
Prof. Dr.-Ing. Stefan Deßloch 
AG Heterogene Informationssysteme 

Geb. 36, Raum 329 
Tel. 0631/205 3275 

dessloch@informatik.uni-kl.de 

Chapter 6 – Object Persistence, Relationships 
and Queries 



© Prof.Dr.-Ing. Stefan Deßloch 

Object Persistence 

n  Persistent object: 
n  Lifetime of a persistent object may exceed the execution of individual applications 

n  Goals 
n  shield the application from existing data stores 

n  data model, query language, API, schema 

n  simplification of programming model for persistent data access and management 
n  no explicit interaction with data source using SQL, JDBC, … 
n  eliminate "object/relational impedance mismatch" 

objects relations 

structure  complex values, collections 
 class hierarchies (inheritance) 

 flat tables 

relationships  binary 
 1:1, 1:n, n:m (using collections) 
 uni-/bi-directional references 

 binary 
 1:1, 1:n 
 value-based, symmetric 

behavior  methods 

access paradigm  object navigation (follow references)  declarative, set-oriented (queries) 
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Object-Relational DBMS and JDBC 

n  Materializing instances of SQL user-defined types as instances of 
corresponding Java classes 

n  manipulated using existing result set or prepared statement interfaces 
n  get/setObject(<column>) simply "works" for structured types 
n  Example: 

ResultSet rs = stmt.executeQuery("SELECT e.addr FROM Employee e"); 
rs.next( ); 
Residence addr = (Residence)rs.getObject(1); 

n  Still requires knowledge of DB-schema, explicit SQL statements for retrieval, 
insertion, update, deletion of objects 

n  No support for building Java object references from DB-object relationships 

CREATE TYPE residence ( 
    door  INTEGER, 
    street  VARCHAR(100), 
    city  VARCHAR(50)) 

public class Residence { 
 public int door; 
 public String street; 
 public String city; }     

Java SQL 
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Object Persistence Services & Frameworks 

n  Basic approach (both in an application server and stand-alone appl. context) 
n  application interacts only with objects 

n  create, delete 
n  access/modify object state variables 
n  method invocation 

n  persistence infrastructure maps interactions with objects to operations on data 
sources 

n  e.g., INSERT, UPDATE, SELECT, DELETE 

n  May involve definition of a "mapping" from objects to data store schema 
n  mapping has to cover 

n  datatypes 
n  classes, class hierarchies 
n  identifiers 
n  relationships 

n  see course "Informationssysteme" (EER -> RM) for possible mapping alternatives 
 

Caution: inherent performance impact! 
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Object Persistence 

n  Aspects of persistence (Atkinson et.al, SIGMOD Record 1996) 
n  Orthogonal persistence 

n  persistence independent of data type, class 
n  instances of the same class may be transient or persistent 

n  Transitive persistence (aka persistence by reachability) 
n  objects can be explicitly designated to become persistent (i.e., roots) 
n  objects referenced by persistent objects automatically become persistent, too 

n  Persistence independence (aka transparent persistence) 
n  code operating on transient and persistent objects is (almost) the same 
n  "client object" side: no impact when interacting with persistent objects 

n  application may have to explicitly "persist" an object, but continues to use the same interface for 
interacting with the persistent object 

n  interactions with a data store are not visible to/initiated by the client object, but happen 
automatically (e.g., when object state is modified or at EOT) 

n  "persistent object" side:  no special coding for "implementing" persistence 

n  Realizing the above aspects 
n  requires significant efforts in programming language infrastructure 

n  above goals are almost never fully achieved 

n  may be considered "dangerous" (transitive persistence) 
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Persistence Programming Model Design Points 

n  Persistence in application server middleware 
n  surfaced at the distributed object programming model, or 
n  supported at the programming language level 

n  Determining object persistence 
n  Statically (compile-time) – all/no objects of a certain class/type/programming 

model concept are persistent, or 
n  Semi-dynamic – objects of preselected classes (persistence-capable) may become 

persistent dynamically at runtime, or 
n  Dynamic (also: orthogonal persistence) – any object may be transient or persistent 

n  Identifying objects 
n  implicit OID, or 
n  explicit (visible) object key (primary key) 

n  Locating/referencing persistent objects 
n  by object key (lookup) 
n  by query 
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Persistence Programming Model Design Points (2) 

n  Accessing object state (from client, from server/persistent object) 
n  (public) member variables, or 
n  object methods (getter/setter, …) 

n  Updating persistent object state 
n  explicit (methods for store, load, …), or 
n  automatic (immediate, deferred), or 
n  combination 

n  Handling dependencies/relationships 
n  Referential integrity 
n  Lazy vs. eager loading 
n  “Pointer swizzling” 
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CORBA – Persistent Object Service 

n  Goal: uniform interfaces for realizing object persistence 
n  POS (Persistent Object Service) components 

n  PO: Persistent Object 
n  are associated with persistent state  

through a PID (persistent object  
identifier) 

n  PID describes data location 

n  POM: Persistent Object Manager 
n  mediator between POs and PDS 
n  realizes interface for persistence  

operations 
n  interprets PIDs 
n  implementation-independent 

n  PDS: Persistent Data Service 
n  mediator between POM/PO and  

persistent data store 
n  data exchange between object and  

data store as defined by protocols 
n  Datastore 

n  stores persistent object data 
n  may implement Datastore_CLI (encapsulates ODBC/CLI) 

PO PO 
PO PO 

PO 

client app 

POM 

DDO ODMG DA 

RDBMS ODBMS 
simple 
object  
store 

Datastore_CLI 
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CORBA Persistence Model 

n  CORBA object is responsible for realizing its own persistence 
n  can use PDS services and functions 
n  implicit persistence control 

n  client is potentially unaware of object persistence aspects  
(client persistence independence) 

n  explicit persistence control  
n  persistent object implements PO interface, which can then be used by the client 

n  Explicit persistence control by CORBA client: 
n  client creates PID, PO using factory objects 
n  PO Interface 

n  connect/disconnect – automatic persistence for the duration of a "connection" 
n  store/restore/delete – explicit transfer of data 
n  delegated to POM, PDS 

n  caution!: CORBA object reference and PID are different concepts 
n  client can "load" the same CORBA object with data from different persistent object states 
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Persistence Protocols 

n  CORBA Persistence Service defines three protocols 
n  Direct Access (DA) protocols 

n  PO stores persistent state using so-called direct access data objects (DADOs) 
n  CORBA objects whose interfaces only have attributes 
n  defined using Data Definition Language (IDL subset) 

n  precompilation is specific to CORBA/PDS environment 

n  DADOs may persistently reference other DADOs, CORBA objects 

n  ODMG'93 protocols 
n  utilizes ODMG standard for object-oriented databases 
n  persistent objects are programming language objects, not CORBA objects 
n  definition of persistence "schema" similar to DA protocol (is a superset) 

n  own DDL (ODL) for defining POs 

n  Dynamic Data Object (DDO) protocols 
n  "generic", self-describing DO 

n  methods for read/update/add of attributes and values 
n  manipulation of meta data 

n  used for accessing record-based data sources (e.g. RDBMS) using DataStore CLI interface 
n  CLI for CORBA 

n  Protocols are employed in the implementation of  POs 
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EJB Version 2 – Entity Beans 

n  Persistence is supported at the EJB/distributed object programming model 
n  explicit type of EJB for (static) persistent objects 
n  invocation of remote object methods 
n  life-cycle interface (Home interface) 

n  create, retrieve, delete 
n  findByPrimaryKey 
n  additional, bean-specific finder methods 

n  primary-key class for uniquely identifying persistent bean objects 

n  Follows transparent persistence approach on the client 
n  persistence-related operations (e.g., synchronizing object state with DB contents) 

are hidden from the client 
n  automatic update of persistent object state 
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Entity Beans 

n  Object persistence logic is implemented separately from business logic 
n  entity bean "implements" call-back methods for persistence 

n  ejbCreate – insert object state into DB 
n  ejbLoad – retrieve persistent state from DB 
n  ejbStore – update DB to reflect (modified) object state 
n  ejbRemove – remove persistent object state 

n  Manipulation of CMP fields through access methods (getfield(), setfield(...) ) 
n  access within methods of the same EB 
n  client access can be supported by including access methods in the remote interface 
n  provides additional flexibility for container implementation 

n  lazy loading of individual attributes 
n  individual updates for modified attributes 
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Container-Managed Persistence (CMP) 

n  Bean developer defines an abstract persistence schema in the deployment 
descriptor 

n  persistent attributes (CMP fields) 
n  Mapping of CMP fields to DB-structures (e.g., columns) in deployment phase 

n  depends on DB, data model 
n  tool support 

n  top-down, bottom-up, meet-in-the-middle 

n  Container saves object state 
n  bean does not worry about persistence mechanism 

n  call-back methods don't contain DB access operations 
n  may be used to compress/decompress values, derive attribute values, … 
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Bean-Managed Persistence (BMP) 

n  Callback-methods contain explicit DB access operations 
n  useful for interfacing with legacy systems or for realizing complex DB-mappings 

(not supported directly by container or CMP tooling) 

n  No support for container-managed relationships 
n  Finder-methods 

n  have to be implemented in Java 
n  no support for EJB-QL 
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Entity Beans (and CORBA) - Problems 

n  Distributed component vs. persistent object 
n  granularity 
n  potential overhead (and possible performance problems) 

n  solution in EJB 2.0: local interfaces 
n  but: semantic differences (call-by-value vs. call-by-reference) 

n  complexity of development process 

n  Missing support for class hierarchies with inheritance 
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JDO – Java Data Objects 

n  JDO was developed as a standard for persistence in Java-based applications 
n  first JDO specification 1.0 released in March 2002 (after ~ 3 years) through Suns 

JCP (Java Community Process)  
n  > 10 vendor implementations plus open-source projects 
n  mandatory features and optional features in the specification (i.e., some optional 

features are „standardized“ à promises better portability). 
n  Features, elements 

n  orthogonal, transitive persistence 
n  native Java objects (inheritance) 
n  byte code enhancement 
n  mapping to persistence layer using XML-metadata 
n  transaction support 
n  JDO Query Language 
n  JDO API 
n  JDO identity 
n  JDO life cycle 
n  integration in application server standard (J2EE) 
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Persistence in JDO 

n  (Semi-) dynamic persistence 
n  Java class supports (optional) persistence (implements PersistenceCapable) 
n  not all instances of the class need to be  persistent 

n  application can/must explicitly turn a transient object into a persistent object (and vice 
versa) 

n  Persistence logic is transparent for client at the Java level 
n  interacting with transient and persistent objects is the same 

n  Transitive persistence (i.e., by reachability) 
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JDO API 

PersistenceManagerFactory 

n  manages connection to persistence layer 
n  manages PersistenceManager pool 

PersistenceManager 

n  has connection to persistence layer 
n  manages JDO instance cache 

Transaction 

n  realizes transactional behavior 
together with persistence layer 

Query 

n  helps locate persistent objects 

Extent 

n  represents all instances of a class 

1 

1 

1 

1 

1 

0..n 

0..n 

0..n 0..1 

use 
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PersistenceManager API - Example 

  
1  Author author1 = new Author("John", "Doe"); 
2  PersistenceManager pm1 = pmf.getPersistenceManager(); 
3  pm1.currentTransaction.begin(); 
4  pm1.makePersistent(author1);  
5  Object jdoID = pm1.getObjectId(author1); 
6  pm1.currentTransaction.commit(); 
7  pm1.close(); 

  
 8  // Application decides that author1 
9  // must be deleted 
10 PersistenceManager pm2 = pmf.getPersistenceManager(); 
11 pm2.currentTransaction.begin(); 
12 Author author2 = (Author)pm2.getObjectById(jdoID); 
13 pm2.deletePersistent(author2); 
14 pm2.currentTransaction.commit(); 
15 pm2.close(); 
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Byte-Code-Enhancement 

n  Java bytecode (*.class) and metadata (*.jdo) 
n  Same object class (now implements PersistenceCapable) 
n  O/R-mapping specification is vendor-specific 

MyClass.java 

MyClass.java 
MyClass.java JDO 
meta data 

MyClass.class MyClass.class Java 
Compiler 

JDO 
Enhancer 

Java Virtual Machine 

JDO 
run time environment 

provided by application 
developer 

provided by JDO 
vendor 
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Java Persistence API 

n  Result of a major 'overhaul' of EJB specification for persistence, relationships, 
and query support 

n  simplified programming model 
n  standardized object-to-relational mapping 
n  inheritance, polymorphism, "polymorphic queries" 
n  enhanced query capabilities for static and dynamic queries 

n  API usage 
n  from within an EJB environment/container 
n  outside EJB, e.g., within a standard Java SE application 

n  Support for pluggable, third-party persistence providers 
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Entities 

n  "An entity is a lightweight persistent domain object" 
n  entities are not remotely accessible (i.e., they are local objects) 
n  no relationship with the EntityBeans concept, but co-existence 

n  Simplified programming model for EJB entities 
n  entity is a POJO (plain old Java object) 

n  marked as Entity  through annotations  or deployment descriptor 
n  no additional local or home interfaces required 
n  no implementation of generic EntityBean methods needed 

n  entity state (instance variables) is encapsulated, client access only through accessor or other 
methods 

n  use of annotations for persistence and relationship aspects 
n  no XML deployment descriptor required 

n  Entities and inheritance 
n  abstract and concrete classes can be entities 
n  entities may extend both non-entity and entity classes, and vice versa 
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Identity and Embeddable Classes 

n  Entities must have primary keys 
n  defined at the root, exactly once per class hierarchy 
n  may be simple or composite 

n  key class required for composite keys 

n  must not be modified by the application 
n  more strict than primary key in the RM 

n  Embeddable classes 
n  "fine-grained" classes used by an entity to represent state 
n  instances are seen as embedded objects, do not have a persistent identity 

n  mapped with the containing entities 
n  not sharable across persistent entities 
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Requirements on Entity Class 

n  Public, parameter-less constructor  
n  Top-level class, not final, methods and persistent instance variables must not be final  
n  Entity state is made accessible to the persistence provider runtime 

n  either via instance variables (protected or package visible) 
n  or via (bean) properties (getProperty/setProperty methods) 
n  consistently throughout the entity class hierarchy 

n  Collection-valued state variables have to be based on (generics of) specific classes in 
java.util 
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Mapping to RDBMS 

n  Entity mapping 
n  default table/column names for entity classes and persistent fields 

n  can be customized using annotations, deployment descriptor 

n  mapping may define a primary table and one or more secondary tables for an 
entity 

n  state of an entity/object may be distributed across multiple tables 

n  Inheritance mapping strategies supported for the mapping 
n  single table with discriminator column (default) 

n  table has columns for all attributes of any class in the hierarchy 
n  tables stores all instances of the class hierarchy 

n  horizontal partitioning 
n  one table per entity class, with columns for all attributes (incl. inherited) 
n  table stores only the direct instances of the class 

n  vertical partitioning 
n  one table per entity class, with columns for newly defined attributes (i.e., attributes 

specific to the class) 
n  table stores information about all (i.e., transitive) instances of the class 
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Entity Life Cycle and Persistence 

n  Orthogonal persistence 
n  instances of entity classes may be 

transient or persistent 
n  persistence property controlled by 

application/client (e.g., a 
SessionBean) 

n  Entity manager manages entity 
state and lifecycle within 
persistence context 

n  persist(obj) -> INSERT 
n  merge(obj) -> UPDATE 
n  remove(obj) -> DELETE 
n  find(class, pKey) -> SELECT 
n  refresh(obj) -> SELECT 

entities are 
associated with 

a persistence 
context 

new 

managed removed 

detached 

new() 

persist() 

remove() 

refresh() 

merge() 

persistence context 
ends 

persist() 

no persistent  
ID yet 

Middleware for Information Systems 
26 



© Prof.Dr.-Ing. Stefan Deßloch 

Relationships 

n  Persistence model needs to be complemented by relationship support 
n  represent relationships among data items (e.g., tuples) at the object level 
n  support persistence of native programming language concepts for "networks" of 

objects 
n  references, pointers 

n  Alternatives 
n  value-based relationships at the object level (see relational data model) 

n  requires to issue a query (over objects) to locate related object(s) 
n  no "navigational" access 

n  relationships are part of persistent object interface(s) or implementation 
n  getter/setter methods or properties/fields to represent relationship roles of participating 

entities 
n  relationships are always binary, collection support required for 1:n, n:m 
n  uni-directional or bi-directional representation 

n  consistency? 

n  separate relationship concept/service, independent of persistent object interfaces 
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CORBA Relationships 

n  Relationship Service 
n  management of object dependencies, separate from object state or interface 
n  relationship involves: type, role, cardinality 

n  type: types of objects that may participate in a specific relationship type 
n  role: role names of participating entities 

n  major goals 
n  multi-directional use/navigation and relationship maintenance 
n  decouple relationship from CORBA object reference maintained by each participating 

object 
n  graph traversal 
n  attributes and behavior for relationships 

n  generic IDL interfaces for roles, relationships, … 
n  to be subtyped for application-specific relationships (e.g., Emp-Dept) 
n  supplemented by additional interfaces for relationship graph traversal 

n  Relationships are separate (CORBA) objects 
n  highly dynamic, powerful, but very complex to use 
n  not really suitable for (fine-grained) data-level relationships 
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EJB - Container-managed Relationships 

n  Relationships can be defined in deployment descriptor or through annotations 
n  part of abstract persistence schema 

n  Relationships may be uni-directional ("reference") or bi-directional 
n  Relationship types: 1:1, 1:n, n:1, n:m 
n  Access methods for accessing objects participating in a relationship 

n  like CMP field methods (get/set) 
n  Java Collection interface for set-valued reference attributes 

n  Container generates code for 
n  relationship maintenance 

n  cardinality, inverse relationship field consistency are guaranteed 

n  persistent storage, involves mapping definition as well 

n  No transitive persistence 
n  relationship can only be established among entityBeans, which are already 

persistent 

n  Only supported for CMP EntityBeans 
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JDO – Relationships and Transitive Persistence 

n  All PersistenceCapable objects reachable from persistent object through 
standard Java references within an object graph are made persistent, too 

n  No managed inverse relationships 

Author1 

Book1 Book2 

Chapter1 Chapter2 Chapter1 

If Author1 is made  
persistent, then all objects 
reachable (e.g., books 
and chapters) are made 
persistent, too! 
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Relationships in Java Persistence API 

n  Relationships are represented in the same way as persistent attributes 
n  member variables, get/set method pairs 

n  Supports uni- and bi-directional binary relationships of the same types as EJB 
CMR 

n  but does not provide automatic maintenance of inverse relationships 
n  a designated owning side "wins" at the persistent data store 

n  Selective transitive persistence 
n  defined using CASCADE options on relationships 

n  Relationship mapping 
n  represented using primary key/foreign key relationships 
n  table for the "owning" side of the relationship contains the foreign key 
n  N:M-relationships represented using a relationship table 
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Relationships – Additional Aspects 

n  Discussions about benefits and drawbacks of transitive persistence 
n  easy to use from a development perspective, but 
n  implicit definition of persistence 

n  developer needs to understand what to expect in terms of number of resulting insert 
operations 

n  and what about the "reverse" semantics for object deletion: when should an object 
that was implicitly made persistent be deleted? 

n  when the originally referencing object causing implicit persistence is deleted or removes 
the reference? 

n  when the object is no longer referenced by other persistent objects (garbage collection)? 
n  still could be retrieved using its primary key value 

n  when it is explicitly deleted? 

n  Cascading delete rules are usually the only mechanism offered to implement 
automatic deletion 

n  relationships can be flagged to cause deletion, if "parent" object is deleted 
n  often mapped to referential integrity constraints in the DB-mapping 

n  what is the resulting object state in the application, if the deleted object is still 
referenced? 
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Queries Over Persistent Objects 

n  Accessing persistent objects through primary key or navigation over 
relationships 

n  is a useful basic mechanism that fits the OO programming model 
n  but is a severe restriction when accessing collections of persistent objects 
n  and can cause severe performance impact through tuple-by-tuple operations 

n  Object retrieval through a query language 
n  required to solve the above problems 
n  but should not force the developer to drop down to the data store query language 

(and schema) again 

n  Object query language 
n  continues to shield the developer from data store (and mapping) details 
n  requires persistence framework to transform object queries into corresponding 

data store queries based on the object-to-relational mapping 
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CORBA Queries 

n  Query Service 
n  set-oriented queries for locating CORBA objects 
n  SQL, OQL (ODMG) can be used as query languages 
n  query results are represented using Collection objects 

n  iterators 

n  not restricted to persistent query objects 

n  Query can be optionally delegated to a "query evaluator" (e.g., the query 
engine of a RDBMS or ODBMS) or to a "queryable collection" 

n  a query evaluator may iterate over a collection of CORBA objects and access 
attributes or evaluate methods, or  

n  it may involve other queryableCollections to evaluate subqueries and then do the 
join processing after retrieving the results 

n  Queries can only access the public attributes of CORBA objects 
n  everything is based on the remote interfaces of objects  

n  performance? optimization? 

n  There is no conceptual mapping from query language concepts (e.g., tables, 
object collections) to CORBA concepts provided 
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EJB Query Language (EJB-QL) 

n  Introduced as a query language for CMP EntityBeans 
n  used in the definition of user-defined Finder methods of an EJB Home interface 

n  no arbitrary (embedded or dynamic) object query capabilities! 

n  uses abstract persistence schema as its schema basis 
n  SQL-like 

n  Example: 
SELECT DISTINCT OBJECT(o) 
FROM Order o, IN(o.lineItems) l 
WHERE l.product.product_type  

= ‘office_supplies’ 
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Java Persistence Query Language 

n  Extension of EJB-QL 
n  named (static) and dynamic queries 
n  range across the class extensions including subclasses 

n  a persistence unit is a logical grouping of entity classes, all to be mapped to the same DB 
n  queries can not span across persistence units 

n  includes support for  
n  bulk updates and delete 
n  outer join 
n  projection 
n  subqueries 
n  group-by/having 

n  Prefetching based on outer joins 
n  Example: 

SELECT d 
FROM Department d LEFT JOIN FETCH d.employees 
WHERE d.deptno = 1 
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JDO Query Language 

n  A JDOQL query has 3 parts 
n  candidate class: class(es) of expected result objects 

à restriction at the class level 
n  candidate collection: collection/extent to search over 

à (optional) restriction at the object extent level  
n  filter: boolean expression with JDOQL (optional: other query language) 

n  JDOQL characteristics 
n  read-only (no INSERT, DELETE, UPDATE) 
n  returns JDO objects (no projection, join) 
n  query submitted as string parameter à dynamic processing at run-time 
n  logical operators, comparison operators: e.g. !,==,>= 
n  JDOQL-specific operators: type cast using "( )", navigation using "." 
n  no method calls supported in JDOQL query 
n  sort order (ascending/descending) 
n  variable declarations 
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Query 

n  JDO-Query with JDOQL for locating JDO instances: 

 1  String searchname = "Doe"; 
2  Query q = pm.newQuery(); 
3  q.setClass(Author.class); 
4  q.setFilter("name == \"" + searchname +"\""); 
5  Collection results =(Collection)q.execute(); 
6  Iterator it = results.iterator(); 
7  while (it.hasNext()){ 
8      // iterate over result objects 
9  } 
10 q.close(it); 
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JDOQL Examples 

n  Sorting: 
1 Query query = pm.newQuery(Author.class); 
2 query.setOrdering("name ascending, firstname ascending"); 
3 Collection results = (Collection) query.execute(); 

n  Variable declaration 
1  String filter = "books.contains(myBook) &&  " + 
2                  "(myBook.name == \"Core JDO\")"; 
3  Query query = pm.newQuery(Author.class, filter); 
4  query.declareVariables("Book myBook"); 
5  Collection results = (Collection) query.execute(); 
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Realizing Automatic Persistence 

n  Strategies for "loading" objects from the persistent store during navigational 
access 

n  "lazy" loading – object is retrieved only when accessed based on primary key or 
reference (relationship) 

n  easy to implement 
n  may cause increased communication with data source, resulting in performance 

drawbacks 

n  "eager" loading 
n  when an object is requested, transitively load all the objects reachable through references 
n  requires construction/generation of complex data store queries 
n  may cause a lot of unnecessary objects to be loaded 

n  Persistence frameworks usually offer a combination of the above strategies 
n  relationships can be explicitly designated as eager or lazy 

n  at deployment time? separate definitions depending on the application scenario? 

n  can be generalized to arbitrary persistent attributes 
n  e.g., to pursue lazy loading of large objects 
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Realizing Automatic Persistence (2) 

n  How to write object changes back to the data store 
n  there may be many fine-grained (i.e., attribute-level) updates on a persistent 

object during a transaction 
n  immediate update: write changes to the DB after every attribute modification 

n  easy to implement/support, but many interactions with the DBMS 

n  deferred update: record changes and combine them into a single update per tuple 
at the end of the transaction 

n  more complex to implement, unless one always updates the complete tuple 
n  the latter will result in unnecessary processing overhead at the DBMS 

n  approach needs to be refined to account for consistent query results 
n  write back changes also before any object query statements are executed 

n  Concurrency control strategy (determined in combination with the persistent 
data store) 

n  pessimistic, using locking at the DBMS-level 
n  requires long read locks to avoid lost updates 

n  optimistic, by implementing "optimistic locking" 
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Optimistic Locking and Concurrency 

n  Note: most DBMSs don't support optimistic concurrency control 
n  Example JPA: optimistic locking is assumed, with the following requirements 

for application portability 
n  isolation level "read committed" or equivalent for data access 

n  no long read locks are held, DBMS does not prevent lost updates, inconsistent reads 

n  declaration of a version attribute for all entities to be enabled for optimistic locking 
n  persistence provider uses the attribute to detect and prevent lost updates 

n  provider changes/increases the version during a successful update 
n  compares original version with the current version stored in the DB, if the version is not the same, 

a conflict is detected and the transaction is rolled back 

n  inconsistencies may arise if entities are not protected by a version attribute 
n  does not guarantee consistent reads 
n  conflicts can only be detected at the end of a (possibly long) transaction 
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Transactions in JDO 

n  JDO transactions supported at the object level 
n  Datastore Transaction Management (standard): 

n  JDO synchronizes transaction with the persistence layer 
n  transaction strategy of persistence layer is used 

n  Optimistic Transaction Management (optional): 
n  JDO progresses object transaction at object level 
n  at commit time, transaction is synchronized with persistence layer 

n  Transactions and object persistence are orthogonal 

object 
characteristics transactional non-transactional 

persistent standard optional 

transient optional standard (JVM) 
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Transactions and Concurrency Control 

n  Access of persistent data resulting from persistent object manipulation always 
occurs in the scope of a transaction 

n  What happens at transaction roll-back? 
n  state of entities in the application is not guaranteed to be rolled back, only the 

persistent state 

n  What happens if a transaction terminates and objects become "detached"? 
n  objects can still be modified "offline" 

n  What happens when objects are merged "re-attached" to a new transaction 
context? 

n  objects are NOT automatically refreshed 
n  potential for lost updates 
n  can be controlled by explicit refresh or using optimistic locking 
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Summary 

n  Object persistence supported at various levels of abstraction 
n  CORBA 

n  standardized "low-level" APIs 
n  powerful, flexible, but no uniform model for component developer 

n  various persistence protocols 
n  explicit vs. implicit (client-side transparent) persistence 

n  EJB/J2EE Entity Beans 
n  persistent components 

n  CMP: container responsible for persistence, maintenance of relationships 
n  uniform programming model 
n  transparent persistence 

n  JDO 
n  persistent Java objects 
n  orthogonal, transparent, transitive persistence 

n  Java Persistence API 
n  successor of EJB entity beans 
n  standardized mapping of objects to relational data stores 
n  influenced partly by JDO, Hibernate 
n  can be used outside the EJB context as well 
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Summary (2) 

n   Query Support 
n  CORBA: queries over object collections  

n  no uniform query language 
n  uses SQL, OQL 

n  persistent object schema? 

n  EJB-QL: queries over abstract persistence schema 
n  limited functionality, only for definition of Finder methods 
n  more or less a small SQL subset 

n  JDO: queries over collections, extents 
n  limited functionality 
n  proprietary query language 

n  Java Persistence Query Language 
n  based on EJB-QL (and therefore on SQL) 
n  numerous language extensions for query, bulk update 
n  static and dynamic queries 

n  Queries over multiple, distributed data sources are not mandated by the above 
approaches! 
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