
WS 2012/13 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 4
Remote Procedure Calls and

Distributed Transactions

© Prof.Dr.-Ing. Stefan Deßloch

Outline

n  Remote Procedure Call
n  concepts

n  IDL, principles, binding

n  variations
n  remote method invocation

n  example: Java RMI

n  stored procedures

n  Distributed Transaction Processing
n  transactional RPC
n  X/Open DTP

n  Summary

WS 2012/13 2

© Prof.Dr.-Ing. Stefan Deßloch

Communication and Distributed Processing

n  Distributed (Information) System
n  consists of (possibly autonomous) subsystems
n  jointly working in a coordinated manner

n  How do subsystems communicate?
n  Remote Procedure Calls (RPC)

n  transparently invoke procedures located on other machines

n  Peer-To-Peer-Messaging
n  Message Queuing

n  Transactional Support (ACID properties) for distributed processing
n  Server/system components are Resource Managers
n  (Transactional) Remote Procedure Calls (TRPC)
n  Distributed Transaction Processing

© Prof.Dr.-Ing. Stefan Deßloch

Remote Procedure Call (RPC)

n  Goal: Simple programming model for distributed applications
n  based on procedure as an invocation mechanism for distributed components

n  Core mechanism in almost every form of middleware
n  Distributed programs can interact (transparently) in heterogeneous

environments
n  network protocols
n  programming languages
n  operating systems
n  hardware platforms

n  Important concepts
n  Interface Definition Language (IDL)
n  Proxy (Client Stub)
n  Skeleton (Server Stub)

Interface Definition
Language (IDL)

Skeleton Proxy Header files

IDL Compiler

WS 2012/13 3

© Prof.Dr.-Ing. Stefan Deßloch

How RPC Works

n  Define an interface for the remote procedure using an IDL
n  abstract representation of procedure

n  input and output parameters

n  can be independent of programming languages

n  Compile the interface using IDL-compiler, resulting in
n  client stub (proxy)
n  server stub (skeleton)
n  auxiliary files (header files, …)

n  Client stub (proxy)
n  compiled and linked with client program
n  client program invokes remote procedure by invoking the (local) client stub
n  implements everything to interact with the server remotely

n  Server stub (skeleton)
n  implements the server portion of the invocation
n  compiled and linked with server code
n  calls the actual procedure implemented at the server

© Prof.Dr.-Ing. Stefan Deßloch

RPC

Application

Application Proxy

RPC runtime

RPC runtime

Skeleton

Client Server

Call
order

PACK
ARGUMENT

SEND RECEIVE UNPACK
ARGUMENT

order

WORK

RETURN PACK SEND RECEIVE UNPACK
RESULT

(continue)

CALL
PACKET

RETURN
PACKET

(1) Client calls the
local proxy

(2) Client proxy marshals
(packs) arguments to

„order“

(3) Client runtime system
sends the call packet

(arguments and
procedure name)

(4) Server
runtime

receives the
message
and calls
the right

stub

(5) Server stub
unpacks the

arguments and
calls the server

program

(6) The
„order“

program runs
as if it were
called locally.
Results flow
back to the

caller by
reversing the
procedure.

WS 2012/13 4

© Prof.Dr.-Ing. Stefan Deßloch

Binding in RPC

n  Before performing RPC, the client must first locate and bind to the server
n  create/obtain an (environment-specific) handle to the server
n  encapsulates information such as IP address, port number, Ethernet address, …

n  Static binding
n  handle is "hard-coded" into the client stub at compile-time
n  advantages: simple and efficient
n  disadvantages: client and server are tightly coupled

n  server location change requires recompilation
n  dynamic load balancing across multiple (redundant) servers is not possible

n  Dynamic binding
n  utilizes a name and directory service

n  based on logical names, signatures of procedures
n  server registers available procedure with the N&D server
n  client asks for server handle, uses it to perform RPC
n  requires lookup protocol/API

n  may be performed inside the client stub (automatic binding) or outside
n  opportunities for load balancing, more sophisticated selection (traders)

n  Location transparency usually means that a remote procedure is invoked just like a
local procedure

n  Binding process for remote and local procedures usually differ

© Prof.Dr.-Ing. Stefan Deßloch

RPC Variation 1: Distributed Objects

n  Basic Idea: Evolve RPC concept for objects
n  application consists of distributed object components
n  object services are invoked using Remote Method Invocation (RMI)

n  Utilizes/matches advantages of object-oriented computing
n  object identity
n  encapsulation: object manipulated only through methods
n  inheritance, polymorphism
n  interface vs. implementation
n  reusability

WS 2012/13 5

© Prof.Dr.-Ing. Stefan Deßloch

Distributed Objects with Java RMI

n  Mechanism for
communication

n  between Java programs
n  between Java programs and

applets
n  running in different JVMs,

possibly on different nodes

n  Capabilities
n  finding remote objects
n  transparent communication

with remote objects
n  loading byte code for remote

objects

Client

Directory Service

Server RMI

RMI

RMI

© Prof.Dr.-Ing. Stefan Deßloch

Java RMI – Development

n  Java is used as the IDL and development programming language
n  Development steps

1.  Defining a remote interface (e.g., Order)
2.  Implementing server object class (e.g., OrderImpl, which implements Order)

n  only application logic; communication infrastructure not "visible"

3.  Implement client object, invocation of remote (server) object
n  locate the remote object using the RMI registry
n  invoke methods on remote object using the remote interface

4.  Provide server code for
n  creating a server object (instantiate server object class)
n  registering the server object with the RMI registry

WS 2012/13 6

© Prof.Dr.-Ing. Stefan Deßloch

Example - Class and Interface Relationships

Remote

UnicastRemoteObject

Order

OrderImpl

OrderServer

OrderClient

extends

extends implements stub variable
declaration

call via
stub

create

client server

'marker'
interface

class providing remote
server object 'infrastructure'

© Prof.Dr.-Ing. Stefan Deßloch

Java RMI – Deployment and Runtime

n  Deployment
n  generate stub and skeleton using RMI

compiler
n  invoke server code for creating and

registering the server object

n  Runtime
n  run the client application
n  issuing a server object lookup in the client

application will result in transferring a client
stub object (implementing the remote
interface) to the client application

n  stub class needs to be loaded into JVM on the
client, either through local class path or
dynamically over the network

n  invoking methods on the remote interface
will be carried out using stubs/skeletons as
discussed earlier

Interface Definition
Language (Java)

Skeleton Stub/Proxy

RMI Compiler

WS 2012/13 7

© Prof.Dr.-Ing. Stefan Deßloch

RPC Variation 2: Stored Procedures

n  Named persistent code to be invoked in SQL, executed by the DBMS
n  SQL CALL statement

n  Created directly in a DB schema
n  Stored Procedure creation requires

n  header (signature): consists of a name and a (possibly empty) list of parameters.
n  may specify parameter mode: IN, OUT, INOUT
n  may return result sets

n  body (implementation): using SQL procedural extensions or external programming
language (e.g., Java)

n  Invocation of stored procedures
n  using CALL statement through the usual DB access approaches (e.g., JDBC – see

CallableStatement)
n  RPC is not transparent!
n  generic invocation mechanism, no stubs/skeletons involved)

n  in the scope of an existing DB connection, active transaction

© Prof.Dr.-Ing. Stefan Deßloch

RPCs and Transactions

n  Example scenario for T: debit/credit
n  T invokes debit procedure (ST1),

modifying DB1
n  T performs credit operation on DBS2,

modifying DB2

n  Need transactional guarantees for T
n  Program structure of T

 BOT
 CALL debit(…)
 CONNECT (DB2)
UPDATE ACCOUNTS SET …
DISCONNECT
 EOT

n  Requires coordination of distributed
transaction

n  based on 2PC

presentation

application
logic

resource
management

client

DB1 DB2

ST1

DBS1

T

DBS2

P

distributed TA

WS 2012/13 8

© Prof.Dr.-Ing. Stefan Deßloch

Transactional RPC (TRPC)

n  Servers are resource managers
n  RPCs are issued in the context of a transaction

n  demarcation (BOT, EOT) usually happens on the client

n  TRPC-Stub
n  like RPC-Stub
n  additional responsibilities for TA-oriented communication

n  TRPC requires the following additional steps
n  binding of RPC to transactions using TRID
n  notifying TA-Mgr about RM-Calls if performed through RPC (register participant of

TA)
n  binding processes to transactions: failures (crashes) resulting in process

termination should be communicated to the TA-Mgr

© Prof.Dr.-Ing. Stefan Deßloch

X/OPEN – Standard for Distributed TA Processing

n  Resource Manager
n  recoverable
n  supports external coordination of TAs using

2PC protocol (XA-compliant)
n  TA-Mgr

n  coordinates, controls RMs
n  Application Program

n  demarcates TA
(TA-brackets)

n  invokes RM services
n  e.g., SQL-statements

n  in distributed environment:
performs (T)RPCs

n  Transactional Context
n  TRID generated by TA-Mgr at BEGIN
n  established at the client
n  passed along (transitively) with RM-requests, RPCs

TX-Interface

XA-Interface

Resource-Mgr

TA-Mgr

Application

Request

Begin
Commit
Rollback

Join
Prepare, Commit,

Rollback

(TM)

(RM)

(AP)

local environment

WS 2012/13 9

© Prof.Dr.-Ing. Stefan Deßloch

Interactions in a Local Environment

1.  AP -> TM: begin() – establishes transaction context, global TRID
2.  TM -> RM: start() – TM notifies frequently used RMs about the new global

transaction, so that RM can associate future AP requests with the TRID
3.  AP -> RM: request – the RM

1.  first registers with the TM to join the global transaction (unless it was already
notified in (2) above), then

2.  processes the AP request

4.  AP -> TM: commit() (or rollback) – TM will interact with RMs to complete the
transaction using the 2PC protocol

A thread of control is associated with at most one TRID at a time. An AP request

is implicitly associated with a TRID through the current thread.

© Prof.Dr.-Ing. Stefan Deßloch

X/OPEN DTP – Distributed Environment

n  Outgoing TRPC: CM acts like a RM, notifies local (superior) TM that TA
involves remote RMs

n  Incoming TRPC: CM notifies local (subordinate) TM about incoming global TA
n  Superior TM will drive hierarchical 2PC over remote TM/RMs through CM

Recource-Mgr
RM

Recource-Mgr
RM

CM
Comm.-Mgr Application CM

Comm.-Mgr Server

TA-Mgr
TM

TA-Mgr
TM

Outgoing
Incoming Start

Begin
Commit
Abort

Prepare, Commit, Abort
RM Request

Prepare, Commit, Abort
RM Request

Remote
Request

TRPC

WS 2012/13 10

© Prof.Dr.-Ing. Stefan Deßloch

Summary

n  Remote Procedure Call
n  important core concept for distributed IS
n  RPC model is based on

n  interface definitions using IDL
n  client stub (proxy), server stub (skeleton) for transparent invocation of remote procedure
n  binding mechanism

n  RPC Variations
n  Remote Method Invocation

n  supported in object-based middleware (e.g., CORBA, Enterprise Java)

n  Stored Procedures

n  Transaction support for RPCs
n  distributed transaction processing guarantees atomicity of global TA
n  transactional RPC
n  X/Open DTP as foundation for standardized DTP

n  variations/enhancements appear in object-based middleware (CORBA OTS, Java JTA/JTS)

© Prof.Dr.-Ing. Stefan Deßloch

JAVA RMI EXAMPLE
Appendix

WS 2012/13 11

© Prof.Dr.-Ing. Stefan Deßloch

Example Scenario: Pizza-Service

* *
* *

* *

Customer
id: OID
name: String
create
delete
currentOrder
totalAllOrders

Order
id: OID
orderDate: Date
deliveryDate: Date
create
addItem
deliver
cancel
totalPrice

Address
id: OID
zip: int
city: String
street: String

Supplier
id: OID
name: String

Item
id: OID
count: int
create
delete

1

*

* 1

1
1

1
1

orders

address

address

orderItems

Pizza
id: OID
name: String
price: float
getPrice
setPrice

Ingredient
id: OID
name: String
stock: int

pizzas

ingredients

© Prof.Dr.-Ing. Stefan Deßloch

Example – Remote Service Interface

 import java.rmi.*;
import java.util.Date;
public interface Order extends Remote {

 public void addItem(int pizzaId, int number)
 throws RemoteException;
 public Date getDeliveryDate() throws
 RemoteException;
 public Date setDeliveryDate (Date newDate) throws
 RemoteException;

…
 }

...
 import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.*;

WS 2012/13 12

© Prof.Dr.-Ing. Stefan Deßloch

Example – Server Class Implementation

 ...
public class OrderImpl

 extends UnicastRemoteObject
 implements Order {
 private Vector fItems;
 private Date fDeliveryDate;
 public OrderImpl(String name) throws RemoteException {
 super();
 try {
 Naming.rebind(name, this);
 fItems = new Vector();
 fDeliveryDate = null;
 }
 catch (Exception e) {
 System.err.println(“Output: “ + e.getMessage());
 e.printStackTrace();
 }
 }

...

'export' Order object
for accepting

requests

register
with name

server

© Prof.Dr.-Ing. Stefan Deßloch

Example – Server Class (continued)

 ...
public void addItem(int pizzaId, int number)

 throws RemoteException {
 // assuming class Item is known
 Item item = new Item(pizzaId, number);
 fItems.addElement(item);
 }
 ... // Impl. of other methods }

WS 2012/13 13

© Prof.Dr.-Ing. Stefan Deßloch

Example – Server

 ...
import java.rmi.*;
import java.server.*;
public class OrderServer {

 public static void main(String args[]) {
 try {
 OrderImpl order = new OrderImpl(“my_order”);
 System.out.println(“Order server is running”);
 }
 catch (Exception e) {
 System.err.println(“Exception: “ + e.getMessage());
 e.printStackTrace();
 }
 }
 }

remote object
name (later used
in client lookup)

© Prof.Dr.-Ing. Stefan Deßloch

Example – Client Program

 ...
import java.rmi.*;
public class OrderClient {

 public static void Main(String args[]) {
 try {
 Order order = (Order)
 Naming.lookup("/my_order");
 int pizzaId = Integer.parseInt(args[0]);
 int number = Integer.parseInt(args[1]);
 order.addItem(pizzaId, number);
 }
 catch (Exception e) {
 System.err.println(“system error: “ + e);
 }
 }
 }

returns an instance of the stub
class (generated from the remote

Order interface)

WS 2012/13 14

© Prof.Dr.-Ing. Stefan Deßloch

Example – Compile, Generate Stub, Run

n  Compile:
javac Order.java OrderImpl.java OrderClient.java OrderServer.java

n  Generate stub and skeleton code:
rmic OrderImpl

n  Administrative steps:
n  Start directory server: rmiregistry
n  Start RMI-Servers: java OrderServer
n  Run clients: java OrderClient

