
WS 2011/12 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 9 – Web Services
Coordination and Transactions

© Prof.Dr.-Ing. Stefan Deßloch

Coordination - Motivation

n  Interactions are typically more complex than simple invocations
n  Need to coordinate (sets of) activities or applications

n  Distributed
n  Running on different platforms using local coordinators

n  Examples
n  Reach consistent agreement on the outcome of distributed transactions

n  Atomic transactions, 2PC

n  Coordinate auctioning activities
n  involves seller, auctioneer, buyers

n  Interactions between a customer and a supplier for ordering a product
n  request order, order goods, make payment

WS 2011/12 2

© Prof.Dr.-Ing. Stefan Deßloch

Conversations and Coordination Protocols

n  Interactions form a conversation
n  sequences of operations (message exchanges)

n  maintain context information across invocations

n  Interactions adhere to a coordination protocol
n  specifies a set of correct/accepted conversations
n  vertical protocols: specific to business area (e.g., product ordering protocol)
n  horizontal protocols: define common infrastructure (e.g., transactions)

n  Different ways of modeling conversations
n  state machines
n  sequence diagrams
n  activity diagrams

n  Middleware support can be provided, with various degrees of automation
n  conversation controllers
n  generic protocol handlers

© Prof.Dr.-Ing. Stefan Deßloch

requestQuote
(to supplier)

checkShipAvailable
(to warehouse)

confirmOrder
(to customer)

orderGoods
(to supplier)

cancelOrder
(to customer)

makePayment
(to supplier)

orderShipment
(to warehouse)

getShipmentDetails
(to customer)

confirmShipment
(to warehouse)

confirmShipment
(to supplier)

supplier warehouse customer

warehouse
confirms

warehouse
cancels

source: Alonso et.al.: Web Services, Springer, 2003
Copyright Springer Verlag Berlin Heidelberg 2003

Modeling Protocols - Activity Diagrams

roles

messages

WS 2011/12 3

© Prof.Dr.-Ing. Stefan Deßloch

External Web Services Architecture

web services
client

internal
middleware

other tiers

web service

internal
middleware

other tiers

transaction
management

other protocol
infrastructure

composition
engine

transaction
management

other protocol
infrastructure

composition
engine

service
descriptions service

descriptions service
descriptions

Directory Service Provider

Service Provider Service Requestor
external middleware

© Prof.Dr.-Ing. Stefan Deßloch

Conversation Controller

n  Performs conversation routing
n  dispatch message to the appropriate "internal object"

n  one object for each instance of a conversation (e.g., an ordering session)

n  involves message correlation (conversation identifier), management of
conversation context

n  example: session id

n  Verifies protocol compliance
n  understand definition of the protocol (-> standardization of protocol descriptions)
n  check if all messages adhere to the protocol definition

n  Can be implemented as a component of a SOAP router

object for P1

object for Pn

service req.

service req.

service req.

.

.

.
.
.
.

conversation
controller

service provider

P1 P1

P2, P3

Pn
Pn

WS 2011/12 4

© Prof.Dr.-Ing. Stefan Deßloch

Generic Protocol Handlers

n  Module that implements a specific coordination protocol
n  includes protocol-specific logic
n  processes and generates messages in accordance with the protocol rules

n  Mostly applicable to horizontal protocols
n  example: transactions

n  Forms of protocol execution support
n  handler realizes complete support, no intervention from the web service

n  Example: reliable messaging

n  handler and web service jointly realize the support
n  Example: atomic, distributed TAs

n  infrastructure coordinates sending/receiving prepare/commit/abort messages
n  web services decide over commit/abort, implement operations

© Prof.Dr.-Ing. Stefan Deßloch

Implementing Horizontal Protocols

service
requestor

B

B

conversation routing,
compliance verification

horizontal protocol
implementation

H H

H

B: conversation compliant with a business protocol
H: conversation compliant with an horizontal protocol

object (Web service implementation) object (Web service implementation)

horizontal protocol
implementation

service provider

source: Alonso et.al.: Web Services, Springer, 2003
Copyright Springer Verlag Berlin Heidelberg 2003

WS 2011/12 5

© Prof.Dr.-Ing. Stefan Deßloch

Communicating Roles and Port References

object (W1)

horizontal protocol
handler (A)

object (W2)

horizontal protocol
handler (B)

A’s port reference

B’s port reference
B’s port reference A’s port reference A’s role B’s role

conversation
controller

conversation
controller

protocol messages

source: Alonso et.al.: Web Services, Springer, 2003
Copyright Springer Verlag Berlin Heidelberg 2003

© Prof.Dr.-Ing. Stefan Deßloch

Standardization

n  Coordination infrastructure support for web services needs to be based on standards
for

1)  generating and transporting unique conversation identifiers in SOAP headers
§  needed to map messages to conversations, and eventually to the objects handling them

2)  a framework and a set of (meta-) protocols for agreeing on which protocol is to be executed
and how it is coordinated

3)  horizontal protocols
§  to separate horizontal protocol implementation from the inidividual web services

4)  protocol languages
§  to allow for protocol verification

n  Web Services Coordination (WS-Coordination) Specification
n  standardizes 1), 2)

n  Web Services Atomic Transaction (WS-AtomicTransaction) Specification
n  uses WS-Coordination framework to define coordination type for Atomic Transactions (i.e., it

standardizes 3) for atomic TAs)

n  Web Services Business Activity Framework (WS-BusinessActivity) Specification
n  same for (long-running) business transactions

n  Standardized by the OASIS WS-TX technical committee
n  initial proposals by BEA, IBM, IONA, Microsoft

WS 2011/12 6

© Prof.Dr.-Ing. Stefan Deßloch

WS-Coordination

n  Basic entities are coordinators and participants that wish to be
coordinated

n  central coordination: all participants talk to a single coordinator
n  distributed coordination

n  each (or multiple) participant talks to its own coordinator
n  coordinators are chained together (subordinate coordinators act as participants)

n  Abstractions to describe the interactions between coordinator and participants
n  coordination protocol

n  set of rules governing the conversation
n  example: 2PC

n  coordination type
n  set of logically related protocols

n  example: atomic transactions (completion, 2PC, volatile 2PC)

n  instance of a coordination type may involve several instances of the coordination
protocols

n  Coordination context
n  used to exchange coordination information among different parties

n  contains coordination type, identifier of the coordination type instance
n  placed within messages exchanged between parties (SOAP header)

© Prof.Dr.-Ing. Stefan Deßloch

Coordinator/Participant Interactions

n  Coordination service (coordinator) consists of
n  Activation service (generic)

n  Used by a participant to create coordination context (initiate instance of protocol type)
n  WS Interfaces: ActivationCoordinator, ActivationRequester

n  Registration service (generic)
n  Enable application to register for coordination protocols

n  provide endpoint information, role

n  WS Interfaces: RegistrationCoordinator, RegistrationRequester

n  (set of) coordination protocols (protocol-specific)
n  Specific to coordination type

n  Extensibility
n  Publication of new coordination protocols
n  Definition of extension elements that can be added to protocols and messages

WS 2011/12 7

© Prof.Dr.-Ing. Stefan Deßloch

coordinator A

Distributed Coordination - Interactions

activation
service ASa

registration
service RSa

protocol
service Ya coordinator B

activation
service ASb

registration
service RSb

protocol
service Yb

App 1 App 2

1.  CreateCC Type Q
returns Ca

2. App1 sends App2 an application message containing Ca

3. CreateCC
Passing Ca
returning Cb

4. Register passing Y
and App2
returning Yb

5. Register passing Y and Yb
returning Ya

protocol Y

protocol Y

…
<CoordinationContext>
 <Identifier> A </Identifier>
 <CoordinationType> Q </CoordinationType>
 <RegistrationService>

 <wsa:Address> RSa </wsa:Address>
 <wsa:ReferenceProperties>
 …
 </wsa:ReferenceProperties>

 </RegistrationService>
</CoordinationContext>
…

"primary" coordinator "proxy" coordinator

© Prof.Dr.-Ing. Stefan Deßloch

WS Atomic Transactions

n  Atomic Transactions (TA) coordination type
n  Defines type-specific commit protocols

n  Completion: A participant (app creating the TA) registers so that it can tell the
coordinator when/how to complete the TA (commit/abort)

n  2PC: a resource manager (RM) registers for this protocol to be included in the
commit/abort decision

n  Hierarchical 2PC (local coordinators can be interposed as subordinate coordinators)

n  Two variants of 2PC
n  volatile 2PC: a participant wants to be notified by the coordinator just before the

2PC begins
n  Example: participant caches, needs to communicate changes on cached data

to DBMS before TA commits
n  durable 2PC: a participant (e.g., DBMS) manages durable resources

n  Completion must be registered with the root coordinator
n  Participants can register for more than one protocol
n  Extension elements

n  Example: communicate isolation levels

WS 2011/12 8

© Prof.Dr.-Ing. Stefan Deßloch

X/Open DTP revisited …

© Prof.Dr.-Ing. Stefan Deßloch

AT WS-Coordination Flow

WS 2011/12 9

© Prof.Dr.-Ing. Stefan Deßloch

AT WS-Coordination Flow (cont.)

n  App1:
n  sends a CreateCoordinationContext message (1) to its local coordinator's Activation service ASa

n  create an atomic transaction T1
n  gets back in a CreateCoordinationContextResponse message (2) a CoordinationContext C1 containing the

transaction identifier T1, the atomic transaction coordination type and CoordA's registration address RSa

n  sends a Register message (3) to RSa to register for the Completion protocol
n  gets back a RegisterResponse message (4), exchanging protocol service addresses for the coordinator

and participant sides of the two-way protocol

n  sends an application message to App2 (5)
n  propagating the CoordinationContext C1 as a header in the message.

n  App2:
n  decides to interpose local coordinator CoordB in front of CoordA

n  acts as a proxy to CoordA for App2
n  CoordA is the superior and CoordB is the subordinate

n  does this by sending a CreateCoordinationContext message (6) to the Activation service of
CoordB (ASb) with C1 as input

n  getting back (7) a new CoordinationContext C2 that contains the same transaction identifier (T1) and
coordination type, but has CoordB's registration address RSb.

n  registers with CoordB for the PhaseZero (volatile 2PC) protocol (8 and 11)
n  CoordB registers with CoordA for the PhaseZero protocol (9 and 10)

n  sends a message to DB (12), propagating CoordinationContext C2

© Prof.Dr.-Ing. Stefan Deßloch

AT WS-Coordination Flow (cont.)

n  DB:
n  decides to interpose its local coordinator CoordC by sending a

CreateCoordinationContext message (13), further extending the superior-
subordinate chain

n  gets back (14) a new CoordinationContext C3 that contains the same transaction identifier
(T1) and coordination type, but CoordC's Registration service address RSc

n  registers with CoordC for the 2PC protocol because it is a resource manager (15
and 20)

n  causes CoordC to register with CoordB for the 2PC protocol (16 and 19)
n  causes CoordB to register with CoordA for the 2PC protocol (17 and 18)

WS 2011/12 10

© Prof.Dr.-Ing. Stefan Deßloch

AT – 2PC Protocol

n  Two-way protocol
n  Exchange of messages between coordinator and participant

n  State Diagram
n  State reflects common knowledge of both parties

© Prof.Dr.-Ing. Stefan Deßloch

AT Coordination Protocol Flows

2)PhaseZero

12) Prepared

WS 2011/12 11

© Prof.Dr.-Ing. Stefan Deßloch

AT Coordination Protocol Flows (cont.)

n  App1:
n  tries to commit the transaction using the Completion protocol (1)

n  CoordA executes prepare-phase of Volatile 2PC protocol
n  has 1 participant registered for PhaseZero (CoordB), sends a Prepare message (2) to CoordB's

PhaseZero Participant protocol service Pb-pz
n  CoordB relays Prepare message to App2 (3)
n  App2 sends its cached updates to DB

n  application message (4) propagates the CoordinationContext C2
n  sends a Prepared message (5) to CoordB

n  CoordA executes prepare-phase of durable 2PC protocol
n  sends a Prepare message (7) to CoordB's 2PC Participant protocol service Pb-2pc
n  CoordB sends Prepare message (8) to CoordC's 2PC Participant protocol service Pc-2pc
n  CoordC tells DB to Prepare (9)

n  CoordA commits
n  sends Commit message (13) to CoordB

n  Committed notification to App1 (13a) can also be sent

n  CoordB sends Commit message (14) to CoordC
n  CoordC tells DB to commit T1

n  DB receives the Commit message (15) and commits
n  Committed message returns (16, 17 and 18)

© Prof.Dr.-Ing. Stefan Deßloch

WS-BA – Business Activities Framework

n  Characteristics (see discussion in chapter on WfMS)
n  Usually long-running

n  Responding to a request may take a long time

n  May consume lots of resources, perform a lot of work
n  Early commit of atomic subactivities/transactions
n  Forward recovery, compensation

n  Goal: define protocols that "wrap" proprietary business activity mechanisms
to achieve interoperability

n  Design points
n  State transitions need to be reliably recorded
n  All request messages are acknowledged

n  Detect problems early

n  Response to a request is a separate operation
n  Not the output of the request
n  Avoid problems with timeouts of message I/O implementations

WS 2011/12 12

© Prof.Dr.-Ing. Stefan Deßloch

Compensation

n  An action used to logically undo the effects of another action is called
compensation action

n  Extends to real world actions
n  drilling a hole: throw away part

n  Semantic Recovery: Recovery schema based on compensation
n  Compensation very likely one of today's most frequently exploited techniques in

transaction processing

n  Compensation action is often dependent on context
n  E.g. writing an offer and sending it via mail to a customer

n  If letter is still in outbasket, simply remove it from outbasket
n  If letter is already received by the customer, write and send a countermanding letter

n  Compensation often cannot recreate the same state that existed before the
proper action had been performed

n  E.g. canceling a flight might cost a cancellation fee
n  Even more complicated, the cancellation fee might depend on the point in time, i.e. it is

higher the later the cancellation is requested

n  Compensation action may fail!

© Prof.Dr.-Ing. Stefan Deßloch

Sagas – Transactions and Compensation

n  Sagas support specification of compensation actions in advance and
run them automatically on abort

n  Sequence of (Sub-)Transaction/compensating action pairs
n  DBMS guarantees LIFO execution of compensation actions during abort/rollback of

Saga
n  ACID for each sub-TA

Definition:
A Saga is a sequence [(T1,C1),..., (Tn,Cn)] having the following properties:
1. T1,...,Tn and C1,...,Cn are two sets of transactions, such that Ci is the

compensation function for Ti,
2. [(T1,C1),..., (Tn,Cn)] is executed as one of the following sequences:

 i. [T1,...,Tn], if all Ti committed, or
 ii. [T1,...,Ti, Ci-1,..., C1] if Ti aborts and T1,...,Ti-1 committed before.

WS 2011/12 13

© Prof.Dr.-Ing. Stefan Deßloch

Business Activities Model

n  Application is partitioned into business activity scopes
n  carries out business tasks using web services (participants)
n  mutually agreed outcome of all participants

n  Participants registered with a coordinator of a BA
n  notify the coordinator about (successful) completion
n  may be asked by the coordinator to cancel an active task or to compensate a

completed task
n  may indicate that it

n  cannot complete the task (and has cancelled it)
n  is leaving (exit) the BA (and has cancelled it)
n  has failed (during regular activities, when compensating or cancelling the task)

n  state of work is undetermined!

n  Scopes may be arbitrarily nested

© Prof.Dr.-Ing. Stefan Deßloch

Business Activity (cont.)

n  Business Activity (BA) coordination types
n  AtomicOutcome: coordinator directs all participants to either close or compensate
n  MixedOutcome: coordinator may direct some participants to close, others to

compensate

n  BA protocol types
n  BusinessAgreementWithParticipantCompletion protocol

n  participant must know when it has completed all the work for a business activity

n  BusinessAgreementWithCoordinatorCompletion protocol
n  participant relies on coordinator to tell it when it has received all requests for work in the

business activity

WS 2011/12 14

© Prof.Dr.-Ing. Stefan Deßloch

Business Agreement Protocol

n  BusinessAgreementWithParticipantCompletion – State Diagram

active completed closing ended

compensating

failing

cancelling

not completing

exiting exit exited

complete close closed

compensate compensated

fail

cancel

canceled

cannot complete not completed

failed

© Prof.Dr.-Ing. Stefan Deßloch

Summary

n  Coordination protocols
n  protocol defines set of correct conversations (WS message exchanges)

n  involves multiple partners, roles implemented as web services

n  vertical vs. horizontal protocols
n  different modeling approaches (e.g., activity diagrams)

n  Infrastructure
n  conversation controller for internal routing based on conversation identifier
n  generic protocol handlers for horizontal protocols

n  Coordination protocol infrastructure
n  WS-Coordination as a framework for supporting coordination protocols
n  central vs. distributed coordination

n  WS-Transaction
n  based on WS-Coordination infrastructure
n  atomic transactions vs. business activities

