Prof. Dr.-Ing. Stefan Deßloch AG Heterogene Informationssysteme Geb. 36, Raum 329 Tel. 0631/205 3275 dessloch@informatik.uni-kl.de

Enterprise Information Systems Chapter 1 - Motivation

EIS – Main Focus Is On Integration

- Data/Information Integration
 - integrated access to (heterogeneous) data originating from multiple sources
 - queries range over date from multiple DBs!
 - virtual integration: integrate on access/query (e.g., federated DBMS)
 - materialized integration: extract, transform, load data into a single materialized data warehouse in advance (e.g., data replication, data warehousing)
 - needs a strong foundation to overcome multiple kinds of heterogeneity
- Enterprise Application Integration
 - integration of (heterogeneous, coarse-grained) applications within an enterprise (vs. development of new application)
 - integration across different middleware platforms
- Business-to-business Integration
 - support interactions, integration of business processes among trading partners, across company boundaries
 - foundation for e-business, e-commerce

Integration Challenges

- Goal of Integration: Provide a homogeneous, integrated view on multiple, distributed, autonomous and heterogeneous systems, components, or data sources.
- Three fundamental challenges:
 - Distribution
 - Autonomy
 - Heterogeneity
- Orthogonal, but interrelated

Let's look at the above challenges in the scope of data/information integration!

Distribution

- Physical distribution
 - Data located on (geographically) separated systems
 - Challenges:
 - Addressing data across the globe (URLs)
 - Accessing data in different schemas (Multi-database languages, federated database systems)
 - Optimizing distributed queries (no topic of this lecture)
- Logical distribution
 - Several possible storage locations for a given data item
 - Caused by (partial) redundancy due to overlapping intension of schema elements
 - Challenges:
 - Maintaining consistency among redundant data
 - Provide metadata to enable data localization
 - Detect and resolve duplicates
 - Detect and resolve data inconsistencies and conflicts
- Physical and logical distribution are orthogonal:
 - Data can be logically distributed and physically on the same system (and vice versa)

© Prof.Dr.-Ing. Stefan Deßloch

Data Cleaning

Autonomy

- Design Autonomy
 - Administrators of data sources can freely decide in which way they model data
 - Data model, formats, units, ...
 - Leads to heterogeneity among sources
- Interface Autonomy
 - Freedom to decide how technical access is provided
 - Protocols (HTTP, JDBC, SOAP, ...), supported query languages (SQL, XQuery, ...)
- Access Autonomy
 - Freedom to decide whom to allow access to what data
 - Mode of Authentication (Certificates, Username/Password)
 - Authorization (boolean, R/W, Access Control Lists, ...)
- Judicial Autonomy
 - Freedom to prohibit integration of data by others
 - Intellectual property (IP) issues
- ⇒ Autonomy is the major cause of integration problems

Heterogeneity

- Translated from [LeNa07]: "Two information systems that do not provide the exact same methods, models and structures to access their data are called heterogeneous."
- Causes for heterogeneity among IS:
 - Specific requirements
 - Independent development
 - Developer preferences
 - •••
 - All aspects result from autonomy
- Heterogeneity of metadata and data
- Two main approaches:
 - Try to resolve heterogeneity when needed
 - Enforce homogeneity/limit heterogeneity by establishing standards (not in this lecture)
 - No real solution to the problem
 - Only creates "spheres of homogeneity", any participants that have existing systems or requirements not conforming to the standards have to resolve heterogeneity locally

Technical Heterogeneity

- Refers to differences in the options to access data, e.g.
 - Communication protocols (HTTP, SOAP, ...)
 - Exchange formats (binary, text, XML, ...)
 - APIs (JDBC, ODBC, proprietary)
 - Query mechanism
 - Forms, canned queries
 - Query languages
 - Query language
 - SQL, XQuery, ...

Data Model Heterogeneity

- Caused by the use of different data models among data sources
 - hierarchical, relational, XML, ...
- Data models can have different expressiveness, e.g. support of
 - Inheritance
 - Types and degree of associations between entities/application concepts
 - Multi-valued attributes
 - Different atomic data types
- Mapping from semantically richer to poorer models in general results in a loss of information

Syntactic Heterogeneity

- Differences in the representation of identical facts
 - Binary representations (little/big endian, number formats)
 - Encodings (ASCII, ISO-8859-1, EBCDIC, Unicode, ...)
 - Separators (Tab-delimited vs. CSV)
 - Textual representation
- Not to be mixed up with semantic heterogeneity!
- Usually easy to resolve (if used consistently)
- Examples:
 - "20070201" vs. "Februar 1st, 2007" vs. "02-01-07" vs. "1.2.2007"
 - "123.45" vs. "1.2345x10²"
- ➡ Data Fusion

Structural Heterogeneity

- Caused by modeling identical application concepts differently using the same elements in the same data model
- Example denormalized relational schema

Employee

<u>EmpNo</u>	Name	DoB		DeptNo		EmaDent				
4711	Bob	1978-03-20		11		EmpDept				
0815	5 Jane 1975-11-05		15	7		<u>EmpNo</u>	Name	DoB	Deptname	DeptNo
		1973-11-03		/		4711	Bob	1978-03-20	Accounting	11
1234	Joe			11		0815	Jane	1975-11-05	Sales	7
Department							Jane	1975-11-05	Sales	/
•					1234	Joe	1954-05-26	Accounting	11	
-		<u>DeptNo</u>	Na	ame			1	l		I
		7	Sales							
		11	Ac	counting						

Easily resolved using relational operators:

SELECT e.EmpNo, e.Name, e.DoB, d.name as deptname, d.deptno FROM Employee e, Department d WHERE e.deptno = d.deptno

Structural Heterogeneity (cont.)

Example: inverted hierarchy

```
<bib>
<book title="a">
<author name="x"/>
<author name="y"/>
</book>
<book title="b">
<author name="x"/>
</book>
</bib>
```

```
<bib>
<author name="y">
<book title="a"/>
</author>
<author name="x">
<book title="a"/>
<book title="b"/>
</author>
</bib>
```

Easily resolved using XQuery

```
<bib> {
    for $a in distinct-values(doc("BookAuthor.xml")//author/@name)
    return <author name="{$a}"> {
        for $b in doc("BookAuthor.xml")//book
        where $b/author/@name = $a
        return <book title="{$b/@title}"/>
        } </author>
    } </bib>
```

Schematic Heterogeneity

- Often considered a special case of structural heterogeneity
- Caused by modeling identical application concepts using *different* data model concepts of the same data model
- Example: *attribute value relation name* conflict

- Problems of this kind cannot be resolved generically with SQL
 - How to handle an unknown/variable number of values for categorical attributes?

Semantic Heterogeneity

- "Semantics" = interpretation of data and metadata
- Different representation of identical application concepts, (e.g. synonyms)
- Identical representation of different application concepts (e.g. homonyms)
 - e.g. Lotus (the car) vs. Lotus (the flower)
- Ambiguities unclear whether two elements refer to the same concept (are synonyms) or refer to broader/narrower terms (hypernyms)
 - hypernym or synonym?
 - car (motor) vehicle
 - person employee
 - product item
 - decision depending on context
- Perhaps *the* biggest challenge in II
- Resolving semantic heterogeneity is a prerequisite for many integration tasks
- Many attempts to automate
 - Schema Matching

Data Integration Middleware

- Traditional Middleware
 - supports access to multiple data sources within the same application, transaction
 - directly (using DB-gateways)
 - indirectly (by invoking distributed application components)
 - but fails to provide data integration
 - no means to analyze/query data from multiple sources within the same statement SELECT * FROM Source1-table T1, Source2-table T2 WHERE T1.a1 = ... AND T1.a2 = T2.a1
 - does not help to overcome data heterogeneity
- Two architectural approaches to achieve data integration
 - materialized integration: replication, data warehousing
 - virtual integration: federated DBMS, multi-database systems

Data Federation: Virtual Integration

- Goal: homogeneous, integrated view of data from multiple sources
 - a single (logical) database
 - a single query may collect (or join) data from multiple sources
- Data Federation requires
 - Wrapper/mediator technology 4
 - Data and schema integration mechanisms

Example - DB2 Relational Connect

Standard – SQL/MED

'Foreign Data Wrapper' in 'SQL/MED'

Data Warehousing Architecture

data flow
◄----► control flow

Integration Process

- Schema Matching
 - Find inter-schema correspondences
- Schema Mapping
 - Based on correspondences
 - Define how to "translate" one schema into another
 - implies data transformation
- Schema Integration
 - Based on correspondences (and mapping)
 - Define an integrated, global/federated schema

→ Integration Plan!

 Integration plan can then be "implemented" using middleware for virtual or materialized data integration

Enterprise Application Integration

- Focus on application integration within an enterprise (vs. development of new application)
 - integration across different middleware platforms
 - major shift towards asynchronous interactions (Message-Oriented Middleware)
- Message Brokers
 - based on MOM
 - hub-and-spoke (instead of point-to-point)
 - publish and subscribe model to link applications together
- Business Process Modeling and Workflow Management Systems
 - make integration logic explicit, easy to modify/extend
 - "programming in the large"

Message-Oriented Middleware (MOM)

- Message-oriented interoperability
 - programming model: asynchronous message exchange
- Support for persistent, transactional message queues
 - asynchronous transactions
 - reliable messaging
- Optimizing throughput, not response time
- Loosely-coupled application components
 - "client" not blocked during request processing
 - "server" may chose request processing time more flexibly
 - may not even be available at request enqueue time

Message Brokering – Processing Model

Workflow-Based Applications: Structure

Workflows And External Communications

- Customers invoke company's applications to perform certain steps of the business process
 - E.g. place on order, inquire status,...
 - Company's applications must get a browser-based front-end for that purpose ("web-up")
- Workflow activities may directly communicate with the outside
 - Send e-mail, faxes, messages,...
- Workflow activities may trigger actions in another company
 - Simple invokation of program or start of another workflow ("subprocess" from invokers point-of-view)
 - Such "business-to-business" scenarios are the base for realizing sophisticated "supply chains"

Virtual Enterprise: Scenario

Business-To-Businesss (B2B) Integration

- Goal: facilitate interaction among trading partners, across companies
 - Establish relation between processes of different enterprises
 - Predominant are relation to suppliers, and customer relations to other enterprises like industrial consumers, retailers, banks
- Traditional B2B has focused on well-defined, standard message formats and protocols (e.g., RosettaNet, cXML)
 - Ad hoc B2B occurs today via XML over HTTP
- How to publish business functions to customers, partners and suppliers?
 - E.g. access to reservation systems, quote systems
 - Programmatic access to a service, independent of underlying implementation and client software
- Web services, service-oriented architectures play a dominant role!

Web Services & Business Processes

- Business process making use of web services
- Business process externalized as a web service
- Long-running transactions
- Compensation
- Correlation
- Dynamic Binding of business partners and web services

e-Business Collaboration

Example: ebXML

Summary

- Middleware
 - supports the development, deployment, and execution of complex information systems
 - facilitates interaction between and integration of applications
 - across multiple distributed, heterogeneous platforms and data sources
- Major challenges: distribution, autonomy, heterogeneity
 - different forms of (data) heterogeneity
- Data/Information Integration
 - integrated access to (heterogeneous) data originating from multiple sources
- Enterprise Application Integration
 - integration of (heterogeneous, coarse-grained) applications within an enterprise (vs. development of new application)
 - integration across different middleware platforms
- Business-to-business Integration
 - support interactions, integration of business processes among trading partners, across company boundaries
 - foundation for e-business, e-commerce

