
WS 2012/13 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 7 - XML

© Prof.Dr.-Ing. Stefan Deßloch

XML Origin and Usages

n  Defined by the WWW Consortium (W3C)
n  Originally intended as a document markup language, not a database

language
n  Documents have tags giving extra information about sections of the document
n  For example:

n  <title> XML </title>
n  <slide> XML Origin and Usages </slide>

n  Meta-language: used to define arbitrary XML languages/vocabularies (e.g. XHTML)

n  Derived from SGML (Standard Generalized Markup Language)
n  standard for document description

n  enables document interchange in publishing, office, engineering, …

n  main idea: separate form from structure

n  XML is simpler to use than SGML
n  roughly 20% complexity achieves 80% functionality

WS 2012/13 2

© Prof.Dr.-Ing. Stefan Deßloch

XML Origin and Usages (cont.)

n  XML documents are to some extent self-describing
n  Tags represent metadata
n  Metadata and data are combined in the same document

n  semi-structured data modeling

n  Example
 <bank>

 <account>
 <account-number> A-101 </account-number>
 <branch-name> Downtown </branch-name>
 <balance> 500 </balance>

 </account>
 <depositor>

 <account-number> A-101 </account-number>
 <customer-name> Johnson </customer-name>

 </depositor>
 </bank>

© Prof.Dr.-Ing. Stefan Deßloch

Forces Driving XML

n  Document Processing
n  Goal: use document in various, evolving systems
n  structure – content – layout
n  grammar: markup vocabulary for mixed content

n  Data Bases and Data Exchange
n  Goal: data independence
n  structured, typed data – schema-driven – integrity constraints

n  Semi-structured Data and Information Integration
n  Goal: integrate autonomous data sources
n  data source schema not known in detail – schemata are dynamic
n  schema might be revealed through analysis only after data processing

WS 2012/13 3

© Prof.Dr.-Ing. Stefan Deßloch

XML Language Specifications

Meta Object Facility

Unified Modeling Language

XML Metadata Interchange

Unicode
Standardized Generalized Markup Language

Document Type Definition

eXtensible Markup Language

XML Schema XML Namespace
XHML

Cascading Style Sheets

XML Link XML Pointer XPath XQuery

XSL

XSLT XSL-FO

© Prof.Dr.-Ing. Stefan Deßloch

XML Documents

n  XML documents are text (unicode)
n  markup (always starts with '<' or '&')

n  start/end tags
n  references (e.g., <, &, …)
n  declarations, comments, processing instructions, …

n  data (character data)
n  characters '<' and '&' need to be indicated using references (e.g., <) or using the

character code
n  alternative syntax: <![CDATA[(a<b)&(c<d)]]>

n  XML documents are well-formed
n  logical structure

n  (optional) prolog (XML version, …)
n  (optional) schema
n  root element (possibly nested)
n  comments, …

n  correct sequence of start/end tags (nesting)
n  uniqueness of attribute names
n  …

WS 2012/13 4

© Prof.Dr.-Ing. Stefan Deßloch

XML Documents: Elements

n  Element: section of data beginning with <tagname> and ending with
matching </tagname>

n  Elements must be properly nested
n  Formally: every start tag must have a unique matching end tag, that is in the

context of the same parent element.

n  Mixture of text with sub-elements is legal in XML
n  Example:
 <account>
 This account is seldom used any more.
 <account-number> A-102</account-number>
 <branch-name> Perryridge</branch-name>
 <balance> 400 </balance>
 </account>

n  Useful for document markup, but discouraged for data representation

© Prof.Dr.-Ing. Stefan Deßloch

XML Documents: Attributes

n  Attributes: can be used to describe elements
n  Attributes are specified by name=value pairs inside the starting tag

of an element
n  Example

 <account acct-type = "checking" >
 <account-number> A-102 </account-number>
 <branch-name> Perryridge </branch-name>
 <balance> 400 </balance>

 </account>

n  Attribute names must be unique within the element
 <account acct-type = “checking” monthly-fee=“5”>

WS 2012/13 5

© Prof.Dr.-Ing. Stefan Deßloch

XML Documents: IDs and IDREFs

n  An element can have at most one attribute of type ID
n  The ID attribute value of each element in an XML document must be distinct
 è ID attribute (value) is an 'object identifier'
n  An attribute of type IDREF must contain the ID value of an element in the

same document
n  An attribute of type IDREFS contains a set of (0 or more) ID values. Each ID

value must contain the ID value of an element in the same document
n  IDs and IDREFs are untyped, unfortunately

n  Example below: The owners attribute of an account may contain a reference to
another account, which is meaningless;
owners attribute should ideally be constrained to refer to customer elements

© Prof.Dr.-Ing. Stefan Deßloch

XML data with ID and IDREF attributes

 <bank-2>
 <account account-number=“A-401” owners=“C100 C102”>

 <branch-name> Downtown </branch-name>
 <balance>500 </balance>

 </account>
 . . .
 <customer customer-id=“C100” accounts=“A-401”>

 <customer-name>Joe</customer-name>
 <customer-street>Monroe</customer-street>
 <customer-city>Madison</customer-city>

 </customer>
 <customer customer-id=“C102” accounts=“A-401 A-402”>

 <customer-name> Mary</customer-name>
 <customer-street> Erin</customer-street>
 <customer-city> Newark </customer-city>

 </customer>
 </bank-2>

WS 2012/13 6

© Prof.Dr.-Ing. Stefan Deßloch

XML Document Schema

n  XML documents may optionally have a schema
n  standardized data exchange, …

n  Schema restricts the structures and data types allowed in a document
n  document is valid, if it follows the restrictions defined by the schema

n  Two important mechanisms for specifying an XML schema
n  Document Type Definition (DTD)

n  contained in the document, or
n  stored separately, referenced in the document

n  XML Schema

© Prof.Dr.-Ing. Stefan Deßloch

Document Type Definition - DTD

n  Original mechanism to specify type and structure of an XML document
n  What elements can occur
n  What attributes can/must an element have
n  What subelements can/must occur inside each element, and how many times.

n  DTD does not constrain data types
n  All values represented as strings in XML

n  Special DTD syntax
n  <!ELEMENT element (subelements-specification) >
n  <!ATTLIST element (attributes) >

WS 2012/13 7

© Prof.Dr.-Ing. Stefan Deßloch

Element Specification in DTD

n  Subelements can be specified as
n  names of elements, or
n  #PCDATA (parsed character data), i.e., character strings
n  EMPTY (no subelements) or ANY (anything can be a subelement)

n  Structure is defined using regular expressions
n  sequence (subel, subel, …), alternative (subel | subel | …)
n  number of occurences

n  “?” - 0 or 1 occurrence
n  “+” - 1 or more occurrences
n  “*” - 0 or more occurrences

n  Example
<!ELEMENT depositor (customer-name account-number)>
<!ELEMENT customer-name(#PCDATA)>
<!ELEMENT account-number (#PCDATA)>
<!ELEMENT bank ((account | customer | depositor)+)>

© Prof.Dr.-Ing. Stefan Deßloch

Example: Bank DTD

 <!DOCTYPE bank-2[
 <!ELEMENT account (branch-name, balance)>
 <!ATTLIST account

 account-number ID #REQUIRED
 owners IDREFS #REQUIRED>

 <!ELEMENT customer(customer-name, customer-street,
 customer-city)>
 <!ATTLIST customer

 customer-id ID #REQUIRED
 accounts IDREFS #REQUIRED>

 … declarations for branch, balance, customer-name,
 customer-street and customer-city

]>

WS 2012/13 8

© Prof.Dr.-Ing. Stefan Deßloch

Describing XML Data: XML Schema

n  XML Schema is closer to the general understanding of a (database) schema
n  XML Schema supports

n  Typing of values
n  E.g. integer, string, etc

n  Constraints on min/max values
n  Typed references
n  User defined types
n  Specified in XML syntax (unlike DTDs)
n  Integrated with namespaces
n  Many more features

n  List types, uniqueness and foreign key constraints, inheritance ..

n  BUT: significantly more complicated than DTDs

© Prof.Dr.-Ing. Stefan Deßloch

XML Schema Structures

n  Datatypes (Part 2)
Describes Types of scalar (leaf) values

n  Structures (Part 1)
Describes types of complex values (attributes, elements)

n  Regular tree grammars
 repetition, optionality, choice recursion

n  Integrity constraints
Functional (keys) & inclusion dependencies (foreign keys)

n  Subtyping (similar to OO models)
Describes inheritance relationships between types

n  Supports schema reuse

WS 2012/13 9

© Prof.Dr.-Ing. Stefan Deßloch

XML Schema Structures (cont.)

n  Elements : tag name & simple or complex type
 <xs:element name=“sponsor” type=“xsd:string”/>
 <xs:element name=“action” type=“Action”/>

n  Attributes : tag name & simple type
 <xs:attribute name=“date” type=“xsd:date”/>

n  Complex types
 <xs:complexType name=“Action”>
 <xs:sequence>
 <xs:elemref name =“action-date”/>
 <xs:elemref name =“action-desc”/>
 </xs:sequence>
 </xs:complexType>

© Prof.Dr.-Ing. Stefan Deßloch

XML Schema Structures (cont.)

n  Sequence
 <xs:sequence>

 <xs:element name=“congress” type=xsd:string”/>
 <xs:element name=“session” type=xsd:string”/>

 </xs:sequence>
n  Choice

 <xs:choice>
 <xs:element name=“author” type=“PersonName”/>
 <xs:element name=“editor” type=“PersonName”/>

 </xs:choice>
n  Repetition

 <xs:element name =“section”
 type=“Section”
 minOccurs=“1”
 maxOccurs=“unbounded”/>

WS 2012/13 10

© Prof.Dr.-Ing. Stefan Deßloch

Namespaces

n  A single XML document may contain elements and attributes defined for and
used by multiple software modules

n  Motivated by modularization considerations, for example

n  Name collisions have to be avoided
n  Example:

n  A Book XSD contains a Title element for the title of a book
n  A Person XSD contains a Title element for an honorary title of a person
n  A BookOrder XSD reference both XSDs

n  Namespaces specifies how to construct universally unique names

© Prof.Dr.-Ing. Stefan Deßloch

XML Schema Version of Bank DTD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.banks.org"

 xmlns ="http://www.banks.org" >
<xsd:element name=“bank” type=“BankType”/>
<xsd:element name=“account”>

<xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“account-number” type=“xsd:string”/>
 <xsd:element name=“branch-name” type=“xsd:string”/>
 <xsd:element name=“balance” type=“xsd:decimal”/>
 </xsd:sequence>
</xsd:complexType>

</xsd:element> ….. definitions of customer and depositor ….

<xsd:complexType name=“BankType”>
<xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element ref=“account”/>
<xsd:element ref=“customer”/>
<xsd:element ref=“depositor”/>

 </xsd:choice>
</xsd:complexType>
</xsd:schema>

WS 2012/13 11

© Prof.Dr.-Ing. Stefan Deßloch

XML Document Using Bank Schema

<bank xmlns="http://www.banks.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.banks.org Bank.xsd">

 <account>
 <account-number> … </account-number>
 <branch-name> … </branch-name>
 <balance> … </balance>
 </account>
 …

</bank>

© Prof.Dr.-Ing. Stefan Deßloch

Application Programming with XML

n  Application needs to work with XML data/document
n  Parsing XML to extract relevant information
n  Produce XML

n  Write character data
n  Build internal XML document representation and Serialize it

n  Generic XML Parsing
n  Simple API for XML (SAX)

n  “Push” parsing (event-based parsing)
n  Parser sends notifications to application about the type of document pieces it encounters
n  Notifications are sent in “reading order” as they appear in the document

n  Preferred for large documents (high memory efficiency)

n  Document Object Model (DOM) – w3c recommendation
n  “One-step” parsing

n  Generates in-memory representation of the document (parse tree)

n  DOM specifies the types of parse tree objects, their properties and operations
n  Independent of programming language (uses IDL)
n  Bindings available to specific programming languages (e.g., Java)

n  Parsing includes
n  checking for well-formedness
n  optionally checking for validity (often used for debugging only)

WS 2012/13 12

© Prof.Dr.-Ing. Stefan Deßloch

Transforming and Querying XML Data

n  XPath
n  path expressions for selecting document parts
n  not originally designed as a stand-alone language

n  XSLT
n  transformations from XML to XML and XML to HTML
n  primarily designed for style transformations
n  recursive pattern-matching paradigm

n  difficult to optimize in a DBMS context

n  XQuery
n  XML query language with a rich set of features
n  XQuery builds on experience with existing query languages:

XPath, Quilt, XQL, XML-QL, Lorel, YATL, SQL, OQL, …

© Prof.Dr.-Ing. Stefan Deßloch

XML Data Model

n  There is no uniform XML data model
n  different approaches with different goals

n  XML Information Set, DOM Structure Model, XPath 1.0 data model, XQuery data model

n  Common denominator: an XML document is modeled as a tree, with nodes of
different node types

n  Document, Element, Attribute, Text, Namespace, Comment, Processing Instruction
n  XQuery data model builds on a tree-based model, but extends it to support

n  sequences of items
n  nodes of different types (see above) as well as atomic values
n  can contain heterogeneous values, are ordered, can be empty

n  typed values and type annotations
n  result of schema validation
n  type may be unknown

n  Closure property
n  XQuery expressions operate on/produce instances of the XQuery Data Model

WS 2012/13 13

© Prof.Dr.-Ing. Stefan Deßloch

Example

<?xml version = "1.0"?>
<!-- Requires one trained person -->
<procedure title = "Removing a light bulb">
 <time unit = "sec">15</time>
 <step>Grip bulb.</step>
 <step>

 Rotate it
 <warning>slowly</warning>
 counterclockwise.

 </step>
</procedure>

D

E A C

T

E E E

E T T T

T

A

procedure

title="Removing a light bulb"

time
unit="sec"

step

warning

counterclockwise.

step

Rotate it

slowly

Grip bulb. 15

one possible
instance of the
XQuery data model

© Prof.Dr.-Ing. Stefan Deßloch

Processing XML Data: XPath

n  XPath is used to address (select) parts of documents using path expressions
n  A path expression consists of one or more steps separated by “/”

n  Each step in an XPath expression maps a node (the context node) into a set of
nodes

n  Result of path expression: set of values
that along with their containing
elements/attributes match the specified path

n  E.g.: /bank-2/customer/customer-name
evaluated on the bank-2 data returns

n  <customer-name> Joe </ customer-name>
n  < customer- name> Mary </ customer-name>

n  E.g.:/bank-2/customer/cust-name/text()
returns the same names, but without the
enclosing tags

WS 2012/13 14

© Prof.Dr.-Ing. Stefan Deßloch

XPath

n  The initial “/” denotes root of the document (above the top-level tag)
n  In general, a step has three parts:

n  The axis (direction of movement: child, descendant, parent, ancestor, following, preceding,
attribute, … - 13 axes in all -)�

n  A node test (type and/or name of qualifying nodes) �
n  Some predicates �

n  Path expressions are evaluated left to right
n  Each step operates on the set of instances produced by the previous step

n  Selection predicates may follow any step in a path, in []
n  E.g. /bank-2/account[balance > 400]

n  returns account elements with a balance value greater than 400
n  /bank-2/account[balance] returns account elements containing a balance subelement

n  Attributes are accessed using “@”
n  E.g. /bank-2/account[balance > 400]/@account-number

n  returns the account numbers of those accounts with balance > 400

n  IDREF attributes are not dereferenced automatically (more on this later)

© Prof.Dr.-Ing. Stefan Deßloch

XPath Summary

n  Strengths:
n  Compact and powerful syntax for navigating a tree,

but not as powerful as a regular-expression language
n  Recognized and accepted in XML community
n  Used in other XML processors/specifications such as XPointer, XSLT, XQuery

n  Limitations:
n  Operates on one document (no joins)
n  No grouping or aggregation
n  No facility for generating new output structures

WS 2012/13 15

© Prof.Dr.-Ing. Stefan Deßloch

XQuery

n  XQuery is a general purpose query language for XML data
n  Standardized by the World Wide Web Consortium (W3C)
n  XQuery is derived from

n  the Quilt (“Quilt” refers both to the origin of the language and to its use in “knitting ” together heterogeneous
data sources) query language, which itself borrows from

n  XPath: a concise language for navigating in trees
n  XML-QL: a powerful language for generating new structures
n  SQL: a database language based on a series of keyword-clauses: SELECT - FROM

– WHERE
n  OQL: a functional language in which many kinds of expressions can be nested

with full generality

© Prof.Dr.-Ing. Stefan Deßloch

XQuery – Main Constituents

n  Path expressions
n  Inherited from XPath
n  An XPath expression maps a node (the context node) into a set of nodes

n  Element constructors
n  To construct an element with a known name and content, use XML-like syntax:

<book isbn = "12345">
 <title>Huckleberry Finn</title>
</book>

n  If the content of an element or attribute must be computed, use a nested
expression enclosed in { }

<book isbn = "{$x}">
 {$b/title }

</book>

n  FLWOR - Expressions

WS 2012/13 16

© Prof.Dr.-Ing. Stefan Deßloch

XQuery: The General Syntax Expression FLWOR

n  FOR clause, LET clause generate list of tuples of bound variables (order preserving) by
n  iterating over a set of nodes (possibly specified by an XPath expression), or
n  binding a variable to the result of an expression

n  WHERE clause applies a predicate to filter the tuples produced by FOR/LET
n  ORDER BY clause imposes order on the surviving tuples
n  RETURN clause is executed for each surviving tuple, generates ordered list of outputs
n  Associations to SQL query expressions

 for ó SQL from
 where ó SQL where
 order by ó SQL order by
 return ó SQL select
 let allows temporary variables, and has no equivalent in SQL

RETURN_clause FOR_clause
LET_clause WHERE_clause ORDER_BY_clause

© Prof.Dr.-Ing. Stefan Deßloch

Evaluating FLWOR Expressions

…

$x $y $z

… … …

input sequence tuple stream

$x $y $z

… … …

ok!

ok!

X

$x $y $z

… … …

…

ouput sequence

FOR $X,$Y ..
LET $Z .. WHERE ..

ORDER
BY ..

RETURN ..

WS 2012/13 17

© Prof.Dr.-Ing. Stefan Deßloch

FLWOR - Examples

n  Simple FLWR expression in XQuery
n  Find all accounts with balance > 400, with each result enclosed in an <account-

number> .. </account-number> tag
 for $x in /bank-2/account
 let $acctno := $x/@account-number
 where $x/balance > 400
 return <account-number> {$acctno} </account-number>

n  Let and Where clause not really needed in this query, and selection can be
done in XPath.

n  Query can be written as:
 for $x in /bank-2/account[balance>400]

 return <account-number> {$x/@account-number}
 </account-number>

© Prof.Dr.-Ing. Stefan Deßloch

Nesting of Expressions

n  Here: nesting inside the return clause
n  Example: inversion of a hierarchy

<book>
 <title>
 <author>
 <author>
</book>
<book>
 <title>
 <author>
 <author>
</book>

<author>
 <name>
 <title>
 <title>
</author>
<author>
 <name>
 <title>
 <title>
</author>

FOR $a IN fn:distinct-values(//author)
ORDER BY $a/name
RETURN
 <author>
 <name> { $a/text() } </name>
 { FOR $b IN //book[author = $a]
 RETURN $b/title }

 </author>

WS 2012/13 18

© Prof.Dr.-Ing. Stefan Deßloch

XQuery: Joins

n  Joins are specified in a manner very similar to SQL
for $a in /bank/account,

 $c in /bank/customer,
 $d in /bank/depositor

where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name

return <cust-acct>{ $c $a }</cust-acct>

n  The same query can be expressed with the selections specified as XPath
selections:
for $a in /bank/account

 $c in /bank/customer
 $d in /bank/depositor[
 account-number =$a/account-number and
 customer-name = $c/customer-name]

return <cust-acct>{ $c $a }</cust-acct>

© Prof.Dr.-Ing. Stefan Deßloch

XQJ – Main Concepts

n  Similar to JDBC, but for XQuery statements
n  data source, connection, (prepared) XQuery expression (statement)

n  XQuery variable identifier instead of parameter markers ("?")

n  Query result is a sequence (XQSequence)
n  iterate through sequence items using XQSequence.next()
n  retrieve Java DOM objects using XQSequence.getObject()
n  retrieve atomic values as character string or mapped to Java data types
n  individual items or the complete stream can be "written" to the SAX API

n  Support for "serializing" an XQuery result
n  to file, Java writer, string
n  as (X)HTML

WS 2012/13 19

© Prof.Dr.-Ing. Stefan Deßloch

XQuery - Status

n  XQuery 1.0 is a w3c recommendation since January 2007
n  XQuery API for JavaTM (XQJ) is final (JSR) since 2009
n  XQuery Update Facility 1.0 is a candidate recommendation
n  XQuery 1.1 is in the making (working draft), work items include

n  value-based and positional grouping
n  outer join support
n  windowing
n  date and numeric value formatting

n  Additional ongoing work
n  XQuery and XPath Full Text 1.0 (candidate recommendation)

n  adds support for text retrieval in XQuery

n  XQuery Scripting Extensions 1.0 (working draft)
n  adds procedural features

© Prof.Dr.-Ing. Stefan Deßloch

Transforming XML Data: XSLT

n  A stylesheet stores formatting options for a document, usually separately
from document

n  E.g. HTML style sheet may specify font colors and sizes for headings, etc.

n  The XML Stylesheet Language (XSL) was originally designed for
generating HTML from XML

n  XSLT is a general-purpose transformation language
n  Can translate XML to XML, and XML to HTML

n  XSLT transformations are expressed using rules called templates
n  Templates combine selection using XPath with construction of results

WS 2012/13 20

© Prof.Dr.-Ing. Stefan Deßloch

Understanding A Template

n  Most templates have the following form:
 <xsl:template match="emphasis">

 <i><xsl:apply-templates/></i>
</xsl:template>

n  The whole <xsl:template> element is a template
n  The match pattern determines where this template applies

n  XPath pattern

n  Literal result element(s) come from non-XSL namespace(s)
n  XSLT elements come from the XSL namespace

© Prof.Dr.-Ing. Stefan Deßloch

SQL and XML

n  Use existing (object-)relational technology?
n  Large Objects: granularity understood by DBMS may be too coarse!

n  search/retrieval of subsets, update of documents

n  Decompose into tables: often complex, inefficient
n  mapping complexity, especially for highly "denormalized" documents

n  Useful, but not sufficient
n  should be standardized as part of SQL
n  but needs further enhancement to support "native" XML support in SQL

n  Enable "hybrid" XML/relational data management
n  supports both relational and XML data

n  storage, access
n  query language
n  programming interfaces

n  ability to view/access relational as XML, and XML as relational
n  all major relational DBMS vendors are moving into this direction

WS 2012/13 21

© Prof.Dr.-Ing. Stefan Deßloch

SQL/XML Big Picture

<?xml version = "1.0"?>
<order>
 <item> … </item>
 <item> … </item>
…
</order>

<?xml version = "1.0"?>
<order>
 <item> … </item>
 <item> … </item>
…
</order>

<?xml version = "1.0"?>
<order>
 <item> … </item>
 <item> … </item>
…
</order>

<?xml version = "1.0"?>
<order>
 <item> … </item>
 <item> … </item>
…
</order>

storage

client
view

XML,
XQuery client

enhanced
SQL client SQL client

SQL/XML

© Prof.Dr.-Ing. Stefan Deßloch

SQL:2003 Parts and Packages

2: Foundation 11: Schemata

3: CLI 4: PSM 9: MED 10: OLB 13: JRT 14: XML

Core SQL

(2) Enhanced
Integrity Mgmnt.

(1) Enhanced
Date/Time Fac.

(8) Active
Databases

(7) Enhanced
Objects

(6) Basic
Objects (10) OLAP

(4) PSM

optional
features

mandatory
features

 Two major goals:
 "Publish" SQL query results as XML documents
 Ability to store and retrieve XML documents

 Rules for mapping SQL types, SQL identifiers and
 SQL data values to and from corresponding
 XML concepts
 A new built-in type XML
 A number of built-in operators that produce

 values of type XML

recent additions for SQL200n:
 Integration of the XQuery Data Model
 Additional XML Constructor Functions
 Querying XML values

WS 2012/13 22

© Prof.Dr.-Ing. Stefan Deßloch

XML Publishing Functions- Example

CREATE VIEW XMLDept (DeptDoc XML) AS (
SELECT XMLELEMENT (NAME "Department",

 XMLATTRIBUTES (e.dept AS "name"),
 XMLATTRIBUTES (COUNT(*) AS "count",
 XMLAGG (XMLELEMENT (NAME "emp",
 XMLELEMENT(NAME "name", e.lname)
 XMLELEMENT(NAME "hire", e.hire))
) AS "dept_doc"

FROM employees e GROUP BY dept) ;

==>

dept_doc

<Department name="Accounting" count="2">
 <emp><name>Yates</name><hire>2005-11-01</hire></emp>
 <emp><name>Smith</name><hire>2005-01-01</hire></emp>
</Department>

<Department name="Shipping" count="2">
 <emp><name>Oppenheimer</name><hire>2002-10-01</hire></emp>
 <emp><name>Martin</name><hire>2005-05-01</hire></emp>
</Department>

© Prof.Dr.-Ing. Stefan Deßloch

Manipulating XML Data

n  Constructor functions
n  focus on publishing SQL data as XML
n  no further manipulation of XML

n  More requirements
n  how do we select or extract portions of XML data (e.g., from stored XML)?
n  how can we decompose XML into relational data?
n  both require a language to identify, extract and possibly combine parts of XML

values

SQL/XML utilizes the XQuery standard for this!

WS 2012/13 23

© Prof.Dr.-Ing. Stefan Deßloch

XMLQUERY

n  Evaluates an XQuery or XPath expression
n  returns a sequence of XQuery nodes

n  XMLQUERY – Example
 SELECT XMLQUERY(‘for $e in $dept[@count > 1]/emp

 where $e/hire > 2004-12-31 return $e/name’
 PASSING BY REF DeptDoc AS “dept”
 RETURNING SEQUENCE) AS “Name_elements”

FROM XMLDept
=>

Name_elements

<name>Yates</name>
<name>Smith</name

<name>Martin</name>

© Prof.Dr.-Ing. Stefan Deßloch

JDBC-Support for SQLXML

n  New methods to create and retrieve SQLXML
n  Connection.createSQLXML()
n  ResultSet.getSQLXML()
n  PreparedStatement.setSQLXML()

n  SQLXML interface supports methods for accessing its XML content
n  getString()
n  getBinaryStream(), get CharacterStream()

n  obtain a Java stream/reader that can be passed directly to an XML parser

n  getSource()
n  obtain a source object suitable for XML parsers and XSLT transformers

n  corresponding setXXX() methods to initialize newly created SQLXML objects

WS 2012/13 24

© Prof.Dr.-Ing. Stefan Deßloch

Summary: XML Advantages

n  Integrates data and meta-data (tags)
n  Self-describing

n  XMLSchema, Namespaces
n  Defining valid document structure
n  Integrating heterogenous terminology and structures

n  XML can be validated against schema (xsd, dtd) outside the application
n  Many technologies exist for processing, transforming, querying XML

documents
n  DOM, SAX, XSLT, XPath, XQuery

n  XML processing can help handle schema heterogenity, schema evolution
n  Focus on known element tags, attributes, namespaces …
n  Powerful filter and transformation capabilities

n  XML is independent of platforms, middleware, databases, applications …

© Prof.Dr.-Ing. Stefan Deßloch

Summary: XML and Data Management

n  Increasing importance of XML in combination with data management
n  flexible exchange of relational data using XML
n  managing XML data and documents
n  trend towards "hybrid" approaches for relational DBMS

n  SQL/XML standard attempts to support the following
n  "Publish" SQL query results as XML documents
n  Ability to store and retrieve (parts of) XML documents with SQL databases
n  Rules and functionality for mapping SQL constructs to and from corresponding XML

concepts
n  XQuery standard

n  XML data model
n  queries over XML data

n  Broad support by major SQL DBMS vendors
n  Additional standards to further extend and complete the "big picture"!

n  XQJ: XML queries in Java
n  Grid Data Access Services (GGF): web/grid services to access DBs using SQL,

XQuery

