Enterprise Information Systems
Chapter 1 - Motivation

EIS – Main Focus Is On Integration

- **Data/Information Integration**
 - integrated access to (heterogeneous) data originating from multiple sources
 - queries range over date from multiple DBs!
 - virtual integration: integrate on access/query (e.g., federated DBMS)
 - materialized integration: extract, transform, load data into a single materialized data warehouse in advance (e.g., data replication, data warehousing)
 - needs a strong foundation to overcome multiple kinds of heterogeneity

- **Enterprise Application Integration**
 - integration of (heterogeneous, coarse-grained) applications within an enterprise (vs. development of new application)
 - integration across different middleware platforms

- **Business-to-business Integration**
 - support interactions, integration of business processes among trading partners, across company boundaries
 - foundation for e-business, e-commerce
Integration Challenges

- Goal of Integration:
 Provide a homogeneous, integrated view on multiple, distributed, autonomous and heterogeneous systems, components, or data sources.

- Three fundamental challenges:
 - Distribution
 - Autonomy
 - Heterogeneity

- Orthogonal, but interrelated

Let's look at the above challenges in the scope of data/information integration!

Distribution

- Physical distribution
 - Data located on (geographically) separated systems
 - Challenges:
 - Addressing data across the globe (URLs)
 - Accessing data in different schemas (Multi-database languages, federated database systems)
 - Optimizing distributed queries (no topic of this lecture)

- Logical distribution
 - Several possible storage locations for a given data item
 - Caused by (partial) redundancy due to overlapping intension of schema elements
 - Challenges:
 - Maintaining consistency among redundant data
 - Provide metadata to enable data localization
 - Detect and resolve duplicates
 - Detect and resolve data inconsistencies and conflicts

- Physical and logical distribution are orthogonal:
 - Data can be logically distributed and physically on the same system (and vice versa)
Autonomy

- Design Autonomy
 - Administrators of data sources can freely decide in which way they model data
 - Data model, formats, units, ...
 - Leads to heterogeneity among sources

- Interface Autonomy
 - Freedom to decide how technical access is provided
 - Protocols (HTTP, JDBC, SOAP, ...), supported query languages (SQL, XQuery, ...)

- Access Autonomy
 - Freedom to decide whom to allow access to what data
 - Mode of Authentication (Certificates, Username/Password)
 - Authorization (boolean, R/W, Access Control Lists, ...)

- Judicial Autonomy
 - Freedom to prohibit integration of data by others
 - Intellectual property (IP) issues

⇒ Autonomy is the major cause of integration problems

Heterogeneity

- Translated from [LeNa07]:
 "Two information systems that do not provide the exact same methods, models and structures to access their data are called heterogeneous."

- Causes for heterogeneity among IS:
 - Specific requirements
 - Independent development
 - Developer preferences
 - ...

 All aspects result from autonomy

- Heterogeneity of metadata and data

- Two main approaches:
 - Try to resolve heterogeneity when needed
 - Enforce homogeneity/limit heterogeneity by establishing standards (not in this lecture)
 - No real solution to the problem
 - Only creates "spheres of homogeneity"; any participants that have existing systems or requirements not conforming to the standards have to resolve heterogeneity locally
Technical Heterogeneity

- Refers to differences in the options to access data, e.g.
 - Communication protocols (HTTP, SOAP, ...)
 - Exchange formats (binary, text, XML, ...)
 - APIs (JDBC, ODBC, proprietary)
 - Query mechanism
 - Forms, canned queries
 - Query languages
 - Query language
 - SQL, XQuery, ...

Data Model Heterogeneity

- Caused by the use of different data models among data sources
 - hierarchical, relational, XML, ...
- Data models can have different expressiveness, e.g. support of
 - Inheritance
 - Types and degree of associations between entities/application concepts
 - Multi-valued attributes
 - Different atomic data types
- Mapping from semantically richer to poorer models in general results in a loss of information
Syntactic Heterogeneity

- Differences in the representation of identical facts
 - Binary representations (little/big endian, number formats)
 - Encodings (ASCII, ISO-8859-1, EBCDIC, Unicode, ...)
 - Separators (Tab-delimited vs. CSV)
 - Textual representation
- Not to be mixed up with semantic heterogeneity!
- Usually easy to resolve (if used consistently)
- Examples:
 - "20070201" vs. "February 1st, 2007" vs. "02-01-07" vs. "1.2.2007"
 - "123.45" vs. "1.2345x10^2"

Data Fusion

Structural Heterogeneity

- Caused by modeling identical application concepts differently using the same elements in the same data model
- Example - denormalized relational schema

Employee

<table>
<thead>
<tr>
<th>EmpNo</th>
<th>Name</th>
<th>DoB</th>
<th>DeptNo</th>
</tr>
</thead>
<tbody>
<tr>
<td>4711</td>
<td>Bob</td>
<td>1978-03-20</td>
<td>11</td>
</tr>
<tr>
<td>0815</td>
<td>Jane</td>
<td>1975-11-05</td>
<td>7</td>
</tr>
<tr>
<td>1234</td>
<td>Joe</td>
<td>1954-05-26</td>
<td>11</td>
</tr>
</tbody>
</table>

Department

<table>
<thead>
<tr>
<th>DeptNo</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Sales</td>
</tr>
<tr>
<td>11</td>
<td>Accounting</td>
</tr>
</tbody>
</table>

EmpDept

<table>
<thead>
<tr>
<th>EmpNo</th>
<th>Name</th>
<th>DoB</th>
<th>Deptname</th>
<th>DeptNo</th>
</tr>
</thead>
<tbody>
<tr>
<td>4711</td>
<td>Bob</td>
<td>1978-03-20</td>
<td>Accounting</td>
<td>11</td>
</tr>
<tr>
<td>0815</td>
<td>Jane</td>
<td>1975-11-05</td>
<td>Sales</td>
<td>7</td>
</tr>
<tr>
<td>1234</td>
<td>Joe</td>
<td>1954-05-26</td>
<td>Accounting</td>
<td>11</td>
</tr>
</tbody>
</table>

- Easily resolved using relational operators:
 - SELECT e.EmpNo, e.Name, e.DoB, d.name as deptname, d.deptno
 FROM Employee e, Department d WHERE e.deptno = d.deptno
Structural Heterogeneity (cont.)

- Example: inverted hierarchy

```xml
<bib>
  <book title="a">
    <author name="x"/>
    <author name="y"/>
  </book>
  <book title="b">
    <author name="x"/>
    <author name="y"/>
  </book>
</bib>
```

- Easily resolved using XQuery

```xml
<bib>  
  {for $a in distinct-values(doc("BookAuthor.xml")//author/@name) 
    return <author name="{$a}">
    {for $b in doc("BookAuthor.xml")//book 
      where $b/author/@name = $a 
      return <book title="{$b/@title}"/>
    } </author>
  } </bib>
```

Schematic Heterogeneity

- Often considered a special case of structural heterogeneity
- Caused by modeling identical application concepts using different data model concepts of the same data model
- Example: attribute value – relation name conflict

<table>
<thead>
<tr>
<th>Person</th>
<th>ID</th>
<th>Name</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1234</td>
<td>Bob</td>
<td>male</td>
</tr>
<tr>
<td></td>
<td>4567</td>
<td>Jane</td>
<td>female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Men</th>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1234</td>
<td>Bob</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Women</th>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4567</td>
<td>Jane</td>
</tr>
</tbody>
</table>

- Problems of this kind cannot be resolved generically with SQL
 - How to handle an unknown/variable number of values for categorical attributes?
Semantic Heterogeneity

- “Semantics” = interpretation of data and metadata
- Different representation of identical application concepts, (e.g. synonyms)
- Identical representation of different application concepts (e.g. homonyms)
 - e.g. Lotus (the car) vs. Lotus (the flower)
- Ambiguities – unclear whether two elements refer to the same concept (are synonyms) or refer to broader/narrower terms (hypernyms)
 - hypernym or synonym?
 - car – (motor) vehicle
 - person – employee
 - product – item
 - decision depending on context
- Perhaps the biggest challenge in II
- Resolving semantic heterogeneity is a prerequisite for many integration tasks
- Many attempts to automate
 - Schema Matching

Data Integration Middleware

- Traditional Middleware
 - supports access to multiple data sources within the same application, transaction
 - directly (using DB-gateways)
 - indirectly (by invoking distributed application components)
 - but fails to provide data integration
 - no means to analyze/query data from multiple sources within the same statement
 - SELECT *
 - FROM Source1-table T1, Source2-table T2
 - WHERE T1.a1 = ...
 - AND
 - T1.a2 = T2.a1
 - does not help to overcome data heterogeneity
- Two architectural approaches to achieve data integration
 - materialized integration: replication, data warehousing
 - virtual integration: federated DBMS, multi-database systems
Data Federation: Virtual Integration

- Goal: homogeneous, integrated view of data from multiple sources
 - a single (logical) database
 - a single query may collect (or join) data from multiple sources
- Data Federation requires
 - Wrapper/mediator technology
 - Data and schema integration mechanisms

Example - DB2 Relational Connect

Select *
From Cust, SJBR, SFBR
Where Cust.Acct No = SJBR.Acct No
And SJBR.Acct No = SFBR.Acct No
Standard – SQL/MED

- ‘Foreign Data Wrapper’ in ‘SQL/MED’

Data Warehousing Architecture

- Data Warehouse Manager
 - metadata repository
 - Monitor, Extract, Transform, Load
 - staging area
 - main data warehouse
 - data flow
 - control flow

Analysis – Reporting - Mining Tools

Data source 1

Data source n

© Prof. Dr.-Ing. Stefan Dettloch
Integration Process

- Schema Matching
 - Find inter-schema correspondences
- Schema Mapping
 - Based on correspondences
 - Define how to "translate" one schema into another
 - implies data transformation
- Schema Integration
 - Based on correspondences (and mapping)
 - Define an integrated, global/federated schema

→ Integration Plan!

- Integration plan can then be "implemented" using middleware for virtual or materialized data integration

Enterprise Application Integration

- Focus on application integration within an enterprise (vs. development of new application)
 - integration across different middleware platforms
 - major shift towards asynchronous interactions (Message-Oriented Middleware)
- Message Brokers
 - based on MOM
 - hub-and-spoke (instead of point-to-point)
 - publish and subscribe model to link applications together
- Business Process Modeling and Workflow Management Systems
 - make integration logic explicit, easy to modify/extend
 - "programming in the large"
Message-Oriented Middleware (MOM)

- Message-oriented interoperability
 - programming model: asynchronous message exchange
- Support for persistent, transactional message queues
 - asynchronous transactions
 - reliable messaging
- Optimizing throughput, not response time
- Loosely-coupled application components
 - “client” not blocked during request processing
 - “server” may choose request processing time more flexibly
 - may not even be available at request enqueue time

Message Brokering – Processing Model
Workflow-Based Applications: Structure

Customers invoke company’s applications to perform certain steps of the business process:
- E.g. place an order, inquire status, ...
- Company’s applications must get a browser-based front-end for that purpose (“web-up”)

Workflow activities may directly communicate with the outside:
- Send e-mails, faxes, messages, ...

Workflow activities may trigger actions in another company:
- Simple invocation of program or start of another workflow (“subprocess” from invoker’s point-of-view)
- Such “business-to-business” scenarios are the base for realizing sophisticated “supply chains”
Goal: facilitate interaction among trading partners, across companies
- Establish relation between processes of different enterprises
- Predominant are relation to suppliers, and customer relations to other enterprises like industrial consumers, retailers, banks

Traditional B2B has focused on well-defined, standard message formats and protocols (e.g., RosettaNet, cXML)
- Ad hoc B2B occurs today via XML over HTTP

How to publish business functions to customers, partners and suppliers?
- E.g. access to reservation systems, quote systems
- Programmatic access to a service, independent of underlying implementation and client software

Web services, service-oriented architectures play a dominant role!
Web Services & Business Processes

- Business process making use of web services
- Business process externalized as a web service
- Long-running transactions
- Compensation
- Correlation
- Dynamic Binding of business partners and web services

e-Business Collaboration

- Example: ebXML

(source: ebXML Technical Architecture Specification)
Summary

- Middleware
 - supports the development, deployment, and execution of complex information systems
 - facilitates interaction between and integration of applications across multiple distributed, heterogeneous platforms and data sources
- Major challenges: distribution, autonomy, heterogeneity
 - different forms of (data) heterogeneity
- Data/Information Integration
 - integrated access to (heterogeneous) data originating from multiple sources
- Enterprise Application Integration
 - integration of (heterogeneous, coarse-grained) applications within an enterprise (vs. development of new application)
 - integration across different middleware platforms
- Business-to-business Integration
 - support interactions, integration of business processes among trading partners, across company boundaries
 - foundation for e-business, e-commerce