of generic SQLJ-precompiler/translator (avoids DBMS-specific precompiler

technology)
 Generated code uses “standard” JDBC by default
 Compiled SQLJ application (Java byte code) is portable
 Customizer technology allows DBMS-specific optimizations after the compilation

S Q L J s o u r c e

c l a s s A B C {

 # s q l
S E L E C T . . .

}

G e n e r i c
S Q L J
t r a n s l a t o r

O p t i o n a l s t e p :
D B M S -s p e c i f i c
c u s t o m i z e r

J a v a
C o m p i l e r

J a va
b y t e
c o d e s

E x t r a c t e d S Q L

 S E L E C T . . .

J a va
b y t e
c o d e s

E x t r a c t e d S Q L

 S E L E C T . . .

S Q L J s o u r c e

c l a s s A B C {
 c a l l "s t u b "

}

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

M o s t ve n d o r s u s e
d e fa u l t J D B C "s t u b "

 h o s t va r d a t a

J D B C "s tu b "

D B M S -s p ec i f i c
"s t u b "

 h o s t va r d a t a

J D B C "s tu b "
E x t r a c t e d S Q L

 S E L E C T . . .
 h o s t va r d a t a

J D B C d e fa u lt
"s tu b "

29

Summary

 Gateways
 ODBC / JDBC
 support uniform, standardized access to heterogeneous data sources

 encapsulate/hide vendor-specific aspects
 multiple, simultaneously active connections to different databases and DBMSs

 driver/driver manager architecture
 enabled for distributed transaction processing
 high acceptance
 important infrastructure for realizing IS distribution at DB-operation level
 no support for data source integration

 JDBC
 'for Java’, ’in Java’
 important basis for data access in Java-based middleware (e.g., J2EE)

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

 SQLJ
 combines advantages of embedded SQL with portability, vendor-independence

30

