
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 5
Message-oriented Middleware (MOM)

© Prof.Dr.-Ing. Stefan Deßloch

Outline

n  Queues in TP-monitors
n  asynchronous transaction processing

n  Stratified transactions
n  Message Queuing Systems

n  point-to-point, request-response
n  Java Messaging Service (JMS)
n  EJB Message-driven Beans

n  Message Brokers
n  Enterprise Application Integration (EAI) – requirements
n  message routing
n  publish/subscribe
n  message broker architecture components
n  hub-and-spoke topology

n  Databases and Message Queuing Systems
n  roles
n  integration approaches
n  DBMS/MQS integration example

Curry, E.: „Message-Oriented Middleware“, in
Middleware for Communications, Mahmoud,
Qusay H (eds.), pp. 1-28, John Wiley and
Sons, Chichester, England, 2004.
http://www.edwardcurry.org/publications/
curry_MfC_MOM_04.pdf

Enterprise Information Systems
2

© Prof.Dr.-Ing. Stefan Deßloch

Short-term Queues for Load Control

n  Load control (during direct transaction processing)
n  Handle temporary load peaks
n  Store request in (temporary) queue to avoid creating new processes
n  Client-side model: direct, synchronous communication

n  "exactly-once" has to be guaranteed; concurrent access must preserve
correctness of queue structure

server
1

client
1

server dequeues
first element

client
2

client
3

client
4

server
2

server
3

server
4

client
5

client request is
appended to queue

same server class

Enterprise Information Systems
3

© Prof.Dr.-Ing. Stefan Deßloch

Persistent Queues in TP-Monitors

n  End-user control
n  Delivering output (e.g., display information, print ticket, hand out money) is a

critical step in asynchronous processing
n  Redelivery may be required until user explicitly acknowledges receipt

n  Recoverable data entry
n  Some applications are driven by data entry at a high rate, without feedback to the

data source
n  Optimize for high throughput (instead of short response times)
n  Input data are taken from queue by running application
n  Input data must not be lost, even during a crash

n  Multi-transactional requests
n  Single request is processed in multiple transactions
n  Transaction chaining

Enterprise Information Systems
4

© Prof.Dr.-Ing. Stefan Deßloch

Asynchronous Transaction Processing

n  Decoupling Request Entry, Request Processing, and Response Delivery, use
separate TAs for each task

n  optimize for throughput
n  avoid resource contention of single-transaction (TRPC) approach
n  can be generalized to multi-transaction requests

client

BOT;
 produce server request;
 put request on request queue;
COMMIT

BOT;
 take response from resp. queue;
 perform response processing;
COMMIT

server

BOT;
 pick request from request queue;
 process request;
 put response on response queue;
COMMIT

TA 1
TA 2

TA 3

Enterprise Information Systems
5

© Prof.Dr.-Ing. Stefan Deßloch

Queues for Asynchronous Transaction Processing

n  Queues are persistent, transactional
n  distinguishable, stable objects
n  can be manipulated through ACID transactions

n  send, receive operations are part of the respective transactions
n  queuing system is yet another transactional resource manager

n  queue operations and operations on other RMs can happen within the same (distributed)
transaction

n  request will become visible to other TAs only at commit of sending TA
n  if the receiving TA crashes, the request will be "put back" on the queue by the queuing

system
n  server can re-process the request after recovery

n  Client view
n  ACID request handling: request is executed exactly once
n  Request-reply matching: for each request there is a reply

n  request-id for relating requests and responses, provided by the client

n  At-least once response handling: client sees response at least once
n  response may have to be presented repeatedly, e.g., after client failure/restart

Enterprise Information Systems
6

© Prof.Dr.-Ing. Stefan Deßloch

Multi-transactional Requests

n  Single request processed in a sequence of multiple transactions
n  can be scheduled asynchronously for high throughput, as long as no intermediate

user interactions are required

n  Based on recoverable input data (persistent queues)

n  Assumption: each transaction in the sequence will finally commit
n  Complete transaction sequence is no longer serializable

might be
identical

server
1

server
4

server
2

server
3

client
B

client
A

request client A
input server 1

output server 1
input server 2

output server 2
input server 3

output server 3
input server 4

output server 4
response client B

Enterprise Information Systems
7

© Prof.Dr.-Ing. Stefan Deßloch

t4 t7 t5

t6

S1 S2 S3

stratum

Stratified Transactions

n  Generalization of multi-transactional requests
n  Stratum: set of transactions to be coordinated under 2PC

n  connected through message queues

n  Connected strata form a tree structure

t1 t2 t3

Q2 Q3

queue

ti transaction

t8

t9

t10

Q4
S4

Enterprise Information Systems
8

© Prof.Dr.-Ing. Stefan Deßloch

Stratified Transactions (2)

n  Structure
n  some ti should commit at the same time
n  disjoint, complete partitioning of T into sets of transactions S1, … Sm

n  transactions in Si are synchronized by 2PC
n  set of transactions Si is called stratum
n  each Si receives requests in a request queue Qi

n  a queue Qi does NOT associate more than 2 Si

n  Behavior
n  requests for stratum is only visible in input queue, if parent stratum commits

n  queues are transactional

n  all strata eventually commit if their respective parent stratum commits
n  stratified TA commits if root stratum commits

n  if stratum fails repeatedly, then this is an exception that requires manual
intervention, compensation

Si ⊆ T withSi ≠∅and Si ∩Sj = ∅ for i ≠ j and Sj = T
j=1

m



Enterprise Information Systems
9

© Prof.Dr.-Ing. Stefan Deßloch

Stratified Transactions (3)

n  Advantages compared to single, global TA for T:
n  early commit of individual strata; implies less resource contention, higher

throughput
n  reduced observed end user response time (commit of root stratum)
n  if all transactions in a stratum execute on the same node:

n  no network traffic for executing 2PC
n  TA-Managers coordinating global TA on respective nodes don't need to support external

coordinator

n  Requirements
n  all resources manipulated by transactions (including messages) need to be

recoverable
n  resource managers need to be able to participate in 2PC

Enterprise Information Systems
10

© Prof.Dr.-Ing. Stefan Deßloch

Client Variations

n  Non-transactional client
n  transaction support may not be available on the client
n  client still needs to be implemented in a fault-tolerant manner

n  make sure that the same request is not sent more than once
n  make sure that replies are delivered to the end user (at least) once

n  queuing infrastructure can help by
n  guaranteeing that message is stably stored when "enqueue message" operation returns to

client
n  providing information (message-ids) about the last request submitted, last reply received

when client reconnects after failure
n  allowing a client to

n  explicitly acknowledge receiving a reply
n  re-receive the unacknowledged replies

n  reply is deleted only when explicitly or implicitly acknowledged by the client

n  One-way messaging
n  client requires no reply for a request

n  Multiple clients submitting requests
n  one reply queue per client, identified as part of the request

Enterprise Information Systems
11

© Prof.Dr.-Ing. Stefan Deßloch

Message Queuing Systems (MQS)

n  Have evolved from queuing systems in TP-monitors
n  Message-oriented interoperability

n  programming model: message exchange

n  Loosely-coupled systems/components
n  "client" is not blocked during request processing
n  "server"

n  can flexibly chose processing time
n  can release resources/locks early

n  components don't need to be running/active at the same time

n  Provide persistent message queues
n  reliable message buffer for asynchronous communication
n  "store and forward" behavior

n  Transactional MQS ("reliable MQS")
n  persistent MQS
n  guaranteed "exactly-once" semantics
n  transactional enqueue/dequeue operations

Enterprise Information Systems
12

© Prof.Dr.-Ing. Stefan Deßloch

Interacting with MQS

n  Point-to-point messaging
n  Application explicitly interacts with message queues
n  Request/reply model needs to be built "on top"

n  Basic operations:
n  Connect/Disconnect to/from MQS
n  Send or Enqueue: appends a message to a MQ

n  usually multiple producers can send/enqueue in the same queue associated with receiver

n  Receive or Dequeue: reads and removes message from a (its) MQ

n  Variations
n  Shared Queues

n  support for multiple consumers per queue
n  example: load balancing by using multiple "server" components
n  but a particular message only has a single consumer

n  Additional properties for messages
n  priority, time-out, …

n  Enhanced flexibility for "receive"
n  beyond FIFO

Enterprise Information Systems
13

© Prof.Dr.-Ing. Stefan Deßloch

JMS – Standardized Interaction with MQS

n  Administered objects
n  connection factories (contain provider details)
n  (static) destinations/message queues
n  registered/bound through JNDI

n  Connection
n  represents connection to the JMS provider
n  start/stop messaging service

n  Session
n  execution context for sending and receiving

messages by creating messages, producers,
consumers

n  may encompass a sequence of transactions
n  Message
n  Message producer

n  sends messages to queue
n  Message consumer

n  receives messages from queue
n  synchronous receive()
n  asynchronous using onMessage() method of

Message Listener

Connection
Factory

Connection

Session

Message

Message
Producer

Message
Consumer

Queue Queue

create

create

create

send receive

lookup

lookup lookup

Enterprise Information Systems
14

© Prof.Dr.-Ing. Stefan Deßloch

Messaging Model

n  Message delivery modes
n  PERSISTENT – exactly-once
n  NON_PERSISTENT – at-most-once

n  non-persistent messages may be lost in case of a provider failure

n  Message order
n  messages sent by a single session are received in the order in which they are sent

n  order is not defined across multiple queues or multiple session sending to the same queue

n  the sending order is affected by the following
n  message priority – messages with higher priority may jump ahead
n  order is only guaranteed within a delivery mode (persistent/non-persistent), if both are

used
n  a transaction's order of messages

n  the receiving order may further be influenced by the receiver (see subsequent
chart)

Enterprise Information Systems
15

© Prof.Dr.-Ing. Stefan Deßloch

Transactions and Message Acknowledgement

n  Transactions
n  MQ interactions may occur in context of a transactional session

n  distributed TA-support based on JTS/JTA
n  session object provides commit/rollback methods with the obvious semantics on queues

n  implicitly starts a new transaction, resulting in a sequence of transactions

n  Message acknowledgement
n  messages need to be acknowledged after receiving them

n  are removed from the queue
n  queues can be recovered, resulting in redelivery of unacknowledged messages

n  messages are flagged as redelivered

n  Transactional sessions
n  messages are automatically acknowledged at TA commit
n  queues are recovered automatically at rollback

n  Non-transactional sessions
n  acknowledgement options

n  lazy acknowledgement – is likely to result in duplicate messages after a JMS failure
n  auto-acknowledge – automatically after a successful receive
n  client acknowledge – explicit by calling Message.acknowledge()

n  automatically acknowledges all messages that have been delivered by its session

n  recover-method of a session will stop a session and restart it with its first unacknowledged
message

Enterprise Information Systems
16

© Prof.Dr.-Ing. Stefan Deßloch

Message Structure

n  Header
n  standard message attributes set by JMS provider or message producer
n  message-id, correlation-id, delivery mode (persistent/not persistent), destination

(queue), priority, redelivered, reply-to, timestamp

n  Properties (optional)
n  application-specific, vendor-specific, and optional properties
n  used for optional and "customized" message header fields

n  Body
n  actual message content
n  support for multiple content types (bytes, text, Java object, ...)
n  format of the method body is up to the applications

n  implicit agreement
n  no meta-data available

Enterprise Information Systems
17

© Prof.Dr.-Ing. Stefan Deßloch

Message Selectors

n  Message processing applications may implement components only interested
in a subset of messages on a queue

n  Queue receiver may specify a selector
n  messages that are not selected remain in the queue
n  message order is not guaranteed anymore

n  Selector syntax
n  logical conditions based on a subset of SQL92 conditional expression syntax

n  literals, identifiers (field/property names)
n  logical connectors, comparison operators, arithmetic expressions

n  can reference message header fields and properties
n  no references to message body allowed

Enterprise Information Systems
18

© Prof.Dr.-Ing. Stefan Deßloch

EJB Message-Driven Beans (MDB)

n  Entity and session beans can use JMS to send asynchronous messages
n  receiving messages would be difficult, requires explicit client invocation to invoke a

bean method "listening" on a queue
n  may block the thread until message becomes available

n  Message-driven beans should be used to receive and process messages
n  implement a message listener interface ("onMessage(…)")
n  stateless: no conversational state, can be pooled like stateless session beans
n  not invocable through RMI: don't have component interfaces (home, remote)
n  concurrent processing of messages

n  container can execute multiple instances, handles multi-threading

n  Deployment
n  CMT for MDBs: only REQUIRED and NOT_SUPPORTED is permitted
n  descriptor includes additional attributes mapping to JMS processing properties

n  acknowledge-mode
n  message-selector

n  the queue from which a MDB should receive messages is fixed at deployment time

Enterprise Information Systems
19

© Prof.Dr.-Ing. Stefan Deßloch

Message Queuing and Application Integration

n  Message queuing characteristics
n  explicit definition, agreement regarding message destination
n  point-to-point, request-response
n  fixed message structure (content)
n  a particular message is always consumed by a single receiver

n  Enterprise Application Integration (EAI)
n  Goal: bring together disparate application systems to exchange data and requests
n  Example: Supply Chain Automation

n  supplier/customer management, quotation, order processing, procurement, shipping, …

n  Involves for each application
n  definition of a message set representing data/requests
n  developing an adapter that maps messages to invocations of application functions

n  front-end vs. back-end adapter

n  Using plain message queuing for EAI
n  messaging application/adapter has to perform complex routing logic and required

message transformations for every application to be integrated
n  hard to maintain, extend

Enterprise Information Systems
20

© Prof.Dr.-Ing. Stefan Deßloch

Message Routing

n  Idea: separate the routing and transformation logic from the applications
n  script defines sequences of application invocations and message transformation

steps
n  transformations are program components invoked by the message router

application
1

application
2

application
3

application
4

Message Router

send request

pass request to applications 2&3
after transforming them into
application-specific formats

send response

combine responses and send to
application 4

Enterprise Information Systems
21

© Prof.Dr.-Ing. Stefan Deßloch

Publish/Subscribe Paradigm

n  Publish and Subscribe
n  further generalizes message routing aspects
n  applications may simply publish a message by submitting it to the message broker
n  interested applications subscribe to messages of a given type/topic
n  message broker delivers copies of messages to all interested subscribers

n  Subscription
n  can be static (fixed at deployment or configuration time) or dynamic (by application at run-

time)
n  type-based subscription

n  based on defined message types
n  type namespace may be flat or hierarchical (e.g., SupplyChain.newPurchaseOrder)

n  also identified by the publisher
n  parameter-based subscription

n  boolean subscription condition identifying the messages a subscriber is interested in
n  example: type = "new PO" AND customer = "ACME" AND quantity > 1000

n  condition refers to message fields
n  non-durable subscription: published messages are not delivered if the subscriber is not active
n  durable subscription: messages are delivered until subscription expires

n  JMS supports Publish/Subscribe
n  Publishers send messages to topics instead of queues
n  Subscribers create a special kind of receiver (topic subscriber) for a topic

Enterprise Information Systems
22

© Prof.Dr.-Ing. Stefan Deßloch

Message Brokering

n  Message Transformations
n  restructuring (schema conversion)
n  data conversion, data cleaning (see data warehousing)
n  based on a neutral message format to reduce transformation complexity

n  Message Routing and Transport
n  employs queues as input/output infrastructure

n  asynchronous communication, store-and-forward

n  performs message flow control (intelligent routing)
n  dynamic, based on message content

n  Rules-based processing and distribution of messages based on message fields
n  Message annotation

n  message can be combined with data from a database, from other messages, or
both

n  annotations are defined in routing scripts or subscription requests

Enterprise Information Systems
23

© Prof.Dr.-Ing. Stefan Deßloch

Message Brokering (2)

n  Message repository
n  definition of message structure (of all message sets)
n  mapping rules
n  special transformation functions
n  routing scripts
n  subscription requests

n  Message warehouse
n  implements message persistence
n  can be used to permanently store messages of predefined types

n  may be retrieved, annotated, projected on demand
n  basis for further analytical processing of messages

n  message archiving, auditing

n  Message-flow programming model
n  interconnected message processing “nodes” (operators)

Enterprise Information Systems
24

© Prof.Dr.-Ing. Stefan Deßloch

Message Broker Topologies

n  Hub-and-spoke
n  message broker as a neutral hub for message processing
n  applications connected to broker in a "star" architecture

n  Multi-hub
n  simple extension of hub-and-spoke for scalability
n  multiple message brokers are linked together
n  applications can be connected to any of the participating brokers

n  Federation
n  generalizes multi-hub topology
n  heterogeneous message brokers

n  need to interact based on a common interchange format (e.g., XML)

n  applications are connected/bound to specific broker

Enterprise Information Systems
25

© Prof.Dr.-Ing. Stefan Deßloch

Databases and Messaging Systems

n  Roles of DBMS in a messaging world
n  persistence manager for messaging systems

n  store/retrieve messaging data and state information
n  reliable, transactional

n  provide advanced DBMS capabilities to achieve a DBMS/MQS synergy
n  querying messaging data

 S. Doraiswamy, M. Altinel, L. Shrinivas, S.L. Palmer, F.N. Parr, B. Reinwald, C. Mohan: Reweaving
the Tapestry: Integrating Database and Messaging Systems in the Wake of New Middleware
Technologies, in T. Härder, W. Lehner (Eds.): Data Management in a Connected World, LNCS
3551, Springer 2005: 91-110

Enterprise Information Systems
26

© Prof.Dr.-Ing. Stefan Deßloch

Database as a Message Store

n  Database serves as a backing store
n  Messaging systems can exploit integral database features, such as

n  storage definition, management, and underlying media/fabric exploitation
n  single DB table for storing similar messages of a single/few queues
n  administrator can configure the tables appropriately

n  buffer, cache, spill management
n  DB cache allows for quick access during timely message consumption

n  index creation, management, reorganization
n  on (unique) message ids, sequence numbers, subscription topics, …

n  latching and lock management
n  avoid consumer/producers blocking on each other
n  row-level locking
n  lower isolation semantics (skip over locked messages, etc.)

n  transaction management and coordination
n  synchronous or asynchronous message store/commit in local TAs, based on QoS

requirements
n  global TA support

n  high-speed and scalable logging services

Enterprise Information Systems
27

© Prof.Dr.-Ing. Stefan Deßloch

Improved Database and Messaging Synergy

n  DBMS helps accessing messaging data and destinations, possibly in
combination with operational data

n  requires closer cooperation in terms of message schema and typing information

n  Potential DBMS features
n  mapping message payloads structure to table structure

n  exploit object-relational and XML data capabilities of DBMS

n  message warehousing and replay functionality
n  tracking and analysis of message data

n  enabling the database for asynchronous operations
n  messaging triggers

n  use of SQL, SQL/XML, XQuery with MQS
n  publishing to message destinations as reaction to updates

n  triggers, messaging functions
n  replication

n  storing durable subscriptions
n  consume-with-wait support

n  instead of continued polling

Enterprise Information Systems
28

© Prof.Dr.-Ing. Stefan Deßloch

Integration Strategies

n  Database System using/integrating messaging capabilities
n  database-specific messaging and queuing

n  queuing support added to the DBMS engine

n  interfacing with message engines
n  "light integration"
n  messaging data lives in DBMS, new built-in or user-defined routines to interface with a

(co-located) messaging system

n  Messaging system using/integrating DBMS
n  message-system-specific persistence, transactions, logging

n  messaging engine implements all of the above by itself

n  database as a persistent message store

n  Integrated Database Messaging
n  leverage the strengths of both DBMS and MQS, without reimplementation
n  potentially utilize additional middleware to achieve the integration

n  example: leverage (information integration) wrapper technology

Enterprise Information Systems
29

© Prof.Dr.-Ing. Stefan Deßloch

Integrated Database Messaging – Example

n  IBM research prototype based on DB2 Universal Database, WebSphere
Platform Messaging (WPM)

Parser

Compiler

Runtime

Msg Wrapper

WPM Engine
(Websphere AS)

DB2
Engine

remote
destinations

SEND/RECEIVE/SELECT
Mapping SEND/RECEIVE to SQL

Query rewrite for complex predicates

2PC optimization for transactional integration

"Virtual table" representing sets of messages

Enterprise Information Systems
30

© Prof.Dr.-Ing. Stefan Deßloch

SQL Language Extensions

n  SEND statement
n  creates and puts a message into specific destination
n  example:

 SEND TO stockdisplay ($body)
SELECT n.name || '#' || CHAR(q.price)
FROM quotes q, stocknames n
WHERE q.symbol = n.symbol

n  WPM initializes message properties
n  can be accessed by the sending application using additional syntax

n  internally represented as INSERT -> SELECT into virtual table

n  RECEIVE statement
n  destructively reads a message from a destination
n  example:

n  RECEIVE $body
FROM stockdisplay
WHERE MINUTEDIFF (CURRENT TIMESTAMP – TIMESTAMP($timestamp)) < 60

n  internally represented as DELETE -> SELECT from virtual table

Enterprise Information Systems
31

© Prof.Dr.-Ing. Stefan Deßloch

Message Wrapper

n  Message wrapper provides a relational view of a JMS message destination
n  "virtual" table (see chapter on wrappers)
n  structure

n  each standard header field -> column
n  all application-defined properties -> single column
n  message body -> column

n  operations
n  maps DML operations and filter predicates to appropriate operations on message

destinations
n  implements set-oriented semantics

n  WPM does not support complex filter conditions
n  DB2 needs to compensate for lack of capabilities
n  requires two-step interaction to preserve semantics of message destination

operations
n  step one

n  browse all messages that fulfill subset of search criteria supported by WPM
n  evaluate additional search conditions in DB2 engine

n  step two
n  destructively read only the qualifying messages from the destination

Enterprise Information Systems
32

© Prof.Dr.-Ing. Stefan Deßloch

2PC Optimization

n  DB2 and WPM are located on the same machine, can use the same DB for
operational data and (local) message storage

n  2PC semantics may have to be enforced, but can be optimized
n  DB and WPM interactions with DB still occur through separate DB connections
n  tight coupling possible based on XA join/suspend behavior

n  transaction context passed along to messaging system
n  then back to DB during message interactions
n  DB2 TA-Mgr recognizes context, avoids full 2PC

Enterprise Information Systems
33

© Prof.Dr.-Ing. Stefan Deßloch

Summary

n  Message Queuing
n  asynchronous interactions,

communication
n  persistent and transactional message

queues
n  asynchronous transaction processing
n  supported by

n  TP monitors
n  Workflow Management Systems
n  Message Queuing Middleware

n  Message Broker
n  focus on application integration
n  message routing, pub/sub
n  neutral message hub
n  rule-based processing, routing,

transformation of messages

n  Databases and Messaging Systems
n  database as a message store
n  DBMS/MQS synergy
n  different integration strategies

n  DBMS-extension, MQS-extension,
integration

n  integration example
n  SQL extensions for messaging
n  messaging wrapper
n  2PC integration

Enterprise Information Systems
34

