
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme

Geb. 36, Raum 329
Tel. 0631/205 3275

dessloch@informatik.uni-kl.de

Chapter 6 – Object Persistence, Relationships
and Queries

© Prof.Dr.-Ing. Stefan Deßloch

Object Persistence

n  Persistent object:
n  Lifetime of a persistent object may exceed the execution of individual applications

n  Goals
n  shield the application from existing data stores

n  data model, query language, API, schema

n  simplification of programming model for persistent data access and management
n  no explicit interaction with data source using SQL, JDBC, …
n  eliminate "object/relational impedance mismatch"

objects relations

structure  complex values, collections
 class hierarchies (inheritance)

 flat tables

relationships  binary
 1:1, 1:n, n:m (using collections)
 uni-/bi-directional references

 binary
 1:1, 1:n
 value-based, symmetric

behavior  methods

access paradigm  object navigation (follow references)  declarative, set-oriented (queries)

© Prof.Dr.-Ing. Stefan Deßloch

Object-Relational DBMS and JDBC

n  Materializing instances of SQL user-defined types as instances of
corresponding Java classes

n  manipulated using existing result set or prepared statement interfaces
n  get/setObject(<column>) simply "works" for structured types
n  Example:

ResultSet rs = stmt.executeQuery("SELECT e.addr FROM Employee e");
rs.next();
Residence addr = (Residence)rs.getObject(1);

n  Still requires knowledge of DB-schema, explicit SQL statements for retrieval,
insertion, update, deletion of objects

n  No support for building Java object references from DB-object relationships

CREATE TYPE residence (
 door INTEGER,
 street VARCHAR(100),
 city VARCHAR(50))

public class Residence {
 public int door;
 public String street;
 public String city; }

Java SQL

© Prof.Dr.-Ing. Stefan Deßloch

Object Persistence Services & Frameworks

n  Basic approach (both in an application server and stand-alone appl. context)
n  application interacts only with objects

n  create, delete
n  access/modify object state variables
n  method invocation

n  persistence infrastructure maps interactions with objects to operations on data
sources

n  e.g., INSERT, UPDATE, SELECT, DELETE

n  May involve definition of a "mapping" from objects to data store schema
n  mapping has to cover

n  datatypes
n  classes, class hierarchies
n  identifiers
n  relationships

n  see course "Informationssysteme" (EER -> RM) for possible mapping alternatives

Caution: inherent performance impact!

© Prof.Dr.-Ing. Stefan Deßloch

Object Persistence

n  Aspects of persistence (Atkinson et.al, SIGMOD Record 1996)
n  Orthogonal persistence

n  persistence independent of data type, class
n  instances of the same class may be transient or persistent

n  Transitive persistence (aka persistence by reachability)
n  objects can be explicitly designated to become persistent (i.e., roots)
n  objects referenced by persistent objects automatically become persistent, too

n  Persistence independence (aka transparent persistence)
n  code operating on transient and persistent objects is (almost) the same
n  "client object" side: no impact when interacting with persistent objects

n  application may have to explicitly "persist" an object, but continues to use the same interface for
interacting with the persistent object

n  interactions with a data store are not visible to/initiated by the client object, but happen
automatically (e.g., when object state is modified or at EOT)

n  "persistent object" side: no special coding for "implementing" persistence

n  Realizing the above aspects
n  requires significant efforts in programming language infrastructure

n  above goals are almost never fully achieved

n  may be considered "dangerous" (transitive persistence)

© Prof.Dr.-Ing. Stefan Deßloch

Persistence Programming Model Design Points

n  Persistence in application server middleware
n  surfaced at the distributed object programming model, or
n  supported at the programming language level

n  Determining object persistence
n  Statically (compile-time) – all/no objects of a certain class/type/programming

model concept are persistent, or
n  Semi-dynamic – objects of preselected classes (persistence-capable) may become

persistent dynamically at runtime, or
n  Dynamic (also: orthogonal persistence) – any object may be transient or persistent

n  Identifying objects
n  implicit OID, or
n  explicit (visible) object key (primary key)

n  Locating/referencing persistent objects
n  by object key (lookup)
n  by query

© Prof.Dr.-Ing. Stefan Deßloch

Persistence Programming Model Design Points (2)

n  Accessing object state (from client, from server/persistent object)
n  (public) member variables, or
n  object methods (getter/setter, …)

n  Updating persistent object state
n  explicit (methods for store, load, …), or
n  automatic (immediate, deferred), or
n  combination

n  Handling dependencies/relationships
n  Referential integrity
n  Lazy vs. eager loading
n  “Pointer swizzling”

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – Persistent Object Service

n  Goal: uniform interfaces for realizing object persistence
n  POS (Persistent Object Service) components

n  PO: Persistent Object
n  are associated with persistent state

through a PID (persistent object
identifier)

n  PID describes data location

n  POM: Persistent Object Manager
n  mediator between POs and PDS
n  realizes interface for persistence

operations
n  interprets PIDs
n  implementation-independent

n  PDS: Persistent Data Service
n  mediator between POM/PO and

persistent data store
n  data exchange between object and

data store as defined by protocols
n  Datastore

n  stores persistent object data
n  may implement Datastore_CLI (encapsulates ODBC/CLI)

PO PO
PO PO

PO

client app

POM

DDO ODMG DA

RDBMS ODBMS
simple
object
store

Datastore_CLI

© Prof.Dr.-Ing. Stefan Deßloch

CORBA Persistence Model

n  CORBA object is responsible for realizing its own persistence
n  can use PDS services and functions
n  implicit persistence control

n  client is potentially unaware of object persistence aspects
(client persistence independence)

n  explicit persistence control
n  persistent object implements PO interface, which can then be used by the client

n  Explicit persistence control by CORBA client:
n  client creates PID, PO using factory objects
n  PO Interface

n  connect/disconnect – automatic persistence for the duration of a "connection"
n  store/restore/delete – explicit transfer of data
n  delegated to POM, PDS

n  caution!: CORBA object reference and PID are different concepts
n  client can "load" the same CORBA object with data from different persistent object states

© Prof.Dr.-Ing. Stefan Deßloch

Persistence Protocols

n  CORBA Persistence Service defines three protocols
n  Direct Access (DA) protocols

n  PO stores persistent state using so-called direct access data objects (DADOs)
n  CORBA objects whose interfaces only have attributes
n  defined using Data Definition Language (IDL subset)

n  precompilation is specific to CORBA/PDS environment

n  DADOs may persistently reference other DADOs, CORBA objects

n  ODMG'93 protocols
n  utilizes ODMG standard for object-oriented databases
n  persistent objects are programming language objects, not CORBA objects
n  definition of persistence "schema" similar to DA protocol (is a superset)

n  own DDL (ODL) for defining POs

n  Dynamic Data Object (DDO) protocols
n  "generic", self-describing DO

n  methods for read/update/add of attributes and values
n  manipulation of meta data

n  used for accessing record-based data sources (e.g. RDBMS) using DataStore CLI interface
n  CLI for CORBA

n  Protocols are employed in the implementation of POs

© Prof.Dr.-Ing. Stefan Deßloch

EJB Version 2 – Entity Beans

n  Persistence is supported at the EJB/distributed object programming model
n  explicit type of EJB for (static) persistent objects
n  invocation of remote object methods
n  life-cycle interface (Home interface)

n  create, retrieve, delete
n  findByPrimaryKey
n  additional, bean-specific finder methods

n  primary-key class for uniquely identifying persistent bean objects

n  Follows transparent persistence approach on the client
n  persistence-related operations (e.g., synchronizing object state with DB contents)

are hidden from the client
n  automatic update of persistent object state

© Prof.Dr.-Ing. Stefan Deßloch

Entity Beans

n  Object persistence logic is implemented separately from business logic
n  entity bean "implements" call-back methods for persistence

n  ejbCreate – insert object state into DB
n  ejbLoad – retrieve persistent state from DB
n  ejbStore – update DB to reflect (modified) object state
n  ejbRemove – remove persistent object state

n  Manipulation of CMP fields through access methods (getfield(), setfield(...))
n  access within methods of the same EB
n  client access can be supported by including access methods in the remote interface
n  provides additional flexibility for container implementation

n  lazy loading of individual attributes
n  individual updates for modified attributes

© Prof.Dr.-Ing. Stefan Deßloch

Container-Managed Persistence (CMP)

n  Bean developer defines an abstract persistence schema in the deployment
descriptor

n  persistent attributes (CMP fields)
n  Mapping of CMP fields to DB-structures (e.g., columns) in deployment phase

n  depends on DB, data model
n  tool support

n  top-down, bottom-up, meet-in-the-middle

n  Container saves object state
n  bean does not worry about persistence mechanism

n  call-back methods don't contain DB access operations
n  may be used to compress/decompress values, derive attribute values, …

© Prof.Dr.-Ing. Stefan Deßloch

Bean-Managed Persistence (BMP)

n  Callback-methods contain explicit DB access operations
n  useful for interfacing with legacy systems or for realizing complex DB-mappings

(not supported directly by container or CMP tooling)

n  No support for container-managed relationships
n  Finder-methods

n  have to be implemented in Java
n  no support for EJB-QL

© Prof.Dr.-Ing. Stefan Deßloch

Entity Beans (and CORBA) - Problems

n  Distributed component vs. persistent object
n  granularity
n  potential overhead (and possible performance problems)

n  solution in EJB 2.0: local interfaces
n  but: semantic differences (call-by-value vs. call-by-reference)

n  complexity of development process

n  Missing support for class hierarchies with inheritance

© Prof.Dr.-Ing. Stefan Deßloch

JDO – Java Data Objects

n  JDO was developed as a standard for persistence in Java-based applications
n  first JDO specification 1.0 released in March 2002 (after ~ 3 years) through Suns

JCP (Java Community Process)
n  > 10 vendor implementations plus open-source projects
n  mandatory features and optional features in the specification (i.e., some optional

features are „standardized“ à promises better portability).
n  Features, elements

n  orthogonal, transitive persistence
n  native Java objects (inheritance)
n  byte code enhancement
n  mapping to persistence layer using XML-metadata
n  transaction support
n  JDO Query Language
n  JDO API
n  JDO identity
n  JDO life cycle
n  integration in application server standard (J2EE)

© Prof.Dr.-Ing. Stefan Deßloch

Persistence in JDO

n  (Semi-) dynamic persistence
n  Java class supports (optional) persistence (implements PersistenceCapable)
n  not all instances of the class need to be persistent

n  application can/must explicitly turn a transient object into a persistent object (and vice
versa)

n  Persistence logic is transparent for client at the Java level
n  interacting with transient and persistent objects is the same

n  Transitive persistence (i.e., by reachability)

© Prof.Dr.-Ing. Stefan Deßloch

JDO API

PersistenceManagerFactory

n  manages connection to persistence layer
n  manages PersistenceManager pool

PersistenceManager

n  has connection to persistence layer
n  manages JDO instance cache

Transaction

n  realizes transactional behavior
together with persistence layer

Query

n  helps locate persistent objects

Extent

n  represents all instances of a class

1

1

1

1

1

0..n

0..n

0..n 0..1

use

© Prof.Dr.-Ing. Stefan Deßloch

PersistenceManager API - Example

1 Author author1 = new Author("John", "Doe");
2 PersistenceManager pm1 = pmf.getPersistenceManager();
3 pm1.currentTransaction.begin();
4 pm1.makePersistent(author1);
5 Object jdoID = pm1.getObjectId(author1);
6 pm1.currentTransaction.commit();
7 pm1.close();

 8 // Application decides that author1
9 // must be deleted
10 PersistenceManager pm2 = pmf.getPersistenceManager();
11 pm2.currentTransaction.begin();
12 Author author2 = (Author)pm2.getObjectById(jdoID);
13 pm2.deletePersistent(author2);
14 pm2.currentTransaction.commit();
15 pm2.close();

© Prof.Dr.-Ing. Stefan Deßloch

Byte-Code-Enhancement

n  Java bytecode (*.class) and metadata (*.jdo)
n  Same object class (now implements PersistenceCapable)
n  O/R-mapping specification is vendor-specific

MyClass.java

MyClass.java
MyClass.java JDO
meta data

MyClass.class MyClass.class Java
Compiler

JDO
Enhancer

Java Virtual Machine

JDO
run time environment

provided by application
developer

provided by JDO
vendor

© Prof.Dr.-Ing. Stefan Deßloch

Java Persistence API

n  Result of a major 'overhaul' of EJB specification for persistence, relationships,
and query support

n  simplified programming model
n  standardized object-to-relational mapping
n  inheritance, polymorphism, "polymorphic queries"
n  enhanced query capabilities for static and dynamic queries

n  API usage
n  from within an EJB environment/container
n  outside EJB, e.g., within a standard Java SE application

n  Support for pluggable, third-party persistence providers

© Prof.Dr.-Ing. Stefan Deßloch

Entities

n  "An entity is a lightweight persistent domain object"
n  entities are not remotely accessible (i.e., they are local objects)
n  no relationship with the EntityBeans concept, but co-existence

n  Simplified programming model for EJB entities
n  entity is a POJO (plain old Java object)

n  marked as Entity through annotations or deployment descriptor
n  no additional local or home interfaces required
n  no implementation of generic EntityBean methods needed

n  entity state (instance variables) is encapsulated, client access only through accessor or other
methods

n  use of annotations for persistence and relationship aspects
n  no XML deployment descriptor required

n  Entities and inheritance
n  abstract and concrete classes can be entities
n  entities may extend both non-entity and entity classes, and vice versa

© Prof.Dr.-Ing. Stefan Deßloch

Identity and Embeddable Classes

n  Entities must have primary keys
n  defined at the root, exactly once per class hierarchy
n  may be simple or composite

n  key class required for composite keys

n  must not be modified by the application
n  more strict than primary key in the RM

n  Embeddable classes
n  "fine-grained" classes used by an entity to represent state
n  instances are seen as embedded objects, do not have a persistent identity

n  mapped with the containing entities
n  not sharable across persistent entities

© Prof.Dr.-Ing. Stefan Deßloch

Requirements on Entity Class

n  Public, parameter-less constructor
n  Top-level class, not final, methods and persistent instance variables must not be final
n  Entity state is made accessible to the persistence provider runtime

n  either via instance variables (protected or package visible)
n  or via (bean) properties (getProperty/setProperty methods)
n  consistently throughout the entity class hierarchy

n  Collection-valued state variables have to be based on (generics of) specific classes in
java.util

© Prof.Dr.-Ing. Stefan Deßloch

Mapping to RDBMS

n  Entity mapping
n  default table/column names for entity classes and persistent fields

n  can be customized using annotations, deployment descriptor

n  mapping may define a primary table and one or more secondary tables for an
entity

n  state of an entity/object may be distributed across multiple tables

n  Inheritance mapping strategies supported for the mapping
n  single table with discriminator column (default)

n  table has columns for all attributes of any class in the hierarchy
n  tables stores all instances of the class hierarchy

n  horizontal partitioning
n  one table per entity class, with columns for all attributes (incl. inherited)
n  table stores only the direct instances of the class

n  vertical partitioning
n  one table per entity class, with columns for newly defined attributes (i.e., attributes

specific to the class)
n  table stores information about all (i.e., transitive) instances of the class

© Prof.Dr.-Ing. Stefan Deßloch

Entity Life Cycle and Persistence

n  Orthogonal persistence
n  instances of entity classes may be

transient or persistent
n  persistence property controlled by

application/client (e.g., a
SessionBean)

n  Entity manager manages entity
state and lifecycle within
persistence context

n  persist(obj) -> INSERT
n  merge(obj) -> UPDATE
n  remove(obj) -> DELETE
n  find(class, pKey) -> SELECT
n  refresh(obj) -> SELECT

entities are
associated with

a persistence
context

new

managed removed

detached

new()

persist()

remove()

refresh()

merge()

persistence context
ends

persist()

no persistent
ID yet

© Prof.Dr.-Ing. Stefan Deßloch

Relationships

n  Persistence model needs to be complemented by relationship support
n  represent relationships among data items (e.g., tuples) at the object level
n  support persistence of native programming language concepts for "networks" of

objects
n  references, pointers

n  Alternatives
n  value-based relationships at the object level (see relational data model)

n  requires to issue a query (over objects) to locate related object(s)
n  no "navigational" access

n  relationships are part of persistent object interface(s) or implementation
n  getter/setter methods or properties/fields to represent relationship roles of participating

entities
n  relationships are always binary, collection support required for 1:n, n:m
n  uni-directional or bi-directional representation

n  consistency?

n  separate relationship concept/service, independent of persistent object interfaces

© Prof.Dr.-Ing. Stefan Deßloch

CORBA Relationships

n  Relationship Service
n  management of object dependencies, separate from object state or interface
n  relationship involves: type, role, cardinality

n  type: types of objects that may participate in a specific relationship type
n  role: role names of participating entities

n  major goals
n  multi-directional use/navigation and relationship maintenance
n  decouple relationship from CORBA object reference maintained by each participating

object
n  graph traversal
n  attributes and behavior for relationships

n  generic IDL interfaces for roles, relationships, …
n  to be subtyped for application-specific relationships (e.g., Emp-Dept)
n  supplemented by additional interfaces for relationship graph traversal

n  Relationships are separate (CORBA) objects
n  highly dynamic, powerful, but very complex to use
n  not really suitable for (fine-grained) data-level relationships

© Prof.Dr.-Ing. Stefan Deßloch

EJB - Container-managed Relationships

n  Relationships can be defined in deployment descriptor or through annotations
n  part of abstract persistence schema

n  Relationships may be uni-directional ("reference") or bi-directional
n  Relationship types: 1:1, 1:n, n:1, n:m
n  Access methods for accessing objects participating in a relationship

n  like CMP field methods (get/set)
n  Java Collection interface for set-valued reference attributes

n  Container generates code for
n  relationship maintenance

n  cardinality, inverse relationship field consistency are guaranteed

n  persistent storage, involves mapping definition as well

n  No transitive persistence
n  relationship can only be established among entityBeans, which are already

persistent

n  Only supported for CMP EntityBeans

© Prof.Dr.-Ing. Stefan Deßloch

JDO – Relationships and Transitive Persistence

n  All PersistenceCapable objects reachable from persistent object through
standard Java references within an object graph are made persistent, too

n  No managed inverse relationships

Author1

Book1 Book2

Chapter1 Chapter2 Chapter1

If Author1 is made
persistent, then all objects
reachable (e.g., books
and chapters) are made
persistent, too!

© Prof.Dr.-Ing. Stefan Deßloch

Relationships in Java Persistence API

n  Relationships are represented in the same way as persistent attributes
n  member variables, get/set method pairs

n  Supports uni- and bi-directional binary relationships of the same types as EJB
CMR

n  but does not provide automatic maintenance of inverse relationships
n  a designated owning side "wins" at the persistent data store

n  Selective transitive persistence
n  defined using CASCADE options on relationships

n  Relationship mapping
n  represented using primary key/foreign key relationships
n  table for the "owning" side of the relationship contains the foreign key
n  N:M-relationships represented using a relationship table

© Prof.Dr.-Ing. Stefan Deßloch

Relationships – Additional Aspects

n  Discussions about benefits and drawbacks of transitive persistence
n  easy to use from a development perspective, but
n  implicit definition of persistence

n  developer needs to understand what to expect in terms of number of resulting insert
operations

n  and what about the "reverse" semantics for object deletion: when should an object
that was implicitly made persistent be deleted?

n  when the originally referencing object causing implicit persistence is deleted or removes
the reference?

n  when the object is no longer referenced by other persistent objects (garbage collection)?
n  still could be retrieved using its primary key value

n  when it is explicitly deleted?

n  Cascading delete rules are usually the only mechanism offered to implement
automatic deletion

n  relationships can be flagged to cause deletion, if "parent" object is deleted
n  often mapped to referential integrity constraints in the DB-mapping

n  what is the resulting object state in the application, if the deleted object is still
referenced?

© Prof.Dr.-Ing. Stefan Deßloch

Queries Over Persistent Objects

n  Accessing persistent objects through primary key or navigation over
relationships

n  is a useful basic mechanism that fits the OO programming model
n  but is a severe restriction when accessing collections of persistent objects
n  and can cause severe performance impact through tuple-by-tuple operations

n  Object retrieval through a query language
n  required to solve the above problems
n  but should not force the developer to drop down to the data store query language

(and schema) again

n  Object query language
n  continues to shield the developer from data store (and mapping) details
n  requires persistence framework to transform object queries into corresponding

data store queries based on the object-to-relational mapping

© Prof.Dr.-Ing. Stefan Deßloch

CORBA Queries

n  Query Service
n  set-oriented queries for locating CORBA objects
n  SQL, OQL (ODMG) can be used as query languages
n  query results are represented using Collection objects

n  iterators

n  not restricted to persistent query objects

n  Query can be optionally delegated to a "query evaluator" (e.g., the query
engine of a RDBMS or ODBMS) or to a "queryable collection"

n  a query evaluator may iterate over a collection of CORBA objects and access
attributes or evaluate methods, or

n  it may involve other queryableCollections to evaluate subqueries and then do the
join processing after retrieving the results

n  Queries can only access the public attributes of CORBA objects
n  everything is based on the remote interfaces of objects

n  performance? optimization?

n  There is no conceptual mapping from query language concepts (e.g., tables,
object collections) to CORBA concepts provided

© Prof.Dr.-Ing. Stefan Deßloch

EJB Query Language (EJB-QL)

n  Introduced as a query language for CMP EntityBeans
n  used in the definition of user-defined Finder methods of an EJB Home interface

n  no arbitrary (embedded or dynamic) object query capabilities!

n  uses abstract persistence schema as its schema basis
n  SQL-like

n  Example:
SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.product.product_type

= ‘office_supplies’

© Prof.Dr.-Ing. Stefan Deßloch

Java Persistence Query Language

n  Extension of EJB-QL
n  named (static) and dynamic queries
n  range across the class extensions including subclasses

n  a persistence unit is a logical grouping of entity classes, all to be mapped to the same DB
n  queries can not span across persistence units

n  includes support for
n  bulk updates and delete
n  outer join
n  projection
n  subqueries
n  group-by/having

n  Prefetching based on outer joins
n  Example:

SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1

© Prof.Dr.-Ing. Stefan Deßloch

JDO Query Language

n  A JDOQL query has 3 parts
n  candidate class: class(es) of expected result objects

à restriction at the class level
n  candidate collection: collection/extent to search over

à (optional) restriction at the object extent level
n  filter: boolean expression with JDOQL (optional: other query language)

n  JDOQL characteristics
n  read-only (no INSERT, DELETE, UPDATE)
n  returns JDO objects (no projection, join)
n  query submitted as string parameter à dynamic processing at run-time
n  logical operators, comparison operators: e.g. !,==,>=
n  JDOQL-specific operators: type cast using "()", navigation using "."
n  no method calls supported in JDOQL query
n  sort order (ascending/descending)
n  variable declarations

© Prof.Dr.-Ing. Stefan Deßloch

Query

n  JDO-Query with JDOQL for locating JDO instances:

 1 String searchname = "Doe";
2 Query q = pm.newQuery();
3 q.setClass(Author.class);
4 q.setFilter("name == \"" + searchname +"\"");
5 Collection results =(Collection)q.execute();
6 Iterator it = results.iterator();
7 while (it.hasNext()){
8 // iterate over result objects
9 }
10 q.close(it);

© Prof.Dr.-Ing. Stefan Deßloch

JDOQL Examples

n  Sorting:
1 Query query = pm.newQuery(Author.class);
2 query.setOrdering("name ascending, firstname ascending");
3 Collection results = (Collection) query.execute();

n  Variable declaration
1 String filter = "books.contains(myBook) && " +
2 "(myBook.name == \"Core JDO\")";
3 Query query = pm.newQuery(Author.class, filter);
4 query.declareVariables("Book myBook");
5 Collection results = (Collection) query.execute();

© Prof.Dr.-Ing. Stefan Deßloch

Realizing Automatic Persistence

n  Strategies for "loading" objects from the persistent store during navigational
access

n  "lazy" loading – object is retrieved only when accessed based on primary key or
reference (relationship)

n  easy to implement
n  may cause increased communication with data source, resulting in performance

drawbacks

n  "eager" loading
n  when an object is requested, transitively load all the objects reachable through references
n  requires construction/generation of complex data store queries
n  may cause a lot of unnecessary objects to be loaded

n  Persistence frameworks usually offer a combination of the above strategies
n  relationships can be explicitly designated as eager or lazy

n  at deployment time? separate definitions depending on the application scenario?

n  can be generalized to arbitrary persistent attributes
n  e.g., to pursue lazy loading of large objects

© Prof.Dr.-Ing. Stefan Deßloch

Realizing Automatic Persistence (2)

n  How to write object changes back to the data store
n  there may be many fine-grained (i.e., attribute-level) updates on a persistent

object during a transaction
n  immediate update: write changes to the DB after every attribute modification

n  easy to implement/support, but many interactions with the DBMS

n  deferred update: record changes and combine them into a single update per tuple
at the end of the transaction

n  more complex to implement, unless one always updates the complete tuple
n  the latter will result in unnecessary processing overhead at the DBMS

n  approach needs to be refined to account for consistent query results
n  write back changes also before any object query statements are executed

n  Concurrency control strategy (determined in combination with the persistent
data store)

n  pessimistic, using locking at the DBMS-level
n  requires long read locks to avoid lost updates

n  optimistic, by implementing "optimistic locking"

© Prof.Dr.-Ing. Stefan Deßloch

Optimistic Locking and Concurrency

n  Note: most DBMSs don't support optimistic concurrency control
n  Example JPA: optimistic locking is assumed, with the following requirements

for application portability
n  isolation level "read committed" or equivalent for data access

n  no long read locks are held, DBMS does not prevent lost updates, inconsistent reads

n  declaration of a version attribute for all entities to be enabled for optimistic locking
n  persistence provider uses the attribute to detect and prevent lost updates

n  provider changes/increases the version during a successful update
n  compares original version with the current version stored in the DB, if the version is not the same,

a conflict is detected and the transaction is rolled back

n  inconsistencies may arise if entities are not protected by a version attribute
n  does not guarantee consistent reads
n  conflicts can only be detected at the end of a (possibly long) transaction

© Prof.Dr.-Ing. Stefan Deßloch

Transactions in JDO

n  JDO transactions supported at the object level
n  Datastore Transaction Management (standard):

n  JDO synchronizes transaction with the persistence layer
n  transaction strategy of persistence layer is used

n  Optimistic Transaction Management (optional):
n  JDO progresses object transaction at object level
n  at commit time, transaction is synchronized with persistence layer

n  Transactions and object persistence are orthogonal

object
characteristics transactional non-transactional

persistent standard optional

transient optional standard (JVM)

© Prof.Dr.-Ing. Stefan Deßloch

Transactions and Concurrency Control

n  Access of persistent data resulting from persistent object manipulation always
occurs in the scope of a transaction

n  What happens at transaction roll-back?
n  state of entities in the application is not guaranteed to be rolled back, only the

persistent state

n  What happens if a transaction terminates and objects become "detached"?
n  objects can still be modified "offline"

n  What happens when objects are merged "re-attached" to a new transaction
context?

n  objects are NOT automatically refreshed
n  potential for lost updates
n  can be controlled by explicit refresh or using optimistic locking

© Prof.Dr.-Ing. Stefan Deßloch

Summary

n  Object persistence supported at various levels of abstraction
n  CORBA

n  standardized "low-level" APIs
n  powerful, flexible, but no uniform model for component developer

n  various persistence protocols

n  explicit vs. implicit (client-side transparent) persistence
n  EJB/J2EE Entity Beans

n  persistent components
n  CMP: container responsible for persistence, maintenance of relationships

n  uniform programming model
n  transparent persistence

n  JDO
n  persistent Java objects
n  orthogonal, transparent, transitive persistence

n  Java Persistence API
n  successor of EJB entity beans
n  standardized mapping of objects to relational data stores
n  influenced partly by JDO, Hibernate
n  can be used outside the EJB context as well

© Prof.Dr.-Ing. Stefan Deßloch

Summary (2)

n  Query Support
n  CORBA: queries over object collections

n  no uniform query language
n  uses SQL, OQL

n  persistent object schema?

n  EJB-QL: queries over abstract persistence schema
n  limited functionality, only for definition of Finder methods
n  more or less a small SQL subset

n  JDO: queries over collections, extents
n  limited functionality
n  proprietary query language

n  Java Persistence Query Language
n  based on EJB-QL (and therefore on SQL)
n  numerous language extensions for query, bulk update
n  static and dynamic queries

n  Queries over multiple, distributed data sources are not mandated by the above
approaches!

