
Prof. Dr.-Ing. Stefan Deßloch 
AG Heterogene Informationssysteme 

Geb. 36, Raum 329 
Tel. 0631/205 3275 

dessloch@informatik.uni-kl.de 

Chapter 6 – Object Persistence, Relationships 
and Queries 



© Prof.Dr.-Ing. Stefan Deßloch 

Object Persistence 

n  Persistent object: 
n  Lifetime of a persistent object may exceed the execution of individual applications 

n  Goals 
n  shield the application from existing data stores 

n  data model, query language, API, schema 

n  simplification of programming model for persistent data access and management 
n  no explicit interaction with data source using SQL, JDBC, … 
n  eliminate "object/relational impedance mismatch" 

objects relations 

structure  complex values, collections 
 class hierarchies (inheritance) 

 flat tables 

relationships  binary 
 1:1, 1:n, n:m (using collections) 
 uni-/bi-directional references 

 binary 
 1:1, 1:n 
 value-based, symmetric 

behavior  methods 

access paradigm  object navigation (follow references)  declarative, set-oriented (queries) 

Middleware for Information Systems 
2 



© Prof.Dr.-Ing. Stefan Deßloch 

Object-Relational DBMS and JDBC 

n  Materializing instances of SQL user-defined types as instances of 
corresponding Java classes 

n  manipulated using existing result set or prepared statement interfaces 
n  get/setObject(<column>) simply "works" for structured types 
n  Example: 

ResultSet rs = stmt.executeQuery("SELECT e.addr FROM Employee e"); 
rs.next( ); 
Residence addr = (Residence)rs.getObject(1); 

n  Still requires knowledge of DB-schema, explicit SQL statements for retrieval, 
insertion, update, deletion of objects 

n  No support for building Java object references from DB-object relationships 

CREATE TYPE residence ( 
    door  INTEGER, 
    street  VARCHAR(100), 
    city  VARCHAR(50)) 

public class Residence { 
 public int door; 
 public String street; 
 public String city; }     

Java SQL 

Middleware for Information Systems 
3 



© Prof.Dr.-Ing. Stefan Deßloch 

Object Persistence Services & Frameworks 

n  Basic approach (both in an application server and stand-alone appl. context) 
n  application interacts only with objects 

n  create, delete 
n  access/modify object state variables 
n  method invocation 

n  persistence infrastructure maps interactions with objects to operations on data 
sources 

n  e.g., INSERT, UPDATE, SELECT, DELETE 

n  May involve definition of a "mapping" from objects to data store schema 
n  mapping has to cover 

n  datatypes 
n  classes, class hierarchies 
n  identifiers 
n  relationships 

n  see course "Informationssysteme" (EER -> RM) for possible mapping alternatives 
 

Caution: inherent performance impact! 

Middleware for Information Systems 
4 



© Prof.Dr.-Ing. Stefan Deßloch 

Object Persistence 

n  Aspects of persistence (Atkinson et.al, SIGMOD Record 1996) 
n  Orthogonal persistence 

n  persistence independent of data type, class 
n  instances of the same class may be transient or persistent 

n  Transitive persistence (aka persistence by reachability) 
n  objects can be explicitly designated to become persistent (i.e., roots) 
n  objects referenced by persistent objects automatically become persistent, too 

n  Persistence independence (aka transparent persistence) 
n  code operating on transient and persistent objects is (almost) the same 
n  "client object" side: no impact when interacting with persistent objects 

n  application may have to explicitly "persist" an object, but continues to use the same interface for 
interacting with the persistent object 

n  interactions with a data store are not visible to/initiated by the client object, but happen 
automatically (e.g., when object state is modified or at EOT) 

n  "persistent object" side:  no special coding for "implementing" persistence 

n  Realizing the above aspects 
n  requires significant efforts in programming language infrastructure 

n  above goals are almost never fully achieved 

n  may be considered "dangerous" (transitive persistence) 

Middleware for Information Systems 
5 



© Prof.Dr.-Ing. Stefan Deßloch 

Persistence Programming Model Design Points 

n  Persistence in application server middleware 
n  surfaced at the distributed object programming model, or 
n  supported at the programming language level 

n  Determining object persistence 
n  Statically (compile-time) – all/no objects of a certain class/type/programming 

model concept are persistent, or 
n  Semi-dynamic – objects of preselected classes (persistence-capable) may become 

persistent dynamically at runtime, or 
n  Dynamic (also: orthogonal persistence) – any object may be transient or persistent 

n  Identifying objects 
n  implicit OID, or 
n  explicit (visible) object key (primary key) 

n  Locating/referencing persistent objects 
n  by object key (lookup) 
n  by query 

Middleware for Information Systems 
6 



© Prof.Dr.-Ing. Stefan Deßloch 

Persistence Programming Model Design Points (2) 

n  Accessing object state (from client, from server/persistent object) 
n  (public) member variables, or 
n  object methods (getter/setter, …) 

n  Updating persistent object state 
n  explicit (methods for store, load, …), or 
n  automatic (immediate, deferred), or 
n  combination 

n  Handling dependencies/relationships 
n  Referential integrity 
n  Lazy vs. eager loading 
n  “Pointer swizzling” 

Middleware for Information Systems 
7 



© Prof.Dr.-Ing. Stefan Deßloch 

CORBA – Persistent Object Service 

n  Goal: uniform interfaces for realizing object persistence 
n  POS (Persistent Object Service) components 

n  PO: Persistent Object 
n  are associated with persistent state  

through a PID (persistent object  
identifier) 

n  PID describes data location 

n  POM: Persistent Object Manager 
n  mediator between POs and PDS 
n  realizes interface for persistence  

operations 
n  interprets PIDs 
n  implementation-independent 

n  PDS: Persistent Data Service 
n  mediator between POM/PO and  

persistent data store 
n  data exchange between object and  

data store as defined by protocols 
n  Datastore 

n  stores persistent object data 
n  may implement Datastore_CLI (encapsulates ODBC/CLI) 

PO PO 
PO PO 

PO 

client app 

POM 

DDO ODMG DA 

RDBMS ODBMS 
simple 
object  
store 

Datastore_CLI 

Middleware for Information Systems 
8 



© Prof.Dr.-Ing. Stefan Deßloch 

CORBA Persistence Model 

n  CORBA object is responsible for realizing its own persistence 
n  can use PDS services and functions 
n  implicit persistence control 

n  client is potentially unaware of object persistence aspects  
(client persistence independence) 

n  explicit persistence control  
n  persistent object implements PO interface, which can then be used by the client 

n  Explicit persistence control by CORBA client: 
n  client creates PID, PO using factory objects 
n  PO Interface 

n  connect/disconnect – automatic persistence for the duration of a "connection" 
n  store/restore/delete – explicit transfer of data 
n  delegated to POM, PDS 

n  caution!: CORBA object reference and PID are different concepts 
n  client can "load" the same CORBA object with data from different persistent object states 

Middleware for Information Systems 
9 



© Prof.Dr.-Ing. Stefan Deßloch 

Persistence Protocols 

n  CORBA Persistence Service defines three protocols 
n  Direct Access (DA) protocols 

n  PO stores persistent state using so-called direct access data objects (DADOs) 
n  CORBA objects whose interfaces only have attributes 
n  defined using Data Definition Language (IDL subset) 

n  precompilation is specific to CORBA/PDS environment 

n  DADOs may persistently reference other DADOs, CORBA objects 

n  ODMG'93 protocols 
n  utilizes ODMG standard for object-oriented databases 
n  persistent objects are programming language objects, not CORBA objects 
n  definition of persistence "schema" similar to DA protocol (is a superset) 

n  own DDL (ODL) for defining POs 

n  Dynamic Data Object (DDO) protocols 
n  "generic", self-describing DO 

n  methods for read/update/add of attributes and values 
n  manipulation of meta data 

n  used for accessing record-based data sources (e.g. RDBMS) using DataStore CLI interface 
n  CLI for CORBA 

n  Protocols are employed in the implementation of  POs 

Middleware for Information Systems 
10 



© Prof.Dr.-Ing. Stefan Deßloch 

EJB Version 2 – Entity Beans 

n  Persistence is supported at the EJB/distributed object programming model 
n  explicit type of EJB for (static) persistent objects 
n  invocation of remote object methods 
n  life-cycle interface (Home interface) 

n  create, retrieve, delete 
n  findByPrimaryKey 
n  additional, bean-specific finder methods 

n  primary-key class for uniquely identifying persistent bean objects 

n  Follows transparent persistence approach on the client 
n  persistence-related operations (e.g., synchronizing object state with DB contents) 

are hidden from the client 
n  automatic update of persistent object state 

Middleware for Information Systems 
11 



© Prof.Dr.-Ing. Stefan Deßloch 

Entity Beans 

n  Object persistence logic is implemented separately from business logic 
n  entity bean "implements" call-back methods for persistence 

n  ejbCreate – insert object state into DB 
n  ejbLoad – retrieve persistent state from DB 
n  ejbStore – update DB to reflect (modified) object state 
n  ejbRemove – remove persistent object state 

n  Manipulation of CMP fields through access methods (getfield(), setfield(...) ) 
n  access within methods of the same EB 
n  client access can be supported by including access methods in the remote interface 
n  provides additional flexibility for container implementation 

n  lazy loading of individual attributes 
n  individual updates for modified attributes 

Middleware for Information Systems 
12 



© Prof.Dr.-Ing. Stefan Deßloch 

Container-Managed Persistence (CMP) 

n  Bean developer defines an abstract persistence schema in the deployment 
descriptor 

n  persistent attributes (CMP fields) 
n  Mapping of CMP fields to DB-structures (e.g., columns) in deployment phase 

n  depends on DB, data model 
n  tool support 

n  top-down, bottom-up, meet-in-the-middle 

n  Container saves object state 
n  bean does not worry about persistence mechanism 

n  call-back methods don't contain DB access operations 
n  may be used to compress/decompress values, derive attribute values, … 

Middleware for Information Systems 
13 



© Prof.Dr.-Ing. Stefan Deßloch 

Bean-Managed Persistence (BMP) 

n  Callback-methods contain explicit DB access operations 
n  useful for interfacing with legacy systems or for realizing complex DB-mappings 

(not supported directly by container or CMP tooling) 

n  No support for container-managed relationships 
n  Finder-methods 

n  have to be implemented in Java 
n  no support for EJB-QL 

Middleware for Information Systems 
14 



© Prof.Dr.-Ing. Stefan Deßloch 

Entity Beans (and CORBA) - Problems 

n  Distributed component vs. persistent object 
n  granularity 
n  potential overhead (and possible performance problems) 

n  solution in EJB 2.0: local interfaces 
n  but: semantic differences (call-by-value vs. call-by-reference) 

n  complexity of development process 

n  Missing support for class hierarchies with inheritance 

Middleware for Information Systems 
15 



© Prof.Dr.-Ing. Stefan Deßloch 

JDO – Java Data Objects 

n  JDO was developed as a standard for persistence in Java-based applications 
n  first JDO specification 1.0 released in March 2002 (after ~ 3 years) through Suns 

JCP (Java Community Process)  
n  > 10 vendor implementations plus open-source projects 
n  mandatory features and optional features in the specification (i.e., some optional 

features are „standardized“ à promises better portability). 
n  Features, elements 

n  orthogonal, transitive persistence 
n  native Java objects (inheritance) 
n  byte code enhancement 
n  mapping to persistence layer using XML-metadata 
n  transaction support 
n  JDO Query Language 
n  JDO API 
n  JDO identity 
n  JDO life cycle 
n  integration in application server standard (J2EE) 

Middleware for Information Systems 
16 



© Prof.Dr.-Ing. Stefan Deßloch 

Persistence in JDO 

n  (Semi-) dynamic persistence 
n  Java class supports (optional) persistence (implements PersistenceCapable) 
n  not all instances of the class need to be  persistent 

n  application can/must explicitly turn a transient object into a persistent object (and vice 
versa) 

n  Persistence logic is transparent for client at the Java level 
n  interacting with transient and persistent objects is the same 

n  Transitive persistence (i.e., by reachability) 

Middleware for Information Systems 
17 



© Prof.Dr.-Ing. Stefan Deßloch 

JDO API 

PersistenceManagerFactory 

n  manages connection to persistence layer 
n  manages PersistenceManager pool 

PersistenceManager 

n  has connection to persistence layer 
n  manages JDO instance cache 

Transaction 

n  realizes transactional behavior 
together with persistence layer 

Query 

n  helps locate persistent objects 

Extent 

n  represents all instances of a class 

1 

1 

1 

1 

1 

0..n 

0..n 

0..n 0..1 

use 

Middleware for Information Systems 
18 



© Prof.Dr.-Ing. Stefan Deßloch 

PersistenceManager API - Example 

  
1  Author author1 = new Author("John", "Doe"); 
2  PersistenceManager pm1 = pmf.getPersistenceManager(); 
3  pm1.currentTransaction.begin(); 
4  pm1.makePersistent(author1);  
5  Object jdoID = pm1.getObjectId(author1); 
6  pm1.currentTransaction.commit(); 
7  pm1.close(); 

  
 8  // Application decides that author1 
9  // must be deleted 
10 PersistenceManager pm2 = pmf.getPersistenceManager(); 
11 pm2.currentTransaction.begin(); 
12 Author author2 = (Author)pm2.getObjectById(jdoID); 
13 pm2.deletePersistent(author2); 
14 pm2.currentTransaction.commit(); 
15 pm2.close(); 

Middleware for Information Systems 
19 



© Prof.Dr.-Ing. Stefan Deßloch 

Byte-Code-Enhancement 

n  Java bytecode (*.class) and metadata (*.jdo) 
n  Same object class (now implements PersistenceCapable) 
n  O/R-mapping specification is vendor-specific 

MyClass.java 

MyClass.java 
MyClass.java JDO 
meta data 

MyClass.class MyClass.class Java 
Compiler 

JDO 
Enhancer 

Java Virtual Machine 

JDO 
run time environment 

provided by application 
developer 

provided by JDO 
vendor 

Middleware for Information Systems 
20 



© Prof.Dr.-Ing. Stefan Deßloch 

Java Persistence API 

n  Result of a major 'overhaul' of EJB specification for persistence, relationships, 
and query support 

n  simplified programming model 
n  standardized object-to-relational mapping 
n  inheritance, polymorphism, "polymorphic queries" 
n  enhanced query capabilities for static and dynamic queries 

n  API usage 
n  from within an EJB environment/container 
n  outside EJB, e.g., within a standard Java SE application 

n  Support for pluggable, third-party persistence providers 

Middleware for Information Systems 
21 



© Prof.Dr.-Ing. Stefan Deßloch 

Entities 

n  "An entity is a lightweight persistent domain object" 
n  entities are not remotely accessible (i.e., they are local objects) 
n  no relationship with the EntityBeans concept, but co-existence 

n  Simplified programming model for EJB entities 
n  entity is a POJO (plain old Java object) 

n  marked as Entity  through annotations  or deployment descriptor 
n  no additional local or home interfaces required 
n  no implementation of generic EntityBean methods needed 

n  entity state (instance variables) is encapsulated, client access only through accessor or other 
methods 

n  use of annotations for persistence and relationship aspects 
n  no XML deployment descriptor required 

n  Entities and inheritance 
n  abstract and concrete classes can be entities 
n  entities may extend both non-entity and entity classes, and vice versa 

Middleware for Information Systems 
22 



© Prof.Dr.-Ing. Stefan Deßloch 

Identity and Embeddable Classes 

n  Entities must have primary keys 
n  defined at the root, exactly once per class hierarchy 
n  may be simple or composite 

n  key class required for composite keys 

n  must not be modified by the application 
n  more strict than primary key in the RM 

n  Embeddable classes 
n  "fine-grained" classes used by an entity to represent state 
n  instances are seen as embedded objects, do not have a persistent identity 

n  mapped with the containing entities 
n  not sharable across persistent entities 

Middleware for Information Systems 
23 



© Prof.Dr.-Ing. Stefan Deßloch 

Requirements on Entity Class 

n  Public, parameter-less constructor  
n  Top-level class, not final, methods and persistent instance variables must not be final  
n  Entity state is made accessible to the persistence provider runtime 

n  either via instance variables (protected or package visible) 
n  or via (bean) properties (getProperty/setProperty methods) 
n  consistently throughout the entity class hierarchy 

n  Collection-valued state variables have to be based on (generics of) specific classes in 
java.util 

Middleware for Information Systems 
24 



© Prof.Dr.-Ing. Stefan Deßloch 

Mapping to RDBMS 

n  Entity mapping 
n  default table/column names for entity classes and persistent fields 

n  can be customized using annotations, deployment descriptor 

n  mapping may define a primary table and one or more secondary tables for an 
entity 

n  state of an entity/object may be distributed across multiple tables 

n  Inheritance mapping strategies supported for the mapping 
n  single table with discriminator column (default) 

n  table has columns for all attributes of any class in the hierarchy 
n  tables stores all instances of the class hierarchy 

n  horizontal partitioning 
n  one table per entity class, with columns for all attributes (incl. inherited) 
n  table stores only the direct instances of the class 

n  vertical partitioning 
n  one table per entity class, with columns for newly defined attributes (i.e., attributes 

specific to the class) 
n  table stores information about all (i.e., transitive) instances of the class 

Middleware for Information Systems 
25 



© Prof.Dr.-Ing. Stefan Deßloch 

Entity Life Cycle and Persistence 

n  Orthogonal persistence 
n  instances of entity classes may be 

transient or persistent 
n  persistence property controlled by 

application/client (e.g., a 
SessionBean) 

n  Entity manager manages entity 
state and lifecycle within 
persistence context 

n  persist(obj) -> INSERT 
n  merge(obj) -> UPDATE 
n  remove(obj) -> DELETE 
n  find(class, pKey) -> SELECT 
n  refresh(obj) -> SELECT 

entities are 
associated with 

a persistence 
context 

new 

managed removed 

detached 

new() 

persist() 

remove() 

refresh() 

merge() 

persistence context 
ends 

persist() 

no persistent  
ID yet 

Middleware for Information Systems 
26 



© Prof.Dr.-Ing. Stefan Deßloch 

Relationships 

n  Persistence model needs to be complemented by relationship support 
n  represent relationships among data items (e.g., tuples) at the object level 
n  support persistence of native programming language concepts for "networks" of 

objects 
n  references, pointers 

n  Alternatives 
n  value-based relationships at the object level (see relational data model) 

n  requires to issue a query (over objects) to locate related object(s) 
n  no "navigational" access 

n  relationships are part of persistent object interface(s) or implementation 
n  getter/setter methods or properties/fields to represent relationship roles of participating 

entities 
n  relationships are always binary, collection support required for 1:n, n:m 
n  uni-directional or bi-directional representation 

n  consistency? 

n  separate relationship concept/service, independent of persistent object interfaces 

Middleware for Information Systems 
27 



© Prof.Dr.-Ing. Stefan Deßloch 

CORBA Relationships 

n  Relationship Service 
n  management of object dependencies, separate from object state or interface 
n  relationship involves: type, role, cardinality 

n  type: types of objects that may participate in a specific relationship type 
n  role: role names of participating entities 

n  major goals 
n  multi-directional use/navigation and relationship maintenance 
n  decouple relationship from CORBA object reference maintained by each participating 

object 
n  graph traversal 
n  attributes and behavior for relationships 

n  generic IDL interfaces for roles, relationships, … 
n  to be subtyped for application-specific relationships (e.g., Emp-Dept) 
n  supplemented by additional interfaces for relationship graph traversal 

n  Relationships are separate (CORBA) objects 
n  highly dynamic, powerful, but very complex to use 
n  not really suitable for (fine-grained) data-level relationships 

Middleware for Information Systems 
28 



© Prof.Dr.-Ing. Stefan Deßloch 

EJB - Container-managed Relationships 

n  Relationships can be defined in deployment descriptor or through annotations 
n  part of abstract persistence schema 

n  Relationships may be uni-directional ("reference") or bi-directional 
n  Relationship types: 1:1, 1:n, n:1, n:m 
n  Access methods for accessing objects participating in a relationship 

n  like CMP field methods (get/set) 
n  Java Collection interface for set-valued reference attributes 

n  Container generates code for 
n  relationship maintenance 

n  cardinality, inverse relationship field consistency are guaranteed 

n  persistent storage, involves mapping definition as well 

n  No transitive persistence 
n  relationship can only be established among entityBeans, which are already 

persistent 

n  Only supported for CMP EntityBeans 

Middleware for Information Systems 
29 



© Prof.Dr.-Ing. Stefan Deßloch 

JDO – Relationships and Transitive Persistence 

n  All PersistenceCapable objects reachable from persistent object through 
standard Java references within an object graph are made persistent, too 

n  No managed inverse relationships 

Author1 

Book1 Book2 

Chapter1 Chapter2 Chapter1 

If Author1 is made  
persistent, then all objects 
reachable (e.g., books 
and chapters) are made 
persistent, too! 

Middleware for Information Systems 
30 



© Prof.Dr.-Ing. Stefan Deßloch 

Relationships in Java Persistence API 

n  Relationships are represented in the same way as persistent attributes 
n  member variables, get/set method pairs 

n  Supports uni- and bi-directional binary relationships of the same types as EJB 
CMR 

n  but does not provide automatic maintenance of inverse relationships 
n  a designated owning side "wins" at the persistent data store 

n  Selective transitive persistence 
n  defined using CASCADE options on relationships 

n  Relationship mapping 
n  represented using primary key/foreign key relationships 
n  table for the "owning" side of the relationship contains the foreign key 
n  N:M-relationships represented using a relationship table 

Middleware for Information Systems 
31 



© Prof.Dr.-Ing. Stefan Deßloch 

Relationships – Additional Aspects 

n  Discussions about benefits and drawbacks of transitive persistence 
n  easy to use from a development perspective, but 
n  implicit definition of persistence 

n  developer needs to understand what to expect in terms of number of resulting insert 
operations 

n  and what about the "reverse" semantics for object deletion: when should an object 
that was implicitly made persistent be deleted? 

n  when the originally referencing object causing implicit persistence is deleted or removes 
the reference? 

n  when the object is no longer referenced by other persistent objects (garbage collection)? 
n  still could be retrieved using its primary key value 

n  when it is explicitly deleted? 

n  Cascading delete rules are usually the only mechanism offered to implement 
automatic deletion 

n  relationships can be flagged to cause deletion, if "parent" object is deleted 
n  often mapped to referential integrity constraints in the DB-mapping 

n  what is the resulting object state in the application, if the deleted object is still 
referenced? 

Middleware for Information Systems 
32 



© Prof.Dr.-Ing. Stefan Deßloch 

Queries Over Persistent Objects 

n  Accessing persistent objects through primary key or navigation over 
relationships 

n  is a useful basic mechanism that fits the OO programming model 
n  but is a severe restriction when accessing collections of persistent objects 
n  and can cause severe performance impact through tuple-by-tuple operations 

n  Object retrieval through a query language 
n  required to solve the above problems 
n  but should not force the developer to drop down to the data store query language 

(and schema) again 

n  Object query language 
n  continues to shield the developer from data store (and mapping) details 
n  requires persistence framework to transform object queries into corresponding 

data store queries based on the object-to-relational mapping 

Middleware for Information Systems 
33 



© Prof.Dr.-Ing. Stefan Deßloch 

CORBA Queries 

n  Query Service 
n  set-oriented queries for locating CORBA objects 
n  SQL, OQL (ODMG) can be used as query languages 
n  query results are represented using Collection objects 

n  iterators 

n  not restricted to persistent query objects 

n  Query can be optionally delegated to a "query evaluator" (e.g., the query 
engine of a RDBMS or ODBMS) or to a "queryable collection" 

n  a query evaluator may iterate over a collection of CORBA objects and access 
attributes or evaluate methods, or  

n  it may involve other queryableCollections to evaluate subqueries and then do the 
join processing after retrieving the results 

n  Queries can only access the public attributes of CORBA objects 
n  everything is based on the remote interfaces of objects  

n  performance? optimization? 

n  There is no conceptual mapping from query language concepts (e.g., tables, 
object collections) to CORBA concepts provided 

Middleware for Information Systems 
34 



© Prof.Dr.-Ing. Stefan Deßloch 

EJB Query Language (EJB-QL) 

n  Introduced as a query language for CMP EntityBeans 
n  used in the definition of user-defined Finder methods of an EJB Home interface 

n  no arbitrary (embedded or dynamic) object query capabilities! 

n  uses abstract persistence schema as its schema basis 
n  SQL-like 

n  Example: 
SELECT DISTINCT OBJECT(o) 
FROM Order o, IN(o.lineItems) l 
WHERE l.product.product_type  

= ‘office_supplies’ 

Middleware for Information Systems 
35 



© Prof.Dr.-Ing. Stefan Deßloch 

Java Persistence Query Language 

n  Extension of EJB-QL 
n  named (static) and dynamic queries 
n  range across the class extensions including subclasses 

n  a persistence unit is a logical grouping of entity classes, all to be mapped to the same DB 
n  queries can not span across persistence units 

n  includes support for  
n  bulk updates and delete 
n  outer join 
n  projection 
n  subqueries 
n  group-by/having 

n  Prefetching based on outer joins 
n  Example: 

SELECT d 
FROM Department d LEFT JOIN FETCH d.employees 
WHERE d.deptno = 1 

Middleware for Information Systems 
36 



© Prof.Dr.-Ing. Stefan Deßloch 

JDO Query Language 

n  A JDOQL query has 3 parts 
n  candidate class: class(es) of expected result objects 

à restriction at the class level 
n  candidate collection: collection/extent to search over 

à (optional) restriction at the object extent level  
n  filter: boolean expression with JDOQL (optional: other query language) 

n  JDOQL characteristics 
n  read-only (no INSERT, DELETE, UPDATE) 
n  returns JDO objects (no projection, join) 
n  query submitted as string parameter à dynamic processing at run-time 
n  logical operators, comparison operators: e.g. !,==,>= 
n  JDOQL-specific operators: type cast using "( )", navigation using "." 
n  no method calls supported in JDOQL query 
n  sort order (ascending/descending) 
n  variable declarations 

Middleware for Information Systems 
37 



© Prof.Dr.-Ing. Stefan Deßloch 

Query 

n  JDO-Query with JDOQL for locating JDO instances: 

 1  String searchname = "Doe"; 
2  Query q = pm.newQuery(); 
3  q.setClass(Author.class); 
4  q.setFilter("name == \"" + searchname +"\""); 
5  Collection results =(Collection)q.execute(); 
6  Iterator it = results.iterator(); 
7  while (it.hasNext()){ 
8      // iterate over result objects 
9  } 
10 q.close(it); 

Middleware for Information Systems 
38 



© Prof.Dr.-Ing. Stefan Deßloch 

JDOQL Examples 

n  Sorting: 
1 Query query = pm.newQuery(Author.class); 
2 query.setOrdering("name ascending, firstname ascending"); 
3 Collection results = (Collection) query.execute(); 

n  Variable declaration 
1  String filter = "books.contains(myBook) &&  " + 
2                  "(myBook.name == \"Core JDO\")"; 
3  Query query = pm.newQuery(Author.class, filter); 
4  query.declareVariables("Book myBook"); 
5  Collection results = (Collection) query.execute(); 
 

Middleware for Information Systems 
39 



© Prof.Dr.-Ing. Stefan Deßloch 

Realizing Automatic Persistence 

n  Strategies for "loading" objects from the persistent store during navigational 
access 

n  "lazy" loading – object is retrieved only when accessed based on primary key or 
reference (relationship) 

n  easy to implement 
n  may cause increased communication with data source, resulting in performance 

drawbacks 

n  "eager" loading 
n  when an object is requested, transitively load all the objects reachable through references 
n  requires construction/generation of complex data store queries 
n  may cause a lot of unnecessary objects to be loaded 

n  Persistence frameworks usually offer a combination of the above strategies 
n  relationships can be explicitly designated as eager or lazy 

n  at deployment time? separate definitions depending on the application scenario? 

n  can be generalized to arbitrary persistent attributes 
n  e.g., to pursue lazy loading of large objects 

Middleware for Information Systems 
40 



© Prof.Dr.-Ing. Stefan Deßloch 

Realizing Automatic Persistence (2) 

n  How to write object changes back to the data store 
n  there may be many fine-grained (i.e., attribute-level) updates on a persistent 

object during a transaction 
n  immediate update: write changes to the DB after every attribute modification 

n  easy to implement/support, but many interactions with the DBMS 

n  deferred update: record changes and combine them into a single update per tuple 
at the end of the transaction 

n  more complex to implement, unless one always updates the complete tuple 
n  the latter will result in unnecessary processing overhead at the DBMS 

n  approach needs to be refined to account for consistent query results 
n  write back changes also before any object query statements are executed 

n  Concurrency control strategy (determined in combination with the persistent 
data store) 

n  pessimistic, using locking at the DBMS-level 
n  requires long read locks to avoid lost updates 

n  optimistic, by implementing "optimistic locking" 

Middleware for Information Systems 
41 



© Prof.Dr.-Ing. Stefan Deßloch 

Optimistic Locking and Concurrency 

n  Note: most DBMSs don't support optimistic concurrency control 
n  Example JPA: optimistic locking is assumed, with the following requirements 

for application portability 
n  isolation level "read committed" or equivalent for data access 

n  no long read locks are held, DBMS does not prevent lost updates, inconsistent reads 

n  declaration of a version attribute for all entities to be enabled for optimistic locking 
n  persistence provider uses the attribute to detect and prevent lost updates 

n  provider changes/increases the version during a successful update 
n  compares original version with the current version stored in the DB, if the version is not the same, 

a conflict is detected and the transaction is rolled back 

n  inconsistencies may arise if entities are not protected by a version attribute 
n  does not guarantee consistent reads 
n  conflicts can only be detected at the end of a (possibly long) transaction 

Middleware for Information Systems 
42 



© Prof.Dr.-Ing. Stefan Deßloch 

Transactions in JDO 

n  JDO transactions supported at the object level 
n  Datastore Transaction Management (standard): 

n  JDO synchronizes transaction with the persistence layer 
n  transaction strategy of persistence layer is used 

n  Optimistic Transaction Management (optional): 
n  JDO progresses object transaction at object level 
n  at commit time, transaction is synchronized with persistence layer 

n  Transactions and object persistence are orthogonal 

object 
characteristics transactional non-transactional 

persistent standard optional 

transient optional standard (JVM) 

Middleware for Information Systems 
43 



© Prof.Dr.-Ing. Stefan Deßloch 

Transactions and Concurrency Control 

n  Access of persistent data resulting from persistent object manipulation always 
occurs in the scope of a transaction 

n  What happens at transaction roll-back? 
n  state of entities in the application is not guaranteed to be rolled back, only the 

persistent state 

n  What happens if a transaction terminates and objects become "detached"? 
n  objects can still be modified "offline" 

n  What happens when objects are merged "re-attached" to a new transaction 
context? 

n  objects are NOT automatically refreshed 
n  potential for lost updates 
n  can be controlled by explicit refresh or using optimistic locking 

Middleware for Information Systems 
44 



© Prof.Dr.-Ing. Stefan Deßloch 

Summary 

n  Object persistence supported at various levels of abstraction 
n  CORBA 

n  standardized "low-level" APIs 
n  powerful, flexible, but no uniform model for component developer 

n  various persistence protocols 
n  explicit vs. implicit (client-side transparent) persistence 

n  EJB/J2EE Entity Beans 
n  persistent components 

n  CMP: container responsible for persistence, maintenance of relationships 
n  uniform programming model 
n  transparent persistence 

n  JDO 
n  persistent Java objects 
n  orthogonal, transparent, transitive persistence 

n  Java Persistence API 
n  successor of EJB entity beans 
n  standardized mapping of objects to relational data stores 
n  influenced partly by JDO, Hibernate 
n  can be used outside the EJB context as well 

Middleware for Information Systems 
45 



© Prof.Dr.-Ing. Stefan Deßloch 

Summary (2) 

n   Query Support 
n  CORBA: queries over object collections  

n  no uniform query language 
n  uses SQL, OQL 

n  persistent object schema? 

n  EJB-QL: queries over abstract persistence schema 
n  limited functionality, only for definition of Finder methods 
n  more or less a small SQL subset 

n  JDO: queries over collections, extents 
n  limited functionality 
n  proprietary query language 

n  Java Persistence Query Language 
n  based on EJB-QL (and therefore on SQL) 
n  numerous language extensions for query, bulk update 
n  static and dynamic queries 

n  Queries over multiple, distributed data sources are not mandated by the above 
approaches! 

Middleware for Information Systems 
46 


