
WS 2010/2011 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 7 - Web Service Composition
and E-Business Collaboration

Motivation

 Complex web services
 Need to interact with business partners through web services
 May combine/utilize existing web services

Web services composition Web services composition
 Ability to create new web services out of existing (web service) components
 Requirements similar to BPM, Workflow Management

 separate function from composition logic, …

 Composition can be iterated
 Composition result is again a web service
 Can be used as a building block for further composition steps

Middl f b i i i

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
2

 Middleware for web service composition

WS 2010/2011 2

Web Services Composition Middleware

 Main elements
 composition model and language

 composed WS is expressed by a composition schema (script)

 development environment development environment
 graphical end user tools

 run-time environment
 composition "engine"

 Composition vs. coordination middleware
 composition: focus is on implementation of operations in a web service

 internal, private
 for automation of the execution of a composite web service

 coordination: focus is on conversation protocols

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
3

coo d at o ocus s o co e sat o p otoco s
 public, standardized protocols
 external coordination for verifying compliance

Web Services vs. WFMS

 Limitations of conventional composition middleware (e.g., WFMS)
 Significant effort to integrate existing applications

 application-specific adapters, wrappers
 no standard model for component description, interoperability no standard model for component description, interoperability

 Limited success of composition model standardization
 WfMC standard is not widely implemented

 Opportunities for Web Services
 Web Services seem to be adequate components

 well-defined interfaces, described using WSDL
 standardized invocation (SOAP)

 Significant efforts in standardizing WS composition languages
 Reuse of existing WS "infrastructure" (directory, service selection, …)

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
4

euse o e st g S ast uctu e (d ecto y, se ce se ect o ,)
 WS composition tools are less expensive to develop

WS 2010/2011 3

Business Processes and Web Services

 Business Process Execution Language for Web Services (BPEL4WS)
 XML-based language for specifying business process behavior based on web

services
 Describe business processes that both provide and consume web services

 Steps (activities)
 Implemented as an interaction with a web service

 Information flow into/out of the process
 Externalized as web service

 Complemented by
 WS Coordination specification

 Allows to web services involved in a process to share information that “links” them
together

 Shared coordination context

 WS AtomicTransaction, WS BusinessActivity specifications

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
5

, y p
 Allows to monitor the success/failure of each coordinated activity

 Reliably cancel the business process, involves compensating activities

 Standardization through OASIS

BPEL4WS

 BPEL can support specification of both, composition schemas and
coordination protocols
 can be used in both composition and coordination middleware

Two types of processes Two types of processes
 executable process (-> composition)

 defines implementation logic for a composite web service
 portable between BPEL-conformant environments

 abstract process (-> coordination)
 service-centric perspective on coordination protocols
 describe message exchange between partners

 Business process defines
 potential execution order of operations (web services)

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
6

 potential execution order of operations (web services)
 data shared between the web services
 correlation information
 partners involved in business process and interfaces they need to implement
 joint exception handling for collection of web services

WS 2010/2011 4

BPEL Component Model

 Components are web services described using WSDL
 abstract WSDL interfaces are referenced in BPEL scripts
 no reference to bindings, endpoints, or services

Basic activities in BPEL represent components correspond to WSDL Basic activities in BPEL represent components, correspond to WSDL
operations
 Invoke

 Issue an asynchronous request, or
 Synchronously invoke a request/reply operation of a web service provided by a partner

 Receive
 Wait for a message to be received from a partner
 Specifies partner from which message is to be received, as well as
 The port and operation provided by the process

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
7

p p p y p
 Used by the partner to pass the message

 Reply
 Synchronous response to a request corresponding to a receive activity
 Combination of Receive/Reply corresponds to request-response operation in WSDL

Example

Customer Travel Agent Airline
itineraryMessage

itineraryMessage

receive itinerary

send
tickets

make reservation

request ticket
receive
request

receive tickets

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
8

ticketsMessage

tickets

deliver
tickets

ticketsMessage

WS 2010/2011 5

Service Selection: Partner Links

 Partner link (BPEL process definition)
 identifies the web services mutually

used by the partner or process
 e.g., agent process interacts with

customer airline

 Partner link type (WSDL extension)
defines
 roles played by partners in a

conversational relationship
customer, airline

 references a partner link type
 defines role taken by the process itself

(myRole) and role that has to be
accepted by the partner (partnerRole)

 Partner link names are used in all
service interactions to identify partners
 see activities for invoking/providing

services

1 <process name="ticketOrder">

 web service interfaces that need to be
implemented to assume a role

 Assignment of endpoints for partners
 at deployment time
 dynamically at run time

1 <partnerLinkType name="buyerLink">

Partner link type definition

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
9

1 process name ticketOrder
2 <partnerLinks>
3 <partnerLink name="customer"
4 partnerLinkType="agentLink"
5 myRole="agentService"/>
6 <partnerLink name="airline"
7 partnerLinkType="buyerLink"
8 myRole="ticketRequester"
9 partnerRole="ticketService"/>

10 </partnerLinks>

1 <partnerLinkType name buyerLink >
2 <role name="ticketRequester">
3 <portType name="itineraryPT"/>
4 </role>
5 <role name="ticketService">
6 <portType name="ticketOrderPT"/>
7 </role>
8 </partnerLinkType>

BPEL Activities – Example

<receive
partnerLink="customer"

Customer Travel Agent Airline

<invoke
partnerLink="travelAgent"
portType "itineraryPT"

process 1
process 2

partnerLink= customer
portType="itineraryPT"
operation="sendItinerary"
variable="itinerary"/>

<invoke
partnerLink="airline"
portType="ticketOrderPT"
operation="requestTickets”
inputVariable="itinerary”/>

<receive
partnerLink="airline"
portType="itineraryPT"
operation "sendTickets”

portType="itineraryPT"
operation="sendItinerary"
input variable="itinerary"
output variable="tickets" />

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
10

operation="sendTickets”
variable="tickets"/>

<reply
partnerLink="customer"
portType="itineraryPT"
operation="sendItinerary"
variable="tickets"/>

WS 2010/2011 6

Orchestration Model - Structured Activities

 Sequence
 Enclosed activities are carried out in listed order

 If-else (i.e., switch)
S l t f l ti iti b d l ti it i Selects one of several activities based on selection criteria

 Repetitive Activities
 While, RepeatUntil,

 repeatedly carry out enclosed activities while/until specified condition is true

 ForEach
 serial: enclosed activity (scope) is carried out repeatedly, based on counter, optional

completion condition
 parallel: (effective copies of) enclosed activity (scope) executed n+1 times in parallel,

based on start/end counter values

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
11

 Pick
 Specifies a set of activities with associated events (e.g., receipt of message)

 messages can be received from the same or different partners
 activity is completed when one of the events occurs

Structured Activities (cont.)

 Flow activity: defines sets of activities plus (optional) control flow
 all activities can (potentially) execute in parallel

 flow activity completes when all directly nested concurrent activities complete
 implicit fork/join behavior implicit fork/join behavior

 activities can be "wired together" via control links
 link has one source activity, and one target activity
 transition conditions

 evaluated after source activity completes
 determines the link status to be either true or false
 links status also set to false, if source activity is

determined not to be executed (e.g., if-else)

 join conditions
 can refer to status of incoming links of a

target activity (e g AND OR)

A

DCB

v2 = cv0 = a

OR

v1 = b

© Prof.Dr.-Ing. Stefan Deßloch

target activity (e.g., AND, OR)
 are evaluated only after the status of all

incoming links is known
 false join condition results in a join failure

 dead path elimination
 failure may be suppressed, status "false" is

propagated to outgoing links

Enterprise Information Systems
12

E

OR

WS 2010/2011 7

Process life-cycle

 Start activities
 receive, pick – createInstance attribute

 creates a new process instance, if it doesn't exist already

 Example: Example:
<receive partner="customer",

portType="itineraryPT",
operation="sendItinerary",
variable="itinerary”
createInstance="yes"/>

 each process must have at least one start activity as an initial activity

 Process termination
 process-level activity completes successfully

f lt " i " t th l l (h dl d t)

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
13

 fault "arrives" at the process level (handled or not)
 terminate activity is invoked

Data Types and Data Transfer

 Variables can be used to define data containers
 WSDL messages received from or sent to partners
 Messages that are persisted by the process

XML data defining the process state XML data defining the process state

 Constitute the “business context” of the process
 Access to variables can be serialized to some extent

11 <variables>
12 <variable name="itinerary“ messageType="itineraryMessage"/>
13 <variable name="tickets" messageType="ticketsMessage"/>
14 </variables>

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
14

 Variable assignment
 Receiving a message (or a reply of an invoke activity) implicitly assigns value
 Alternative: assign activity (another simple activity)

 Copies fields from containers into other containers

WS 2010/2011 8

Correlation

 Message needs to be delivered not only to the correct port, but to the correct
instance of the business process providing the port
 conversation routing

 Correlation Set
 one or more properties used for correlating messages
 example

 <correlationSets>
<correlationSet name="Booking"

properties="orderNumber"/>
…

</correlationSets>
 correlation properties are like "late-bound constants"

 binding happens through specially marked message send/receive activities
 value must not change after the binding happens

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
15

g g pp

 Often, more than one correlation set is used for an entire process
 example: orderNumber -> invoiceNumber
 correlated message exchanges may nest, overlap
 same message may carry multiple correlation sets

Properties

 Property
 Globally defined types
 Primarily used to correlate a message with a specific process instance

E g order number E.g., order number
 Usually included in the message
 Often the same property is used in different messages

 Can be defined in BPEL as a separate entity:
9 <property name="orderNumber" type="xsd:int"/>

 Property alias
 Allows to point to a dedicated field of the message that represents the property

 Usually different for each message type

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
16

 Can be used in expression and assignments to easily use properties

10 <propertyAlias propertyName="orderNumber"
11 messageType="ticketsMessage“
12 part="orderInfo“
13 query="/orderID"/>

WS 2010/2011 9

Scope

 Defines the behavior context of an activity (primary activity)
 simple or structured (group of activities)

 Can provide the following for a (regular) activity
(L l) d t i bl (Local) data variables

 Correlation Sets
 Event handler(s)
 Fault handler(s)
 Termination handler
 Compensation handler

 Scope acts as a compensation sphere

 Scopes can be arbitrarily nested

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
17

Fault Handlers and Termination Handler

 Fault handlers catch and deal with faults occurring in active scope
 Can catch internal faults (throw activity), WS fault messages
 All active work in the scope is stopped!

 Results in invocation of termination handlers for active enclosed scopes
 After fault handler completes successfully, processing continues outside the scope

 Processing of the scope is still considered to have ended abnormally

 Termination handler allows to define scope-specific termination behavior
 Invoked if an active scope needs to be terminated

 Example: perform cleanup work, notify business partner, cancel activity
 For nested scope: TH for inner scope is invoked before the TH of the outer

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
18

WS 2010/2011 10

Compensation Handlers

 Compensation handlers reverse the work of a sucessfully completed scope
 Compensation handler is "installed" after successful completion of the scope
 Can be defined for each scope
 Compensation activity can be any activityp y y y
 Compensation handlers live in a snapshot world

 When invoked, they see a snapshot of the variables at scope completion time
 Cannot update “live” data variables
 Can only affect external entities
 Input/output parameters for compensation handler are future direction

 Compensate activity
 Invokes compensation handler for named scope
 Can be invoked only from the fault handler or compensation handler of the

immediately enclosing scope

© Prof.Dr.-Ing. Stefan Deßloch

y g p

Enterprise Information Systems
19

Fault-Termination-Compensation - Example

sequence receive
itinerary



scope 

reserve
hotel

reserve
flight

reserve
vehicle


… scopescopescope

p

comp. handler
cancel
vehicle

termin. handler
notify
hotel


fault handler

rethrow



fault handler

send
notif.



compensate

terminate

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
20

debit
credit card

notify
customer

WS 2010/2011 11

Default Compensation and Fault Handlers

 Default compensation handler
 Invokes compensation handlers of immediately enclosed scopes in the reverse

order of the completion of the scopes
 Is used if a (enclosing) scope does not explicitly define a compensation handler Is used if a (enclosing) scope does not explicitly define a compensation handler
 Can also be invoked explicitly

 Useful if comp. action = “compensate enclosed scope in reverse order” + “additional
activities”

 Default fault handler
 Invokes compensation handlers of immediately enclosed scopes in the reverse

order of the completion of the scopes
 Rethrows the exception

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
21

BPEL – Abstract Processes

 Abstract Process = Role-specific view of a protocol
 only public information
 no private, implementation-specific aspects

branching conditions activity realization branching conditions, activity realization, …

 not executable
 can be used by a conversation controller to ensure business protocol compliance

 Properties of BPEL abstract processes
 handle only protocol-relevant data

 message properties

 variables
 do not need to be fully initialized
 variables for inbound or outbound messages may be omitted from invoke receive reply

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
22

 variables for inbound or outbound messages may be omitted from invoke, receive, reply,
if the intent is to just constrain the sequence of activities

 opaque assignments
 can correspond to creating a unique value for correlation properties
 hide private behavior for providing the values

WS 2010/2011 12

Implementing Business Protocols

 Suggested path
 protocol specification as a starting point
 derive role-specific views of the protocol

includes all the message exchanges that involve a certain role includes all the message exchanges that involve a certain role

 define abstract process for role-specific view
 model interactions using receive, invoke, reply
 represent additional public information, such as branching situations, parallelism

 turn abstract process into an executable process to implement it

Purchase Order Request

Receipt Acknowledgement

Buyer Seller

receive

l

invoke

receive

invoke
SalesAgentService

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
23

Receipt Acknowledgement

Purchase Order Acceptance

Receipt Acknowledgement

reply

invokereceive

reply

invoke
AccountsService invoke

ShippingService

RosettaNet

 Goal: Develop standard e-commerce interfaces to align the processes
between IT supply chain partners
 consortium founded in 1998
 "vertical" coordination protocols vertical coordination protocols
 more than 3000 documented production implementations by 2004

 Main standardization areas
 (Public) Business processes

 coordination protocols for trading partners
 Partner Interface Processes (PIPs)

 business documents, vocabulary, choreography of message exchanges

 Data format
 establishment of a common vocabulary

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
24

y
 business directory
 technical dictionary

 Message services
 RosettaNet Implementation Framework

 reliable, secure execution of the protocol specifications
 transfer, routing, packaging of encrypted and authenticated messages between business partners

WS 2010/2011 13

RosettaNet Trading Partner Implementation

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
25

[source: RosettaNet Implementation Framework Core Specification]

PIP Definitions

 Standardized PIP definitions are arranged into clusters, further broken down into
segments

 Clusters:
1. RosettaNet Support

d i i t ti f ti lit administrative functionality
2. Partner Product and Service Review

 collect, maintain, distribute product or service information
 account setup, product info subscription, …

3. Product Information
 distribute, update product information

 query technical product info, …

4. Order Management
 request quote, request purchase order, query order status, …

5. Inventory Management
 distribute inventory report, …

6 Marketing Information Management

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
26

6. Marketing Information Management
 exchange of marketing information

7. Service and Support
 request warranty claim, …

8. Manufacturing
 "virtual manufacturing"

 notify of manufacturing work order, …

WS 2010/2011 14

Partner Interface Process (PIP) Specifications

 Describes how to implement a collaborative coordination protocol
 technical dictionary describes components that are exchanged
 message guideline document

 business actions, business signals (ack receipt of action message)

 Major PIP specification sections
 Business Operational View (aka Action Layer)

 flow of business interactions, based on
 partner roles
 partner role interactions

 Functional Service View (aka Transaction Layer)
 derived from the business operational view
 business transactions between entities in the form of message exchanges

 ccordination protocols
 message control information

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
27

 message control information
 time limits for acknowledgements
 security requirements

 Implementation Framework View (aka Service Layer)
 based on functional service and business operational views
 defines communication protocol and message format requirements

 e.g., SSL, encryption, XML DTDs for messages, …

Business Operational View - Example

 Business Process Diagram for PIP3A4: Request Purchase Order

Activity: internal activities
of trading partners

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
28

Document: message
exchanges between trading

partners

[source: PIP3A4 V2.2 specification]

WS 2010/2011 15

Functional Service View – Example

 Business Transaction Dialog Specification for PIP3A4: Request Purchase Order

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
29

[source: PIP3A4 V2.2 specification]

RosettaNet Implementation Framework

 Defines
 Business Message

 packaging payload (incl.
attachments), headers, …

MIME S/MIME uses MIME, S/MIME
 Protocol Stack

 transport-independent
 reliable messaging

 support for HTTP, SMTP, …

 Security Mechanism
 based on encryption, digital

signatures
 supports authentication,

authorization, encryption, non-
repudiation

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
30

repudiation

 Designed before the time of SOAP
 May likely be replaced by SOAP-based

web service infrastructure in the
future

[source: RosettaNet Implementation Framework
Core Specification]

WS 2010/2011 16

Implementing RosettaNet PIPs

 Involves mapping PIP to WSDL, BPEL
 types in message definitions -> types in WSDL

 DTDs to XML Schema

 message definitions -> WSDL message definitions message definitions > WSDL message definitions
 PIP actions -> operations in WSDL
 PIP partner roles -> BPEL partners
 PIP choreography: follow the "suggested path" on previous chart

 Additional aspects
 realize time-outs, etc. using BPEL events and fault handlers
 additional requirements regarding security need to be resolved

 WS-Security support, not integrated in BPEL

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
31

ebXML

 Supported by UN/CEFACT, OASIS
 Vision

 single global electronic marketplace
 based on exchange of XML messages based on exchange of XML messages

 ebXML architecture covers:
 definition of business processes and their associated messages and content
 registry and discovery of business process sequences with related message

exchanges
 definition of company profiles
 definition of trading partner agreements
 uniform message transport layer

 ebXML advantages

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
32

 goes beyond generic protocols and specifications
 e.g., ebXML registry is much more detailed than UDDI

 captures the logic behind e-commerce exchanges
 e.g., business arrangements

 specifies how e-commerce exchanges should be specified, documented, conducted

WS 2010/2011 17

Collaboration with ebXML

 Example

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
33

(source: ebXML Technical
Architecture Specification)

Technical Architecture

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
34

(source: ebXML Technical
Architecture Specification)

WS 2010/2011 18

How Do These Standards Relate?

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
35

Summary

 Web service composition
 means to implement web service by reusing/combining existing services
 can be supported by WS composition middleware

borrowing concepts from WFMS borrowing concepts from WFMS

 BPEL
 de-facto and de-jure (OASIS) web service composition standard
 allows definition of composition and coordination aspects

 abstract vs. executable processes

 main concepts
 basic activities for web service operations
 structured activities for defining service composition, control flow
 blackboard approach for data flow based on variables

© Prof.Dr.-Ing. Stefan Deßloch Enterprise Information Systems
36

blackboard approach for data flow based on variables
 service selection based on partner link types, partner links, endpoints
 elaborate model for transactions and exception handling

 fault handler, termination handler, compensation handler

 More BPEL extensions are on the way
 people WF (BPEL4People, WS-HumanTask), Java/SQL snippets (BPELJ, BPEL/SQL)

