Chapter 1 – Motivation

Layers of an Information System

- Separation of functionality into three conceptual layers
 - presentation
 - application logic
 - resource (e.g., data) management
- Architecture of an IS
 - layers can be combined and distributed in different ways
 - 1-tier, 2-tier, 3-tier, n-tier
- Challenges
 - distribution
 - autonomy
 - heterogeneity
 - performance & scalability
 - high availability
 - complexity
 - …
Middleware

- Middleware
 - supports the development, deployment, and execution of complex information systems
 - facilitates interaction between and integration of applications
 across multiple distributed, heterogeneous platforms and data sources
- Two major aspects
 - middleware as a programming abstraction
 - middleware as infrastructure
- Principles
 - make distribution transparent
 - support standardized APIs/languages/data formats to overcome platform heterogeneity
 - application logic independent from infrastructure code
 - powerful programming abstractions

Database Gateways

- Uniform Database Access
 - query language (SQL)
 - meta data
 - programming interface
- Dynamic, late binding to specific DB/DBS
 - call level interface (CLI)
 - no vendor-specific pre-compiler
 - dynamic binding of run-time libraries
 - late query compilation
- Simultaneous access to multiple DB/DBMS
 - architecture supports use of (multiple) DBMS-specific drivers
 - coordinated by a driver manager
 - Support for vendor-specific extensions

Diagram:

- Application
- O/JDBC API
- Driver manager
- Oracle driver
- DB2 driver
Communication and Distributed Processing

- Distributed (Information) System
 - consists of (possibly autonomous) subsystems
 - jointly working in a coordinated manner
- How do subsystems communicate?
 - **Remote Procedure Calls (RPC)**
 - transparently invoke procedures located on other machines
 - Peer-To-Peer-Messaging
 - Message Queuing
- Transactional Support (ACID properties) for distributed processing
 - Server/system components are Resource Managers
 - (Transactional) Remote Procedure Calls (TRPC)
 - Distributed Transaction Processing

RPCs and Transactions

- Example scenario for T: debit/credit
 - T invokes debit procedure (ST1), modifying DB1
 - T performs credit operation on DBS2, modifying DB2
- Need transactional guarantees for T
- Program structure of T
 - BOT
 - CALL debit(...)
 - CONNECT (DB2)
 - UPDATE ACCOUNTS SET ...
 - DISCONNECT
 - EOT
- Requires coordination of distributed transaction
 - based on 2PC
X/OPEN – Standard for Distributed TA Processing

- Resource Manager
 - recoverable
 - supports external coordination of TAs using 2PC protocol (XA-compliant)
- TA-Mgr
 - coordinates, controls RMs
- Application Program
 - demarcates TA (TA-brackets)
 - invokes RM services e.g., SQL-statements
 - in distributed environment: performs (T)RPCs
- Transactional Context
 - TRID generated by TA-Mgr at BEGIN
 - established at the client
 - passed along (transitively) with RM-requests, RPCs

Application Middleware – Main Tasks

- Distributed computing infrastructure (RPC, RMI)
- Transactional capabilities
 - programming abstractions (demarcation)
 - distributed transaction management
- Security services
 - authentication, authorization, secure transmission, ...
- Unified access to heterogeneous information sources and application systems
- Scalable and efficient application processing
 - large number of client applications or end users
- Reliability, high availability

Programming model abstractions that allow the developer to focus on application logic (i.e., ignore infrastructure as much as possible)
Types of Middleware

- RPC/RMI middleware infrastructure
 - basic development and execution support
 - additional services
- TP monitor
 - transaction management, TRPC
 - process management
 - broad set of capabilities
- Object broker (e.g., CORBA)
 - distributed object computing, RMI
 - additional services
- Object transaction monitor
 - ... = TP monitor + object broker
 - most often: TP monitor extended with object-oriented (object broker) interfaces
- Component Transaction Monitor
 - ... = TP monitor + distributed objects + server-side component model

4-Tier Distributed Computing in J2EE
Important Services for Distributed IS

- Transactions
 - explicit
 - implicit/declarative
- Data Access
 - persistence
 - relationships
 - query
- Security

XML Data Access, Processing, Transformation

XML Link XML Pointer XPath XQuery XSL XSLT XSL-FO

XML Metadata Interchange

Unified Modeling Language

XML Schema XML Namespace

Extensible Markup Language

Cascading Style Sheets

Standardized Generalized Markup Language
 Document Type Definition

Meta Object Facility Uncodec
Web Services

- New distributed computing platform built on existing infrastructure including XML & HTTP
 - Web services are for B2B what browsers are for B2C
- Self-contained, self-describing, modular service that can be published, located, and invoked across the web
 - Refer to open standards and specifications:
 - component model (WSDL)
 - inter-component model communication (SOAP)
 - discovery (UDDI)
 - Platform- and implementation-independent access
 - Described, searched, and executed based on XML
- Enable component-oriented applications
 - Loose coupling from client to service
 - Enable to integrate legacy systems into the web
 - Useful for other distributed computing frameworks such as Corba, DCOM, EJBs

Web Service System Architecture

- Client Site
- Firewall
- Backend Site
- Web Service
- Middleware
- Backend/Host Adapter
- Database Systems
- Legacy Systems
- Business Partners
- Web Browser
- PDA
- Business Partners
- Proprietary Protocols
Service-Oriented Architecture (SOA)

- **Service Requestor**
 - Finds required services via Service Broker
 - Binds to services via Service Provider

- **Service Provider**
 - Provides e-business services
 - Publishes availability of these services through a registry

- **Service Registry**
 - Provides support for publishing and locating services
 - Like telephone yellow pages

Standards

- **UDDI**
 - Universal Description, Discovery and Integration
 - Registry of and search for web services

- **SOAP**
 - Simple Object Access Protocol
 - Communication protocol

- **WSDL**
 - Web Services Description Language
 - Description of a service's functionality

- **XML**
 - eXtensible Markup Language
 - Underlying basic representation approach
Role of the WWW for IS

- Initial purpose: sharing information on the internet
 - technologies
 - HTML documents
 - HTTP protocol
 - web browser as client for internet information access
- For Information Systems: connecting remote clients with applications across the internet/intranet
 - "web-enabled" applications
 - extend application reach to the consumer
 - leverage advantages of web technologies
 - web browser as a universal application client
 - "thin client"
 - no application-specific client code has to be installed
- requirements
 - content is coming from dynamic sources (IS, DBS)
 - request to access a resource has to result in application invocation
 - session state: tracking repeated interactions of the same client with a web server

Web-based IS - Overview

- WWW-Browser (Client)
 - persistent program cache
 - HTTP
- Proxy-Server
 - HTTP
- Comm.-Server
- JVM
- Servlet
- JSP
- Web-Server
- DB-Client
- DB-Server

WWW: World Wide Web
HTML: HyperText Markup Language
URL: Uniform Resource Locator
CGI: Common Gateway Interface
HTTP: HyperText Transfer Protocol
JVM: Java Virtual Machine
JSP: Java Server Page
CGI programs (server extensions)
HTML documents, images, Java-Applets
Outlook on EIS

- Data/Information Integration
 - integrated access to (heterogeneous) data originating from multiple sources
 - queries range over data from multiple DBs
 - virtual integration: integrate on access/query (e.g., federated DBMS)
 - materialized integration: extract, transform, load data into a single materialized data warehouse in advance (e.g., data replication, data warehousing)
 - needs a strong foundation to overcome multiple kinds of heterogeneity

- Enterprise Application Integration
 - integration of (heterogeneous, coarse-grained) applications within an enterprise (vs. development of new application)
 - integration across different middleware platforms

- Business-to-business Integration
 - support interactions, integration of business processes among trading partners, across company boundaries
 - foundation for e-business, e-commerce