

1. General

2. Stream

3. Aurora

4. Conclusion

1. Motivation Applications

2. Definition of Data Streams

3. Data Base Management System (DBMS) vs.
Data Stream Management System(DSMS)

4. Stream Projects

 interpreting of sensor information

 traffic monitoring

 environmental monitoring

 recording of telephone calls

 logging web servers

 analysing monitary flows

 Facebook, Twitter
streams

 Queries:
 Status analysis

 Useful for advertising

 Status feed update
examples:
 Comments added to

threads at any time

 Posts removed from
threads at any time

Abbildung (1), „Study Projects Nearly 45-Fold Annual Data Growth by 2020” EMC Press Release

 Abbildung (2), IDC 2011 Digital Universe Study

 a sequence of digitally encoded coherent
signals (packets of data or data packets) used to
transmit or receive information that is in the
process of being transmitted

 In a formal way, a data stream is any ordered
pair (s,delta) where:

 s is a sequence of tuples and

 delta is a sequence of positive real time intervals.

DBMS DSMS

 Persistent data (relations)
 Random access
 One-time queries
 (theoretically) unlimited

secondary storage
 Only the current state is

relevant
 relatively low update rate
 Little or no time

requirements
 Assumes exact data
 Plannable query processing

 volatile data streams
 Sequential access
 Continuous queries
 limited main memory
 Consideration of the order of

the input
 potentially extremely high

update rate
 Real-time requirements
 Assumes

outdated/inaccurate data
 Variable data arrival and

data characteristics

 Amazon/Cougar (Cornell) – sensors

 Aurora (Brown/MIT) – sensor monitoring, dataflow

 Hancock (AT&T) – telecom streams

 Niagara (OGI/Wisconsin) – Internet XML databases

 OpenCQ (Georgia) – triggers, incr. view maintenance

 Stream (Stanford) – general-purpose DSMS

 Tapestry (Xerox) – pub/sub content-based filtering

 Telegraph (Berkeley) – adaptive engine for sensors

 Tribeca (Bellcore) – network monitoring

 General

 Continuous Query Language (CQL)

 Windows

 CQL Examples

 Query Plan

 Query Approximation

 Summarize

 originally part of the homonymous research
project at Stanford University

 http://infolab.stanford.edu/stream/

http://infolab.stanford.edu/stream/
http://infolab.stanford.edu/stream/

 Expressive SQL-based declarative language

Abbildung (3), [9]

 Mechanism for extracting a finite relation from
an infinite stream

 Various window proposals for restricting
operator scope.

 Windows based on ordering attribute (e.g. time)

 Windows based on tuple counts

 Terminology

Start time Current time

time

t1 t2 t3 t4 t5

Sliding Window

time Tumbling Window

Find all Fotos where the name is like “foo” and
they are at most 1 day old

 Select *

 From Fotos Fo [Range 1 Day Precending]

 Where Fo.name like „foo‟

Take the names of the 5 most recent Fotos bigger
then 4000 bytes

Select F.name

From Fotos F

 [Partition BY F.name Rows 5]

Where F.größe < 40000

Find all Fotos and Filme where the names are
equals

Select *

From Fotos Fo, Filme Fi [Range 1 Day]

Where Fo.name = Fi.name

Get random 30% of the Fotos and all Films that are
not older than one Day where the names are
equals

Select *

From Fotos Fo Sample(30), Filme Fi [Range 1 Day]

Where Fo.name = Fi.name

Insert the name of every new foto to an Stream

Select Istream(F.name)

From F [Rows 100]

Group By F.name

Abbildung (4), [9]

 Query-Operators

 Inter-Operator-Queues

 Connections between the operators

 Synopsis

 summarizes the tuples seen so far, as needed for
future evaluation of that operator

Select * From S1 [Range 15 Minutes], S2 [Rows 1000]

Where S1.A = S2.A And S1.A <20

Abbildung (6), [9]

Abbildung (7), [9]

 Novel notions of optimization:

 Stream rate based [e.g. NiagaraCQ]

 Resource based [e.g. STREAM]

 QoS based [e.g. Aurora]

 Why we need Approximation?

 CPU-limited Approximation

 Memory-limited Approximation

 Static Approximation

 Dynamic Approximation

 Handling load – streams comming too fast

 Avoid unbounded storage and computation

 2 factors can become a constraint:

 CPU

 Memory

 Data arrived too fast

 load-shedding - dropping elements from query
plans and saving the CPU time that would be
required to process them to completion

 too many queries -> memory becomes a
constraint -> results may partly disappear

 memory usage can be reduced at the cost of
accuracy by reducing the size of synopses

 Optimization during submitting a new query
to the system

 window reduction

 sampling rate reduction

 Reduction of the size
of the window

 Saving of compution
time and storage

 Exception:

 Elimination of
duplicates

 Negations

Select *

From Fotos Fo, Filme Fi
[Range 1 Day]

Where Fo.name =
Fi.name

 Minimization of the
Input-Stream

Select *

From Fotos Fo
Sample(30), Filme Fi
[Range 1 Day]

Where Fo.name =
Fi.name

 Optimization if the system is already running

 Synopsis Compression

 Sampling/Load Shedding

 Reduction of the
Synopsis Size

 Same approach
as in Memory-
Limited
Approximation

Abbildung (6), [9]

 Reduction of the memory usage

 Sampling:

 Undistorted result

 Load-Shedding:

 Easier to implement

 CQL an expressive SQL-based declarative
language

 Query Plan

 One Query Plan for each Query

 Approximation

 CPU-limited

 Memory-limited

 Static approximation

 Dynamic approximation

 general

 Aurora vs. Stream

 Query Plan

 Optimizations

 Quality of Service

 developed in cooperation of the M.I.T., the
Brandeis University and the Brown University

STREAM AURORA

 Evey query has it own
query plan

 Synopses and queues

 Direct entry of plans

 One big query plan for
all queries

 „Boxes and Arrows“
Paradigm

 Ad Hoc queries and
views

 Qos for each output
stream

Abbildung (8), [10]

 Based on eight primitive operations:
 Windowed operators:

 Slide
 Advances a window by sliding it downstream by some tuples

 Tumble
 Resembles slide except that consecutive windows have no tuples in common
 Partitions a stream into disjoint windows

 Latch
 Produces a partially synthetic stream by interpolating tuples between actual tuples

of an input stream

 non-windowed operators:
 Filter
 Drop
 Map
 Groupby
 Join

 Other Operators:
 Resample

 Only one big plan (AURORA)

 Easier to optimize

 Adding or deleting queries always leads to bigger
overhead

 One query plan for each query (STREAM)

 Optimization is more difficult

 Adding or deleting is quite easy

 3 Modes

 Continual
queries

 Views

 Ad-hoc
queries

Abbildung (9) [10]

 Dynamic Continuous Query Optimization

 Map-Operator

 Combination of Boxes

 Reordering of Boxes

 Inserting of the map Operator for eliminating
uneeded tuples

 System must provide operator signatures

 Combination of
different boxes

 Saves overhead

 Reducing quantity of
boxes

 For suspending tuples
earlier in the query
plan

 For example with
pushing down a filter
operator

 Aim: improve quality of the output

 Multidimensional function with 3 properities:

 Delay

 Tuples delivered

 Output value

Abbildung (11),[10]

 Data Stream Processing is getting more and
more important

 => so there are several projects to deal with it

 Between these projects you can find some
differences

 Development is going on

Any questions?

