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Coordination - Motivation 

n  Interactions are typically more complex than simple invocations 
n  Need to coordinate (sets of) activities or applications 

n  Distributed 
n  Running on different platforms using local coordinators 

n  Examples 
n  Reach consistent agreement on the outcome of distributed transactions 

n  Atomic transactions, 2PC 

n  Coordinate auctioning activities 
n  involves seller, auctioneer, buyers 

n  Interactions between a customer and a supplier for ordering a product 
n  request order, order goods, make payment 
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Conversations and Coordination Protocols 

n  Interactions form a conversation 
n  sequences of operations (message exchanges) 

n  maintain context information across invocations 

n  Interactions adhere to a coordination protocol 
n  specifies a set of correct/accepted conversations 
n  vertical protocols: specific to business area (e.g., product ordering protocol) 
n  horizontal protocols: define common infrastructure (e.g., transactions) 

n  Different ways of modeling conversations 
n  state machines 
n  sequence diagrams 
n  activity diagrams 

n  Middleware support can be provided, with various degrees of automation 
n  conversation controllers 
n  generic protocol handlers 
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External Web Services Architecture 
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Conversation Controller 

n  Performs conversation routing 
n  dispatch message to the appropriate "internal object" 

n  one object for each instance of a conversation (e.g., an ordering session) 

n  involves message correlation (conversation identifier), management of 
conversation context 

n  example: session id 

n  Verifies protocol compliance 
n  understand definition of the protocol (-> standardization of protocol descriptions) 
n  check if all messages adhere to the protocol definition 

n  Can be implemented as a component of a SOAP router 
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Generic Protocol Handlers 

n  Module that implements a specific coordination protocol 
n  includes protocol-specific logic 
n  processes and generates messages in accordance with the protocol rules 

n  Mostly applicable to horizontal protocols 
n  example: transactions 

n  Forms of protocol execution support 
n  handler realizes complete support, no intervention from the web service 

n  Example: reliable messaging 

n  handler and web service jointly realize the support 
n  Example: atomic, distributed TAs 

n  infrastructure coordinates sending/receiving prepare/commit/abort messages 
n  web services decide over commit/abort, implement operations 
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Implementing Horizontal Protocols 
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source: Alonso et.al.: Web Services, Springer, 2003 
Copyright Springer Verlag Berlin Heidelberg 2003 
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Communicating Roles and Port References 
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source: Alonso et.al.: Web Services, Springer, 2003 
Copyright Springer Verlag Berlin Heidelberg 2003 
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Standardization 

n  Coordination infrastructure support for web services needs to be based on standards 
for 

1)  generating and transporting unique conversation identifiers in SOAP headers 
§  needed to map messages to conversations, and eventually to the objects handling them 

2)  a framework and a set of (meta-) protocols for agreeing on which protocol is to be executed 
and how it is coordinated 

3)  horizontal protocols 
§  to separate horizontal protocol implementation from the inidividual web services 

4)  protocol languages 
§  to allow for protocol verification 

n  Web Services Coordination (WS-Coordination) Specification 
n  standardizes 1), 2) 

n  Web Services Atomic Transaction (WS-AtomicTransaction) Specification 
n  uses WS-Coordination framework to define coordination type for Atomic Transactions (i.e., it 

standardizes 3) for atomic TAs) 

n  Web Services Business Activity Framework (WS-BusinessActivity) Specification 
n  same for (long-running) business transactions 

n  Standardized by the OASIS WS-TX technical committee 
n  initial proposals by BEA, IBM, IONA, Microsoft 
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WS-Coordination 

n  Basic entities are coordinators and participants that wish to be 
coordinated 

n  central coordination: all participants talk to a single coordinator 
n  distributed coordination  

n  each (or multiple) participant talks to its own coordinator 
n  coordinators are chained together (subordinate coordinators act as participants) 

n  Abstractions to describe the interactions between coordinator and participants 
n  coordination protocol 

n  set of rules governing the conversation 
n  example: 2PC 

n  coordination type 
n  set of logically related protocols 

n  example: atomic transactions (completion, 2PC, volatile 2PC) 

n  instance of a coordination type may involve several instances of the coordination 
protocols 

n  Coordination context 
n  used to exchange coordination information among different parties 

n  contains coordination type, identifier of the coordination type instance 
n  placed within messages exchanged between parties (SOAP header) 
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Coordinator/Participant Interactions 

n  Coordination service (coordinator) consists of 
n  Activation service (generic) 

n  Used by a participant to create coordination context (initiate instance of protocol type) 
n  WS Interfaces: ActivationCoordinator, ActivationRequester 

n  Registration service (generic) 
n  Enable application to register for coordination protocols 

n  provide endpoint information, role 

n  WS Interfaces: RegistrationCoordinator, RegistrationRequester 

n  (set of) coordination protocols (protocol-specific) 
n  Specific to coordination type 

n  Extensibility 
n  Publication of new coordination protocols 
n  Definition of extension elements that can be added to protocols and messages 
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… 
<CoordinationContext>  
   <Identifier>  A </Identifier>  
   <CoordinationType> Q </CoordinationType>  
   <RegistrationService>  

 <wsa:Address> RSa </wsa:Address>  
 <wsa:ReferenceProperties>  
       …  
 </wsa:ReferenceProperties>  

   </RegistrationService>  
</CoordinationContext>  
… 

"primary" coordinator "proxy" coordinator 
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WS Atomic Transactions 

n  Atomic Transactions (TA) coordination type 
n  Defines type-specific commit protocols 

n  Completion: A participant (app creating the TA) registers so that it can tell the 
coordinator when/how to complete the TA (commit/abort) 

n  2PC: a resource manager (RM) registers for this protocol to be included in the 
commit/abort decision 

n  Hierarchical 2PC (local coordinators can be interposed as subordinate coordinators) 

n  Two variants of 2PC 
n  volatile 2PC: a participant wants to be notified by the coordinator just before the 

2PC begins 
n  Example: participant caches, needs to communicate changes on cached data 

to DBMS before TA commits 
n  durable 2PC: a participant (e.g., DBMS) manages durable resources 

n  Completion must be registered with the root coordinator 
n  Participants can register for more than one protocol 
n  Extension elements 

n  Example: communicate isolation levels 
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X/Open DTP revisited … 
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AT WS-Coordination Flow 
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AT WS-Coordination Flow (cont.) 

n  App1:  
n  sends a CreateCoordinationContext message (1) to its local coordinator's Activation service ASa  

n  create an atomic transaction T1 
n  gets back in a CreateCoordinationContextResponse message (2) a CoordinationContext C1 containing the 

transaction identifier T1, the atomic transaction coordination type and CoordA's registration address RSa 

n  sends a Register message (3) to RSa to register for the Completion protocol 
n  gets back a RegisterResponse message (4), exchanging protocol service addresses for the coordinator 

and participant sides of the two-way protocol 

n  sends an application message to App2 (5) 
n  propagating the CoordinationContext C1 as a header in the message.  

n  App2:  
n  decides to interpose local coordinator CoordB in front of CoordA 

n  acts as a proxy to CoordA for App2 
n  CoordA is the superior and CoordB is the subordinate 

n  does this by sending a CreateCoordinationContext message (6) to the Activation service of 
CoordB (ASb) with C1 as input 

n  getting back (7) a new CoordinationContext C2 that contains the same transaction identifier (T1) and 
coordination type, but has CoordB's registration address RSb.  

n  registers with CoordB for the PhaseZero (volatile 2PC) protocol (8 and 11) 
n  CoordB registers with CoordA for the PhaseZero protocol (9 and 10)  

n  sends a message to DB (12), propagating CoordinationContext C2  
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AT WS-Coordination Flow (cont.) 

n  DB:  
n  decides to interpose its local coordinator CoordC by sending a 

CreateCoordinationContext message (13), further extending the superior-
subordinate chain 

n  gets back (14) a new CoordinationContext C3 that contains the same transaction identifier 
(T1) and coordination type, but CoordC's Registration service address RSc 

n  registers with CoordC for the 2PC protocol because it is a resource manager (15 
and 20)  

n  causes CoordC to register with CoordB for the 2PC protocol (16 and 19)  
n  causes CoordB to register with CoordA for the 2PC protocol (17 and 18)   



WS 2011/12 10 

© Prof.Dr.-Ing. Stefan Deßloch 

AT – 2PC Protocol 

n  Two-way protocol 
n  Exchange of messages between coordinator and participant 

n  State Diagram 
n  State reflects common knowledge of both parties 
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AT Coordination Protocol Flows 

2)PhaseZero 

12) Prepared 
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AT Coordination Protocol Flows (cont.) 

n  App1: 
n  tries to commit the transaction using the Completion protocol (1) 

n  CoordA executes prepare-phase of Volatile 2PC protocol 
n  has 1 participant registered for PhaseZero (CoordB), sends a Prepare message (2) to CoordB's 

PhaseZero Participant protocol service Pb-pz 
n  CoordB relays Prepare message to App2 (3) 
n  App2 sends its cached updates to DB 

n  application message (4) propagates the CoordinationContext C2 
n  sends a Prepared message (5) to CoordB  

n  CoordA executes prepare-phase of durable 2PC protocol  
n  sends a Prepare message (7) to CoordB's 2PC Participant protocol service Pb-2pc  
n  CoordB sends Prepare message (8) to CoordC's 2PC Participant protocol service Pc-2pc 
n  CoordC tells DB to Prepare (9) 

n  CoordA commits 
n  sends Commit message (13) to CoordB 

n  Committed notification to App1 (13a) can also be sent 

n  CoordB sends Commit message (14) to CoordC 
n  CoordC tells DB to commit T1 

n  DB receives the Commit message (15) and commits 
n  Committed message returns (16, 17 and 18) 
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WS-BA – Business Activities Framework 

n  Characteristics (see discussion in chapter on WfMS) 
n  Usually long-running 

n  Responding to a request may take a long time 

n  May consume lots of resources, perform a lot of work 
n  Early commit of atomic subactivities/transactions 
n  Forward recovery, compensation 

n  Goal: define protocols that "wrap" proprietary business activity mechanisms 
to achieve interoperability 

n  Design points 
n  State transitions need to be reliably recorded 
n  All request messages are acknowledged 

n  Detect problems early 

n  Response to a request is a separate operation 
n  Not the output of the request 
n  Avoid problems with timeouts of message I/O implementations 
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Compensation 

n  An action used to logically undo the effects of another action is called 
compensation action 

n  Extends to real world actions 
n  drilling a hole: throw away part 

n  Semantic Recovery: Recovery schema based on compensation 
n  Compensation very likely one of today's most frequently exploited techniques in 

transaction processing 

n  Compensation action is often dependent on context 
n  E.g. writing an offer and sending it via mail to a customer 

n  If letter is still in outbasket, simply remove it from outbasket 
n  If letter is already received by the customer, write and send a countermanding letter 

n  Compensation often cannot recreate the same state that existed before the 
proper action had been performed 

n  E.g. canceling a flight might cost a cancellation fee 
n  Even more complicated, the cancellation fee might depend on the point in time, i.e. it is 

higher the later the cancellation is requested 

n  Compensation action may fail! 
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Sagas – Transactions and Compensation 

n  Sagas support specification of compensation actions in advance and 
run them automatically on abort 

n  Sequence of (Sub-)Transaction/compensating action pairs 
n  DBMS guarantees LIFO execution of compensation actions during abort/rollback of 

Saga 
n  ACID for each sub-TA 

 
Definition: 
A Saga is a sequence [(T1,C1),..., (Tn,Cn)] having the following properties: 
1. T1,...,Tn and C1,...,Cn are two sets of transactions, such that Ci is the 

compensation function for Ti, 
2. [(T1,C1),..., (Tn,Cn)] is executed as one of the following sequences: 

 i. [T1,...,Tn], if all Ti committed, or 
 ii. [T1,...,Ti, Ci-1,..., C1] if Ti aborts and T1,...,Ti-1 committed before. 
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Business Activities Model 

n  Application is partitioned into business activity scopes 
n  carries out business tasks using web services (participants) 
n  mutually agreed outcome of all participants 

n  Participants registered with a coordinator of a BA 
n  notify the coordinator about (successful) completion 
n  may be asked by the coordinator to cancel an active task or to compensate a 

completed task 
n  may indicate that it 

n  cannot complete the task (and has cancelled it) 
n  is leaving (exit) the BA (and has cancelled it) 
n  has failed (during regular activities, when compensating or cancelling the task) 

n  state of work is undetermined! 

n  Scopes may be arbitrarily nested 
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Business Activity (cont.) 

n  Business Activity (BA) coordination types 
n  AtomicOutcome: coordinator directs all participants to either close or compensate 
n  MixedOutcome: coordinator may direct some participants to close, others to 

compensate 

n  BA protocol types 
n  BusinessAgreementWithParticipantCompletion protocol 

n  participant must know when it has completed all the work for a business activity 

n  BusinessAgreementWithCoordinatorCompletion protocol 
n  participant relies on coordinator to tell it when it has received all requests for work in the 

business activity 
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Business Agreement Protocol 

n  BusinessAgreementWithParticipantCompletion – State Diagram 

active completed closing ended 

compensating 

failing 

cancelling 

not completing 

exiting exit exited 

complete close closed 

compensate compensated 

fail 

cancel 

canceled 

cannot complete not completed 

failed 
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Summary 

n  Coordination protocols 
n  protocol defines set of correct conversations (WS message exchanges) 

n  involves multiple partners, roles implemented as web services 

n  vertical vs. horizontal protocols 
n  different modeling approaches (e.g., activity diagrams) 

n  Infrastructure 
n  conversation controller for internal routing based on conversation identifier 
n  generic protocol handlers for horizontal protocols 

n  Coordination protocol infrastructure 
n  WS-Coordination as a framework for supporting coordination protocols 
n  central vs. distributed coordination 

n  WS-Transaction 
n  based on WS-Coordination infrastructure 
n  atomic transactions vs. business activities 


