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Communication and Distributed Processing 

n  Distributed (Information) System 
n  consists of (possibly autonomous) subsystems 
n  jointly working in a coordinated manner 

n  How do subsystems communicate? 
n  Remote Procedure Calls (RPC) 

n  transparently invoke procedures located on other machines 

n  Peer-To-Peer-Messaging 
n  Message Queuing 

n  Transactional Support (ACID properties) for distributed processing 
n  Server/system components are Resource Managers 
n  (Transactional) Remote Procedure Calls (TRPC) 
n  Distributed Transaction Processing 
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Remote Procedure Call (RPC) 

n  Goal: Simple programming model for distributed applications 
n  based on procedure as an invocation mechanism for distributed components 

n  Core mechanism in almost every form of middleware 
n  Distributed programs can interact (transparently) in heterogeneous 

environments 
n  network protocols 
n  programming languages 
n  operating systems  
n  hardware platforms 

n  Important concepts 
n  Interface Definition Language (IDL) 
n  Proxy (Client Stub) 
n  Skeleton (Server Stub) 

Interface Definition 
Language (IDL) 

Skeleton Proxy Header files 

IDL Compiler 
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How RPC Works 

n  Define an interface for the remote procedure using an IDL 
n  abstract representation of procedure 

n  input and output parameters 

n  can be independent of programming languages 

n  Compile the interface using IDL-compiler, resulting in 
n  client stub (proxy) 
n  server stub (skeleton) 
n  auxiliary files (header files, …) 

n  Client stub (proxy) 
n  compiled and linked with client program 
n  client program invokes remote procedure by invoking the (local) client stub 
n  implements everything to interact with the server remotely 

n  Server stub (skeleton) 
n  implements the server portion of the invocation 
n  compiled and linked with server code 
n  calls the actual procedure implemented at the server 
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Binding in RPC 

n  Before performing RPC, the client must first locate and bind to the server 
n  create/obtain an (environment-specific) handle to the server 
n  encapsulates information such as IP address, port number, Ethernet address, … 

n  Static binding 
n  handle is "hard-coded" into the client stub at compile-time 
n  advantages: simple and efficient 
n  disadvantages: client and server are tightly coupled 

n  server location change requires recompilation 
n  dynamic load balancing across multiple (redundant) servers is not possible 

n  Dynamic binding 
n  utilizes a name and directory service 

n  based on logical names, signatures of procedures 
n  server registers available procedure with the N&D server 
n  client asks for server handle, uses it to perform RPC 
n  requires lookup protocol/API 

n  may be performed inside the client stub (automatic binding) or outside 
n  opportunities for load balancing, more sophisticated selection (traders) 

n  Location transparency usually means that a remote procedure is invoked just like a 
local procedure 

n  Binding process for remote and local procedures usually differ 
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RPC Variation 1: Distributed Objects 

n  Basic Idea: Evolve RPC concept for objects 
n  application consists of distributed object components 
n  object services are invoked using Remote Method Invocation (RMI) 

n  Utilizes/matches advantages of object-oriented computing 
n  object identity 
n  encapsulation: object manipulated only through methods 
n  inheritance, polymorphism 
n  interface vs. implementation 
n  reusability 
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Distributed Objects with Java RMI 

n  Mechanism for 
communication 

n  between Java programs 
n  between Java programs and 

applets 
n  running in different JVMs, 

possibly on different nodes 

n  Capabilities 
n  finding remote objects 
n  transparent communication 

with remote objects 
n  loading byte code for remote 

objects 

Client 

Directory Service 

Server RMI 

RMI 

RMI 
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Java RMI – Development 

n  Java is used as the IDL and development programming language 
n  Development steps 

1.  Defining a remote interface (e.g., Order ) 
2.  Implementing server object class (e.g., OrderImpl, which implements Order ) 

n  only application logic; communication infrastructure not "visible" 

3.  Implement client object, invocation of remote (server) object 
n  locate the remote object using the RMI registry 
n  invoke methods on remote object using the remote interface 

4.  Provide server code for 
n  creating a server object (instantiate server object class) 
n  registering the server object with the RMI registry 
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Example - Class and Interface Relationships 

Remote 

UnicastRemoteObject 

Order 

OrderImpl 

OrderServer 

OrderClient 

extends 

extends implements stub variable 
declaration 

call via 
stub 

create 

client server 

'marker' 
interface 

class providing remote 
server object 'infrastructure' 
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Java RMI – Deployment and Runtime 

n  Deployment 
n  generate stub and skeleton using RMI 

compiler 
n  invoke server code for creating and 

registering the server object 

n  Runtime 
n  run the client application 
n  issuing a server object lookup in the client 

application will result in transferring a client 
stub object (implementing the remote 
interface) to the client application 

n  stub class needs to be loaded into JVM on the 
client, either through local class path or 
dynamically over the network 

n  invoking methods on the remote interface 
will be carried out using stubs/skeletons as 
discussed earlier 

Interface Definition 
Language (Java) 

Skeleton Stub/Proxy 

RMI Compiler 
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RPC Variation 2: Stored Procedures 

n  Named persistent code to be invoked in SQL, executed by the DBMS 
n  SQL CALL statement 

n  Created directly in a DB schema 
n  Stored Procedure creation requires 

n  header (signature): consists of a name and a (possibly empty) list of parameters. 
n  may specify parameter mode: IN, OUT, INOUT 
n  may return result sets 

n  body (implementation): using SQL procedural extensions or external programming 
language (e.g., Java) 

n  Invocation of stored procedures 
n  using CALL statement through the usual DB access approaches (e.g., JDBC – see 

CallableStatement ) 
n  RPC is  not transparent! 
n  generic invocation mechanism, no stubs/skeletons involved) 

n  in the scope of an existing DB connection, active transaction 
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RPCs and Transactions 

n  Example scenario for T: debit/credit 
n  T invokes debit procedure (ST1), 

modifying DB1 
n  T performs credit operation on DBS2, 

modifying DB2 

n  Need transactional guarantees for T 
n  Program structure of T 

 BOT 
 CALL debit( … ) 
 CONNECT (DB2) 
UPDATE ACCOUNTS SET …  
DISCONNECT 
 EOT 

n  Requires coordination of distributed 
transaction 

n  based on 2PC 

presentation 

application 
logic 

resource 
management 

client 

DB1 DB2 

ST1 

DBS1 

T 

DBS2 

P 

distributed TA 
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Transactional RPC (TRPC) 

n  Servers are resource managers 
n  RPCs are issued in the context of a transaction 

n  demarcation (BOT, EOT) usually happens on the client 

n  TRPC-Stub 
n  like RPC-Stub 
n  additional responsibilities for TA-oriented communication 

n  TRPC requires the following additional steps 
n  binding of RPC to transactions using TRID 
n  notifying TA-Mgr about RM-Calls if performed through RPC (register participant of 

TA) 
n  binding processes to transactions: failures (crashes) resulting in process 

termination should be communicated to the TA-Mgr 
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X/OPEN – Standard for Distributed TA Processing 

n  Resource Manager 
n  recoverable 
n  supports external coordination of TAs using  

2PC protocol (XA-compliant) 
n  TA-Mgr 

n  coordinates, controls RMs 
n  Application Program 

n  demarcates TA 
(TA-brackets) 

n  invokes RM services 
n  e.g., SQL-statements 

n  in distributed environment: 
performs (T)RPCs 

n  Transactional Context 
n  TRID generated by TA-Mgr at BEGIN 
n  established at the client 
n  passed along (transitively) with RM-requests, RPCs 

TX-Interface 

XA-Interface 

Resource-Mgr 

TA-Mgr 

Application 

Request 

Begin 
Commit 
Rollback 

Join 
Prepare, Commit, 

Rollback 

(TM) 

(RM) 

(AP) 

local environment 



WS 2012/13 9 

© Prof.Dr.-Ing. Stefan Deßloch 

Interactions in a Local Environment 

1.  AP -> TM: begin() – establishes transaction context, global TRID 
2.  TM -> RM: start() – TM notifies frequently used RMs about the new global 

transaction, so that RM can associate future AP requests with the TRID 
3.  AP -> RM: request – the RM  

1.  first registers with the TM to join the global transaction (unless it was already 
notified in (2) above), then  

2.  processes the AP request 

4.  AP -> TM: commit() (or rollback) – TM will interact with RMs to complete the 
transaction using the 2PC protocol 

 
A thread of control is associated with at most one TRID at a time. An AP request 

is implicitly associated with a TRID through the current thread. 
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X/OPEN DTP – Distributed Environment 

n  Outgoing TRPC: CM acts like a RM, notifies local (superior) TM that TA 
involves remote RMs 

n  Incoming TRPC: CM notifies local (subordinate) TM about incoming global TA 
n  Superior TM will drive hierarchical 2PC over remote TM/RMs through CM 

Recource-Mgr 
RM 

Recource-Mgr 
RM 

CM 
Comm.-Mgr Application CM 

Comm.-Mgr Server 

TA-Mgr 
TM  

TA-Mgr 
TM  

Outgoing 
Incoming Start 

Begin 
Commit 
Abort 

Prepare, Commit, Abort 
RM Request 

Prepare, Commit, Abort 
RM Request 

Remote 
Request 

TRPC 
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Summary 

n  Remote Procedure Call 
n  important core concept for distributed IS 
n  RPC model is based on  

n  interface definitions using IDL 
n  client stub (proxy), server stub (skeleton) for transparent invocation of remote procedure 
n  binding mechanism 

n  RPC Variations 
n  Remote Method Invocation 

n  supported in object-based middleware (e.g., CORBA, Enterprise Java) 

n  Stored Procedures 

n  Transaction support for RPCs 
n  distributed transaction processing guarantees atomicity of global TA 
n  transactional RPC 
n  X/Open DTP as foundation for standardized DTP 

n  variations/enhancements appear in object-based middleware (CORBA OTS, Java JTA/JTS) 
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JAVA RMI EXAMPLE 
Appendix 
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Example Scenario: Pizza-Service 

* *
* * 

* * 

Customer 
id: OID 
name: String 
create 
delete 
currentOrder 
totalAllOrders 

Order 
id: OID 
orderDate: Date 
deliveryDate: Date 
create 
addItem 
deliver 
cancel 
totalPrice 

Address 
id: OID 
zip: int 
city: String 
street: String 

Supplier 
id: OID 
name: String 

Item 
id: OID 
count: int 
create 
delete 

1 

* 

* 1 

1 
1 

1 
1 

orders 

address 

address 

orderItems 

Pizza 
id: OID 
name: String 
price: float 
getPrice 
setPrice 

Ingredient 
id: OID 
name: String 
stock: int 

pizzas 

ingredients 
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Example – Remote Service Interface 

 import java.rmi.*; 
import java.util.Date; 
public interface Order extends Remote { 

 public void addItem(int pizzaId, int number) 
    throws RemoteException; 
 public Date getDeliveryDate() throws 
      RemoteException; 
 public Date setDeliveryDate (Date newDate) throws    
 RemoteException; 

… 
 } 

 
 
... 
 import java.rmi.*; 
import java.rmi.server.UnicastRemoteObject; 
import java.util.*; 
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Example – Server Class Implementation 

 ... 
public class OrderImpl  

 extends UnicastRemoteObject  
 implements Order { 
  private Vector fItems; 
  private Date fDeliveryDate; 
  public OrderImpl(String name) throws RemoteException { 
     super(); 
     try { 
         Naming.rebind(name, this); 
         fItems = new Vector(); 
         fDeliveryDate = null; 
           } 
     catch (Exception e) { 
         System.err.println(“Output: “ + e.getMessage()); 
         e.printStackTrace(); 
    } 
   } 

... 

'export' Order object 
for accepting 

requests 

register 
with name 

server 
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Example – Server Class (continued) 

 ... 
public void addItem(int pizzaId, int number ) 

  throws RemoteException { 
  // assuming class Item is known 
  Item item = new  Item(pizzaId, number); 
  fItems.addElement(item); 
   } 
  ... // Impl. of other methods  } 
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Example – Server 

 ... 
import java.rmi.*; 
import java.server.*; 
public class OrderServer { 

 public static void main(String args[]) { 
    try { 
       OrderImpl order = new OrderImpl(“my_order”); 
       System.out.println(“Order server is running”); 
  } 
    catch (Exception e) { 
        System.err.println(“Exception: “ + e.getMessage()); 
        e.printStackTrace(); 
   } 
  } 
 } 

remote object 
name (later used 
in client lookup) 

© Prof.Dr.-Ing. Stefan Deßloch 

Example – Client Program 

 ... 
import java.rmi.*; 
public class OrderClient { 

 public static void Main(String args[]) { 
 try { 
  Order order = (Order) 
        Naming.lookup("/my_order"); 
  int pizzaId = Integer.parseInt(args[0]); 
  int number = Integer.parseInt(args[1]); 
  order.addItem(pizzaId, number); 
   } 
 catch (Exception e) { 
  System.err.println(“system error: “ + e); 
   } 
  } 
 } 

returns an instance of the stub 
class (generated from the remote 

Order interface) 



WS 2012/13 14 

© Prof.Dr.-Ing. Stefan Deßloch 

Example – Compile, Generate Stub, Run 

n  Compile: 
javac Order.java OrderImpl.java OrderClient.java OrderServer.java 

n  Generate stub and skeleton code: 
rmic OrderImpl 

n  Administrative steps: 
n  Start directory server: rmiregistry 
n  Start RMI-Servers: java OrderServer 
n  Run clients: java OrderClient 


