
WS 2012/2013 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 7 - Web Service Composition
and E-Business Collaboration

© Prof.Dr.-Ing. Stefan Deßloch

Motivation

n  Complex web services
n  Need to interact with business partners through web services
n  May combine/utilize existing web services

n  Web services composition
n  Ability to create new web services out of existing (web service) components
n  Requirements similar to BPM, Workflow Management

n  separate function from composition logic, …

n  Composition can be iterated
n  Composition result is again a web service
n  Can be used as a building block for further composition steps

ð  Middleware for web service composition

WS 2012/2013 2

© Prof.Dr.-Ing. Stefan Deßloch

Web Services Composition Middleware

n  Main elements
n  composition model and language

n  composed WS is expressed by a composition schema (script)

n  development environment
n  graphical end user tools

n  run-time environment
n  composition "engine"

n  Composition vs. coordination middleware
n  composition: focus is on implementation of operations in a web service

n  internal, private
n  for automation of the execution of a composite web service

n  coordination: focus is on conversation protocols
n  public, standardized protocols
n  external coordination for verifying compliance

© Prof.Dr.-Ing. Stefan Deßloch

Web Services vs. WFMS

n  Limitations of conventional composition middleware (e.g., WFMS)
n  Significant effort to integrate existing applications

n  application-specific adapters, wrappers
n  no standard model for component description, interoperability

n  Limited success of composition model standardization
n  WfMC standard is not widely implemented

n  Opportunities for Web Services
n  Web Services seem to be adequate components

n  well-defined interfaces, described using WSDL
n  standardized invocation (SOAP)

n  Significant efforts in standardizing WS composition languages
n  Reuse of existing WS "infrastructure" (directory, service selection, …)

n  WS composition tools are less expensive to develop

WS 2012/2013 3

© Prof.Dr.-Ing. Stefan Deßloch

Business Processes and Web Services

n  Business Process Execution Language for Web Services (BPEL4WS)
n  XML-based language for specifying business process behavior based on web

services
n  Describe business processes that both provide and consume web services

n  Steps (activities)
n  Implemented as an interaction with a web service

n  Information flow into/out of the process
n  Externalized as web service

n  Complemented by
n  WS Coordination specification

n  Allows web services involved in a process to share information that “links” them together
n  Shared coordination context

n  WS AtomicTransaction, WS BusinessActivity specifications
n  Allows to monitor the success/failure of each coordinated activity

n  Reliably cancel the business process, involves compensating activities

n  Standardization through OASIS

© Prof.Dr.-Ing. Stefan Deßloch

BPEL4WS

n  BPEL can support specification of both, composition schemas and
coordination protocols

n  can be used in both composition and coordination middleware

n  Two types of processes
n  executable process (-> composition)

n  defines implementation logic for a composite web service
n  portable between BPEL-conformant environments

n  abstract process (-> coordination)
n  service-centric perspective on coordination protocols
n  describe message exchange between partners

n  Business process defines
n  potential execution order of operations (web services)
n  data shared between the web services
n  correlation information
n  partners involved in business process and interfaces they need to implement
n  joint exception handling for collection of web services

WS 2012/2013 4

© Prof.Dr.-Ing. Stefan Deßloch

BPEL Component Model

n  Components are web services described using WSDL
n  abstract WSDL interfaces are referenced in BPEL scripts
n  no reference to bindings, endpoints, or services

n  Basic activities in BPEL represent components, correspond to WSDL
operations

n  Invoke
n  Issue an asynchronous request, or
n  Synchronously invoke a request/reply operation of a web service provided by a partner

n  Receive
n  Wait for a message to be received from a partner
n  Specifies partner from which message is to be received, as well as
n  The port and operation provided by the process

n  Used by the partner to pass the message

n  Reply
n  Synchronous response to a request corresponding to a receive activity
n  Combination of Receive/Reply corresponds to request-response operation in WSDL

© Prof.Dr.-Ing. Stefan Deßloch

Example

Customer Travel Agent Airline
itineraryMessage

itineraryMessage

ticketsMessage

receive itinerary

send
tickets

deliver
tickets

make reservation

request ticket
 receive

request

receive tickets

ticketsMessage

WS 2012/2013 5

© Prof.Dr.-Ing. Stefan Deßloch

Service Selection: Partner Links

n  Partner link (BPEL process definition)
n  identifies the web services mutually

used by the partner or process
n  e.g., agent process interacts with

customer, airline

n  references a partner link type
n  defines role taken by the process itself

(myRole) and role that has to be
accepted by the partner (partnerRole)

n  Partner link names are used in all
service interactions to identify partners

n  see activities for invoking/providing
services

 1 <process name="ticketOrder">
2 <partnerLinks>
3 <partnerLink name="customer"
4 partnerLinkType="agentLink"
5 myRole="agentService"/>
6 <partnerLink name="airline"
7 partnerLinkType="buyerLink"
8 myRole="ticketRequester"
9 partnerRole="ticketService"/>

10 </partnerLinks>

n  Partner link type (WSDL extension)
defines

n  roles played by partners in a
conversational relationship

n  web service interfaces that need to be
implemented to assume a role

n  Assignment of endpoints for partners
n  at deployment time
n  dynamically at run time

 1 <partnerLinkType name="buyerLink">
 2 <role name="ticketRequester">
 3 <portType name="itineraryPT"/>
 4 </role>
 5 <role name="ticketService">
 6 <portType name="ticketOrderPT"/>
 7 </role>
 8 </partnerLinkType>

Partner link type definition

© Prof.Dr.-Ing. Stefan Deßloch

BPEL Activities – Example

 <receive
 partnerLink="customer"
 portType="itineraryPT"
 operation="sendItinerary"
 variable="itinerary"/>

<invoke
 partnerLink="airline"
 portType="ticketOrderPT"
 operation="requestTickets”
 inputVariable="itinerary”/>

<receive
 partnerLink="airline"
 portType="itineraryPT"
 operation="sendTickets”
 variable="tickets"/>

<reply
 partnerLink="customer"
 portType="itineraryPT"
 operation="sendItinerary"
 variable="tickets"/>

Customer Travel Agent Airline

<invoke
partnerLink="travelAgent"
portType="itineraryPT"
operation="sendItinerary"
input variable="itinerary"
output variable="tickets" />

process 1
process 2

WS 2012/2013 6

© Prof.Dr.-Ing. Stefan Deßloch

Orchestration Model - Structured Activities

n  Sequence
n  Enclosed activities are carried out in listed order

n  If-else (i.e., switch)
n  Selects one of several activities based on selection criteria

n  Repetitive Activities
n  While, RepeatUntil,

n  repeatedly carry out enclosed activities while/until specified condition is true

n  ForEach
n  serial: enclosed activity (scope) is carried out repeatedly, based on counter, optional

completion condition
n  parallel: (effective copies of) enclosed activity (scope) executed n+1 times in parallel,

based on start/end counter values

n  Pick
n  Specifies a set of activities with associated events (e.g., receipt of message)

n  messages can be received from the same or different partners
n  activity is completed when one of the events occurs

© Prof.Dr.-Ing. Stefan Deßloch

Structured Activities (cont.)

n  Flow activity: defines sets of activities plus (optional) control flow
n  all activities can (potentially) execute in parallel

n  flow activity completes when all directly nested concurrent activities complete
n  implicit fork/join behavior

n  activities can be "wired together" via control links
n  link has one source activity, and one target activity
n  transition conditions

n  evaluated after source activity completes
n  determines the link status to be either true or false
n  links status also set to false, if source activity is

determined not to be executed (e.g., if-else)

n  join conditions
n  can refer to status of incoming links of a

target activity (e.g., AND, OR)
n  are evaluated only after the status of all

incoming links is known
n  false join condition results in a join failure

n  dead path elimination
n  failure may be suppressed, status "false" is

propagated to outgoing links

A

D C B

E

v2 = c v0 = a

OR

v1 = b

WS 2012/2013 7

© Prof.Dr.-Ing. Stefan Deßloch

Process life-cycle

n  Start activities
n  receive, pick – createInstance attribute

n  creates a new process instance, if it doesn't exist already

n  Example:
<receive partner="customer",
 portType="itineraryPT",
 operation="sendItinerary",
 variable="itinerary”
 createInstance="yes"/>

n  each process must have at least one start activity as an initial activity

n  Process termination
n  process-level activity completes successfully
n  fault "arrives" at the process level (handled or not)
n  terminate activity is invoked

© Prof.Dr.-Ing. Stefan Deßloch

Data Types and Data Transfer

n  Variables can be used to define data containers
n  WSDL messages received from or sent to partners
n  Messages that are persisted by the process
n  XML data defining the process state

n  Constitute the “business context” of the process
n  Access to variables can be serialized to some extent

 11 <variables>
12 <variable name="itinerary“ messageType="itineraryMessage"/>
13 <variable name="tickets" messageType="ticketsMessage"/>
14 </variables>

n  Variable assignment
n  Receiving a message (or a reply of an invoke activity) implicitly assigns value
n  Alternative: assign activity (another simple activity)

n  Copies fields from containers into other containers

WS 2012/2013 8

© Prof.Dr.-Ing. Stefan Deßloch

Correlation

n  Message needs to be delivered not only to the correct port, but to the correct
instance of the business process providing the port

n  conversation routing

n  Correlation Set
n  one or more properties used for correlating messages
n  example

n  <correlationSets>
 <correlationSet name="Booking"

 properties="orderNumber"/>
 …
 </correlationSets>

n  correlation properties are like "late-bound constants"
n  binding happens through specially marked message send/receive activities
n  value must not change after the binding happens

n  Often, more than one correlation set is used for an entire process
n  example: orderNumber -> invoiceNumber
n  correlated message exchanges may nest, overlap
n  same message may carry multiple correlation sets

© Prof.Dr.-Ing. Stefan Deßloch

Properties

n  Property
n  Globally defined types
n  Primarily used to correlate a message with a specific process instance

n  E.g., order number
n  Usually included in the message
n  Often the same property is used in different messages

n  Can be defined in BPEL as a separate entity:
9 <property name="orderNumber" type="xsd:int"/>

n  Property alias
n  Allows to point to a dedicated field of the message that represents the property

n  Usually different for each message type
n  Can be used in expression and assignments to easily use properties

 10 <propertyAlias propertyName="orderNumber"
11 messageType="ticketsMessage“
12 part="orderInfo“
13 query="/orderID"/>

WS 2012/2013 9

© Prof.Dr.-Ing. Stefan Deßloch

Scope

n  Defines the behavior context of an activity (primary activity)
n  simple or structured (group of activities)

n  Can provide the following for a (regular) activity
n  (Local) data variables
n  Correlation Sets
n  Event handler(s)
n  Fault handler(s)
n  Termination handler
n  Compensation handler

n  Scope acts as a compensation sphere

n  Scopes can be arbitrarily nested

© Prof.Dr.-Ing. Stefan Deßloch

Fault Handlers and Termination Handler

n  Fault handlers catch and deal with faults occurring in active scope
n  Can catch internal faults (throw activity), WS fault messages
n  All active work in the scope is stopped!

n  Results in invocation of termination handlers for active enclosed scopes

n  After fault handler completes successfully, processing continues outside the scope
n  Processing of the scope is still considered to have ended abnormally

n  Termination handler allows to define scope-specific termination behavior
n  Invoked if an active scope needs to be terminated

n  Example: perform cleanup work, notify business partner, cancel activity

n  For nested scope: TH for inner scope is invoked before the TH of the outer

WS 2012/2013 10

© Prof.Dr.-Ing. Stefan Deßloch

Compensation Handlers

n  Compensation handlers reverse the work of a sucessfully completed scope
n  Compensation handler is "installed" after successful completion of the scope
n  Can be defined for each scope
n  Compensation activity can be any activity
n  Compensation handlers live in a snapshot world

n  When invoked, they see a snapshot of the variables at scope completion time
n  Cannot update “live” data variables
n  Can only affect external entities
n  Input/output parameters for compensation handler are future direction

n  Compensate activity
n  Invokes compensation handler for named scope
n  Can be invoked only from the fault handler or compensation handler of the

immediately enclosing scope

© Prof.Dr.-Ing. Stefan Deßloch

Fault-Termination-Compensation - Example

sequence receive
itinerary

reserve
hotel

reserve
flight

reserve
vehicle

debit
credit card

notify
customer

þ

þ

…
↯↯

scope scope scope

scope

comp. handler
cancel
vehicle

termin. handler
notify
hotel

ý
fault handler
↯↯
rethrow

ý
↯↯

fault handler

send
notif.

↯↯
compensate

terminate

WS 2012/2013 11

© Prof.Dr.-Ing. Stefan Deßloch

Default Compensation and Fault Handlers

n  Default compensation handler
n  Invokes compensation handlers of immediately enclosed scopes in the reverse

order of the completion of the scopes
n  Is used if a (enclosing) scope does not explicitly define a compensation handler
n  Can also be invoked explicitly

n  Useful if comp. action = “compensate enclosed scope in reverse order” + “additional
activities”

n  Default fault handler
n  Invokes compensation handlers of immediately enclosed scopes in the reverse

order of the completion of the scopes
n  Rethrows the exception

© Prof.Dr.-Ing. Stefan Deßloch

BPEL – Abstract Processes

n  Abstract Process = Role-specific view of a protocol
n  only public information
n  no private, implementation-specific aspects

n  branching conditions, activity realization, …

n  not executable
n  can be used by a conversation controller to ensure business protocol compliance

n  Properties of BPEL abstract processes
n  handle only protocol-relevant data

n  message properties

n  variables
n  do not need to be fully initialized
n  variables for inbound or outbound messages may be omitted from invoke, receive, reply,

if the intent is to just constrain the sequence of activities

n  opaque assignments
n  can correspond to creating a unique value for correlation properties
n  hide private behavior for providing the values

WS 2012/2013 12

© Prof.Dr.-Ing. Stefan Deßloch

Implementing Business Protocols

n  Suggested path
n  protocol specification as a starting point
n  derive role-specific views of the protocol

n  includes all the message exchanges that involve a certain role

n  define abstract process for role-specific view
n  model interactions using receive, invoke, reply
n  represent additional public information, such as branching situations, parallelism

n  turn abstract process into an executable process to implement it

Purchase Order Request

Receipt Acknowledgement

Purchase Order Acceptance

Receipt Acknowledgement

Buyer Seller

receive

reply

invoke

invoke

receive

reply

receive

invoke

AccountsService

invoke

SalesAgentService

invoke

ShippingService

© Prof.Dr.-Ing. Stefan Deßloch

RosettaNet

n  Goal: Develop standard e-commerce interfaces to align the processes
between IT supply chain partners

n  consortium founded in 1998
n  "vertical" coordination protocols
n  more than 3000 documented production implementations by 2004

n  Main standardization areas
n  (Public) Business processes

n  coordination protocols for trading partners
n  Partner Interface Processes (PIPs)

n  business documents, vocabulary, choreography of message exchanges

n  Data format
n  establishment of a common vocabulary

n  business directory
n  technical dictionary

n  Message services
n  RosettaNet Implementation Framework

n  reliable, secure execution of the protocol specifications
n  transfer, routing, packaging of encrypted and authenticated messages between business partners

WS 2012/2013 13

© Prof.Dr.-Ing. Stefan Deßloch

PIP Definitions

n  Standardized PIP definitions are arranged into clusters, further broken down into
segments

n  Clusters:
1.  RosettaNet Support

n  administrative functionality

2.  Partner Product and Service Review
n  collect, maintain, distribute product or service information

n  account setup, product info subscription, …

3.  Product Information
n  distribute, update product information

n  query technical product info, …

4.  Order Management
n  request quote, request purchase order, query order status, …

5.  Inventory Management
n  distribute inventory report, …

6.  Marketing Information Management
n  exchange of marketing information

7.  Service and Support
n  request warranty claim, …

8.  Manufacturing
n  "virtual manufacturing"

n  notify of manufacturing work order, …

© Prof.Dr.-Ing. Stefan Deßloch

Implementing RosettaNet PIPs

n  Involves mapping PIP to WSDL, BPEL
n  types in message definitions -> types in WSDL

n  DTDs to XML Schema

n  message definitions -> WSDL message definitions
n  PIP actions -> operations in WSDL
n  PIP partner roles -> BPEL partners
n  PIP choreography: follow the "suggested path" on previous chart

n  Additional aspects
n  realize time-outs, etc. using BPEL events and fault handlers
n  additional requirements regarding security need to be resolved

n  WS-Security support, not integrated in BPEL

WS 2012/2013 14

© Prof.Dr.-Ing. Stefan Deßloch

ebXML

n  Supported by UN/CEFACT, OASIS
n  Vision

n  single global electronic marketplace
n  based on exchange of XML messages

n  ebXML architecture covers:
n  definition of business processes and their associated messages and content
n  registry and discovery of business process sequences with related message

exchanges
n  definition of company profiles
n  definition of trading partner agreements
n  uniform message transport layer

n  ebXML advantages
n  goes beyond generic protocols and specifications

n  e.g., ebXML registry is much more detailed than UDDI

n  captures the logic behind e-commerce exchanges
n  e.g., business arrangements

n  specifies how e-commerce exchanges should be specified, documented, conducted

© Prof.Dr.-Ing. Stefan Deßloch

Collaboration with ebXML

n  Example

(source: ebXML Technical
Architecture Specification)

WS 2012/2013 15

© Prof.Dr.-Ing. Stefan Deßloch

Technical Architecture

(source: ebXML Technical
Architecture Specification)

© Prof.Dr.-Ing. Stefan Deßloch

How Do These Standards Relate?

WS 2012/2013 16

© Prof.Dr.-Ing. Stefan Deßloch

Summary

n  Web service composition
n  means to implement web service by reusing/combining existing services
n  can be supported by WS composition middleware

n  borrowing concepts from WFMS

n  BPEL
n  de-facto and de-jure (OASIS) web service composition standard
n  allows definition of composition and coordination aspects

n  abstract vs. executable processes

n  main concepts
n  basic activities for web service operations
n  structured activities for defining service composition, control flow
n  blackboard approach for data flow based on variables
n  service selection based on partner link types, partner links, endpoints
n  elaborate model for transactions and exception handling

n  fault handler, termination handler, compensation handler

n  More BPEL extensions are on the way
n  people WF (BPEL4People, WS-HumanTask), Java/SQL snippets (BPELJ, BPEL/SQL)

© Prof.Dr.-Ing. Stefan Deßloch

APPENDIX

WS 2012/2013 17

© Prof.Dr.-Ing. Stefan Deßloch

RosettaNet Trading Partner Implementation

[source: RosettaNet Implementation Framework Core Specification]

© Prof.Dr.-Ing. Stefan Deßloch

Partner Interface Process (PIP) Specifications

n  Describes how to implement a collaborative coordination protocol
n  technical dictionary describes components that are exchanged
n  message guideline document

n  business actions, business signals (ack receipt of action message)

n  Major PIP specification sections
n  Business Operational View (aka Action Layer)

n  flow of business interactions, based on
n  partner roles
n  partner role interactions

n  Functional Service View (aka Transaction Layer)
n  derived from the business operational view
n  business transactions between entities in the form of message exchanges

n  ccordination protocols
n  message control information

n  time limits for acknowledgements
n  security requirements

n  Implementation Framework View (aka Service Layer)
n  based on functional service and business operational views
n  defines communication protocol and message format requirements

n  e.g., SSL, encryption, XML DTDs for messages, …

WS 2012/2013 18

© Prof.Dr.-Ing. Stefan Deßloch

Business Operational View - Example

n  Business Process Diagram for PIP3A4: Request Purchase Order

Document: message
exchanges between trading

partners

Activity: internal activities
of trading partners

[source: PIP3A4 V2.2 specification]

© Prof.Dr.-Ing. Stefan Deßloch

Functional Service View – Example

n  Business Transaction Dialog Specification for PIP3A4: Request Purchase Order

[source: PIP3A4 V2.2 specification]

WS 2012/2013 19

© Prof.Dr.-Ing. Stefan Deßloch

RosettaNet Implementation Framework

n  Defines
n  Business Message

n  packaging payload (incl.
attachments), headers, …

n  uses MIME, S/MIME
n  Protocol Stack

n  transport-independent
n  reliable messaging

n  support for HTTP, SMTP, …

n  Security Mechanism
n  based on encryption, digital

signatures
n  supports authentication,

authorization, encryption, non-
repudiation

n  Designed before the time of SOAP
n  May likely be replaced by SOAP-based

web service infrastructure in the
future

[source: RosettaNet Implementation Framework
 Core Specification]

