
WS 2011/12 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 3
DB-Gateways

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Outline

n  Coupling DBMS and programming languages
n  approaches
n  requirements

n  Programming Model (JDBC)
n  overview
n  DB connection model
n  transactions

n  Data Access in Distributed Information System Middleware
n  DB-Gateways

n  architectures
n  ODBC
n  JDBC

n  SQL/OLB – embedded SQL in Java
n  Summary

2

WS 2011/12 2

© Prof.Dr.-Ing. Stefan Deßloch

Coupling Approaches – Overview

n  Embedded SQL
n  (static) SQL queries are embedded in the programming language

n  cursors to bridge so-called impedance mismatch

n  preprocessor converts SQL into function calls of the programming language
n  potential performance advantages (early query compilation)
n  vendor-specific

n  Dynamic (embedded) SQL
n  SQL queries can be created dynamically by the program

n  character strings interpreted as SQL statements by an SQL system

n  Call-Level Interface (CLI)
n  standard library of functions that can be linked to the program
n  same capabilities as (static and dynamic) embedded

n  SQL queries are string parameters of function invocation

n  avoids vendor-specific precompiler

Middleware for Information Systems
3

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Coupling Approaches (Examples)

n  Embedded SQL
n  static

n  Example:
exec sql declare c cursor for

 SELECT empno FROM Employees WHERE dept = :deptno_var;
exec sql open c;
exec sql fetch c into :empno_var;

n  dynamic
n  Example:

strcpy(stmt, "SELECT empno FROM Employees WHERE dept = ?");
exec sql prepare s1 from :stmt;
exec sql declare c cursor for s1;
exec sql open c using :deptno_var;
exec sql fetch c into :empno_var;

n  Call-Level Interface (CLI)
n  Example:

strcpy(stmt, "SELECT empno FROM Employees WHERE dept = ?");
SQLPrepare(st_handle, stmt, …);
SQLBindParam(st_handle, 1, …, &deptno_var, …);
SQLBindCol(st_handle, 1, …, &empno_var, …);
SQLExecute(st_handle);
SQLFetch(st_handle);

4

WS 2011/12 3

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Standard Call Level Interfaces - Requirements

n  Uniform database access
n  query language (SQL)
n  meta data (both query results and DB-schema)

n  Alternative: SQL Information Schema
n  programming interface

n  Portability
n  call level interface (CLI)

n  no vendor-specific pre-compiler
n  application binaries are portable
n  but: increased application complexity

n  dynamic binding of vendor-specific run-time libraries
n  Dynamic, late binding to specific DB/DBS

n  late query compilation
n  flexibility vs. performance

5

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Additional Requirements for DB-Gateways

n  Remote data access
n  Multiple simultaneously active

DB-connections within the
same application thread

n  to the same DB
n  to different DBs
n  within the same (distributed)

transaction

n  Simultaneous access to
multiple DB/DBMS

n  architecture supports use of
(multiple) DBMS-specific drivers

n  coordinated by a driver manager

n  Support for vendor-specific
extensions

presentation

application
logic

resource
management

client

DB1 DB2 DB3

DBS1

T

DBS2 DBS3

P

distributed TA

DB
gateway

6

WS 2011/12 4

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Historical Development

n  ODBC: Open Database Connectivity

n  introduced in 1992 by Microsoft

n  quickly became a de-facto standard

n  ODBC drivers available for almost any DBMS

n  "blueprint" for ISO SQL/CLI standard

n  JDBC

n  introduced in 1997, initially defined by SUN, based
on ODBC approach

n  leverages advantages of Java (compared to C) for the
API

n  abstraction layer between Java programs and SQL

n  current version: JDBC 4.0 (Dec. 2006)

Java application

JDBC 4.0

SQL-92, SQL:1999, SQL:
2003

(object-) relational DBS

7

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

JDBC – Core Interfaces

subclass subclass

createStatement
prepareStatement prepareCall

executeQuery

IN:
PreparedStatement.
setXXX

IN/OUT/INOUT:
 CallableStatement.
 getXXX/setXXX

getXXX executeQuery
getResultSet
getMoreResults

ResultSet

Data Types

Statement PreparedStatement CallableStatement

Connection

default:
<source>.<method> -> <target>

8

WS 2011/12 5

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Example: JDBC

String url = "jdbc:db2:mydatabase";
…
Connection con = DriverManager.getConnection(url, "dessloch", "pass");

String sqlstr = "SELECT * FROM Employees WHERE dept = 1234";
Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(sqlstr);

while (rs.next()) {

 String a = rs.getString(1);
 String str = rs.getString(2);
 System.out.print(" empno= " + a);
 System.out.print(" firstname= " + str);
 System.out.print("\n");

}

9

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

JDBC – Processing Query Results

n  ResultSet
n  getXXX-methods
n  scrollable ResultSets
n  updatable ResultSets

n  Data types
n  conversion functions
n  streams to support large data values
n  with JDBC 2.0 support of SQL:1999 data types

n  LOBS (BLOBS, CLOBS)
n  arrays
n  user-defined data types
n  references

10

WS 2011/12 6

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

JDBC – Additional Functionality

n  Metadata
n  methods for metadata lookup
n  important for generic applications

n  Exception Handling
n  SQLException class (hierarchy) carries SQL error code, description
n  Integrated with Java (chained) exception handling

n  Batch Updates
n  multiple statements can be submitted at once to improve performance

n  RowSets
n  Can hold a (disconnected) copy of a result set
n  Modifications can be “buffered” and explicitly synchonized with the database later

n  ...

11

© Prof.Dr.-Ing. Stefan Deßloch

Transactions in JDBC

n  Connection interface – transaction-oriented methods for local TAs
n  begin is implicit
n  commit()
n  rollback()
n  get/setTransactionIsolation()

n  NONE, READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE

n  get/setAutoCommit()

n  Here, the scope of the transaction is a single connection!
n  support for distributed transactions requires additional extensions, interactions with a

transaction manager (see subsequent chapters)
n  No

Middleware for Information Systems
12

WS 2011/12 7

© Prof.Dr.-Ing. Stefan Deßloch

JDBC DataSource

n  DataSource Interface
n  motivation: increase portability by abstracting from driver-specific connection details
n  application uses logical name to obtain connection, interacting with Java Naming and

Directory Service (JNDI)
n  connections can be created, registered, reconfigured, directed to another physical DB

without impacting the application
n  example: connections are set up and managed by an application server administrator

n  Steps
n  DataSource object is created, configured, registered with JNDI

n  using administration capability of application server
n  outside the application component

n  application component obtains a DataSource object
n  JNDI lookup
n  no driver-specific details required

n  application obtains a Connection object using DataSource
n  DataSource.getConnection()

Middleware for Information Systems
13

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Architecture

n  Applications
n  programs using DB-CLI functionality
n  usage

n  connect to data sources
n  execute SQL statements (e.g., queries) over data sources
n  receive (and process) results

n  Driver
n  processes CLI calls
n  communicates SQL requests to DBMS

n  Alternative: does the entire processing of the SQL requests

n  hides heterogeneity of data sources

n  Driver Manager
n  manages interactions between applications and drivers
n  realizes (n:m)-relationship between applications and drivers
n  tasks

n  load/unload driver
n  mapping data sources to drivers
n  communication/logging of function/method calls
n  simple error handling

application

driver manager

Oracle
driver

DB2
driver

…

O/JDBC API

14

WS 2011/12 8

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Driver Manager Tasks

application

driver manager

driver

error
detection

request XYZ

request XYZ

not OK OK

application

driver manager

driver

driver still
needed?

disconnect

unload driver

no yes

application

driver manager

driver

driver
loaded?

connect

load driver

no yes

mapping
data source-> driver

15

ODBC only!

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Driver – Tasks and Responsibilities

n  Connection Management
n  Error handling

n  standard error functions/codes/messages, ...

n  Translation of SQL requests
n  if syntax of DBMS deviates from standard SQL

n  Data type mapping
n  Meta data functions

n  access (proprietary) system catalogs

n  Information functions
n  provide information about driver (self), data sources, supported data types and DBMS

capabilities

n  Option functions
n  Parameter for connections and statements

(e.g., statement execution timeout)

16

WS 2011/12 9

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Realization Alternatives

n  ODBC driver types
n  one-tier
n  two-tier
n  three-tier

n  JDBC driver types
n  Type 1: JDBC-ODBC bridge
n  Type 2: Part Java, Part Native
n  Type 3: Intermediate DB Access Server
n  Type 4: Pure Java

n  Application does not "see" realization alternatives!

17

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Single-Tier Driver

n  Used to access flat files,
ISAM files, desktop
databases

n  Data resides on the same
machine as the driver

n  Functionality:
n  complete SQL processing

(parse, optimize, execute)
n  often lacks multi-user and

transaction support

application

driver manager

file system

driver

file I/O calls

application

driver manager

file system

driver

file I/O calls

ISAM/DTDB engine

engine calls

accessing ISAM files
or desktop DBs

accessing flat files

18

WS 2011/12 10

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Two-Tier Driver

n  Classical client/server support
n  driver acts as a client interacting with

DBMS (server) through data protocol

n  Implementation alternatives
1.  direct data protocol support
2.  mapping ODBC to DBMS-client API
3.  middleware solution

n  Direct data protocol support
n  message-based or RPC-based
n  utilizes DBMS-specific network libraries or

RPC runtime

application

driver manager

DBMS

two-tier driver

network data protocol

network libraries or RPC runtime

data protocol

client

server

Direct data protocol support

19

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Two-Tier Driver (continued)

n  Mapping to DBMS-client API n  Middleware solution

application

driver manager

DBMS

two-tier driver

network data protocol

network libraries or RPC runtime

data protocol

client

server

DBS runtime library

DBS-client API

application

driver manager

DBMS

two-tier driver (MW-vendor)

DBS runtime library

data protocol (MW vendor)

client

server

network library or RPC runtime
(middleware vendor)

server application
(middleware vendor)

20

WS 2011/12 11

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Three-Tier Driver

n  Middleware Server
n  connects and relays requests

to one or more DBMS servers

n  Moves the complexity from
the client to the middleware
server

n  client requires only a single
driver (for the middleware
server)

n  Arbitrary number of tiers
possible

application

driver manager

three-tier driver

network lib./RPC runtime

DB request server

driver manager

two-tier driver

addtl. components

DBMS

data protocol 1

data protocol 2

client

middleware
server

server

21

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

JDBC Driver Types

Partial Java
n  Type 1: JDBC-ODBC bridge

n  2-tier
n  mapping to ODBC API

n  uses Java Native Interface (JNI)
n  requires native binaries at the client

n  Type 2: Native-API Partial-Java driver
n  2-tier
n  uses a native DBMS client library

n  requires binaries at the client

All-Java
n  Type 3: Net-Protocol All-Java driver

n  3-tier
n  driver on client is pure Java
n  communicates with JDBC server/

gateway
n  no native binaries on client required

n  applet-based DB access is possible

n  Type 4: Native-Protocol All-Java
driver

n  2-tier
n  pure Java
n  implements the network data protocol

of the DBMS
n  directly connects to the data source
n  no native binaries on client required

n  applet-based DB access is possible

22

WS 2011/12 12

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

SQL Object Language Bindings (OLB)

n  aka SQLJ Part 0
n  Static, embedded SQL in Java

n  Development advantages over JDBC
n  more concise, easier to code
n  static type checking, error checking at precompilation time

n  Permits static authorization

n  Can be used in client code and stored procedures
n  SQLJ translator/customizer framework supports binary compatibility

n  SQLJ translator implemented using JDBC
n  produces statement profiles

n  vendor-specific customizers
n  can add different implementation, to be used instead of default produced by translator
n  potential performance benefits

n  resulting binary contains default and possibly multiple customized implementations

n  Interoperability with JDBC
n  combined use of SQLJ with JDBC for flexibility

23

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

SQL/OLB

n  Static SQL authorization option
n  Static SQL is associated with "program"

n  Plans/packages identify "programs" to DB
n  Program author's table privileges are used
n  Users are granted EXECUTE on program

n  Dynamic SQL is associated with "user"
n  No notion of "program"
n  End users must have table privileges
n  BIG PROBLEM FOR A LARGE ENTERPRISE !!!

n  Static SQL syntax for Java
n  INSERT, UPDATE, DELETE, CREATE, GRANT,

etc.
n  Singleton SELECT and cursor-based SELECT
n  Calls to stored procedures (including result

sets)
n  COMMIT, ROLLBACK
n  Methods for CONNECT, DISCONNECT

dynamic SQL static SQL

parse SQL
statement

check table/view
authorization

check authorization
for package

calculate access path

execute statement execute statement

24

WS 2011/12 13

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

SQL/OLB vs. JDBC: Retrieve Single Row

n  SQL OLB
 #sql [con] { SELECT ADDRESS INTO :addr FROM EMP

 WHERE NAME=:name };

n  JDBC
 java.sql.PreparedStatement ps = con.prepareStatement(

 "SELECT ADDRESS FROM EMP WHERE NAME=?");
ps.setString(1, name);
java.sql.ResultSet names = ps.executeQuery();
names.next();
name = names.getString(1);
names.close();

25

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Result Set Iterators

n  Mechanism for accessing the rows returned by a query
n  Comparable to an SQL cursor

n  Iterator declaration clause results in generated iterator class
n  Iterator is a Java object
n  Iterators are strongly typed
n  Generic methods for advancing to next row

n  Assignment clause assigns query result to iterator
n  Two types of iterators

n  Named iterator
n  Positioned iterator

26

WS 2011/12 14

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Named Iterators - Example

n  Generated iterator class has accessor methods for each result column

 #sql iterator Honors (String name, float grade);
Honors honor;
…
#sql [recs] honor =
 { SELECT SCORE AS "grade", STUDENT AS "name"
 FROM GRADE_REPORTS
 WHERE SCORE >= :limit AND ATTENDED >= :days
 ORDER BY SCORE DESCENDING };
while (honor.next())
 {

 System.out.println(honor.name() + " has grade "
 + honor.grade());
 }

27

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Positioned Iterator

n  Use FETCH statement to retrieve result columns into host variables based on
position

 #sql iterator Honors (String, float);
 Honors honor;
 String name;
 float grade;

 #sql [recs] honor =
 { SELECT STUDENT, SCORE FROM GRADE_REPORTS
 WHERE SCORE >= :limit AND ATTENDED >= :days
 ORDER BY SCORE DESCENDING };
 while (true) {
 #sql {FETCH :honor INTO :name, :grade };
 if (honor.endFetch()) break;
 System.out.println(name + " has grade " + grade);
 }

28

WS 2011/12 15

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

SQLJ - Binary Portability

n  Java as a platform-independent language
n  Use of generic SQLJ-precompiler/translator (avoids DBMS-specific precompiler

technology)
n  Generated code uses “standard” JDBC by default
n  Compiled SQLJ application (Java byte code) is portable
n  Customizer technology allows DBMS-specific optimizations after the compilation

S QL J 	
 source

c lass 	
 AB C 	
 {

	
 # sql	

S E L ECT 	
 ...

}

Generic 	

S QL J
trans lator

Most	
 vendors 	
 use
default	
 J DB C 	
 "s tub"

Optional	
 s tep:	

DBMS -­‐spec ific
cus tom izer

J ava	

Compiler

J ava
byte
codes

Extracted	
 S QL

	
 	
 S E L ECT 	
 ...
	
 	
 hos t	
 var	
 data

JDBC "stub"

DBMS -­‐specific
"s tub"

J ava
byte
codes

Extracted	
 S QL

	
 	
 S E L ECT 	
 ...
	
 	
 hos t	
 var	
 data

JDBC "stub"
Extracted	
 S QL

	
 	
 S E L ECT 	
 ...
	
 	
 hos t	
 var	
 data

S QL J 	
 source

c lass 	
 AB C 	
 {
	
 	
 call	
 "s tub"
	

}

JDBC default
"stub"

29

© Prof.Dr.-Ing. Stefan Deßloch Middleware for Information Systems

Summary

n  Gateways
n  ODBC / JDBC
n  support uniform, standardized access to heterogeneous data sources

n  encapsulate/hide vendor-specific aspects
n  multiple, simultaneously active connections to different databases and DBMSs

n  driver/driver manager architecture

n  enabled for distributed transaction processing
n  high acceptance
n  important infrastructure for realizing IS distribution at DB-operation level
n  no support for data source integration

n  JDBC
n  'for Java’, ’in Java’
n  important basis for data access in Java-based middleware (e.g., J2EE)

n  SQLJ
n  combines advantages of embedded SQL with portability, vendor-independence

30

