

1. General

2. Stream

3. Aurora

4. Conclusion

1. Motivation Applications

2. Definition of Data Streams

3. Data Base Management System (DBMS) vs.
Data Stream Management System(DSMS)

4. Stream Projects

 interpreting of sensor information

 traffic monitoring

 environmental monitoring

 recording of telephone calls

 logging web servers

 analysing monitary flows

 Facebook, Twitter
streams

 Queries:
 Status analysis

 Useful for advertising

 Status feed update
examples:
 Comments added to

threads at any time

 Posts removed from
threads at any time

Abbildung (1), „Study Projects Nearly 45-Fold Annual Data Growth by 2020” EMC Press Release

 Abbildung (2), IDC 2011 Digital Universe Study

 a sequence of digitally encoded coherent
signals (packets of data or data packets) used to
transmit or receive information that is in the
process of being transmitted

 In a formal way, a data stream is any ordered
pair (s,delta) where:

 s is a sequence of tuples and

 delta is a sequence of positive real time intervals.

DBMS DSMS

 Persistent data (relations)
 Random access
 One-time queries
 (theoretically) unlimited

secondary storage
 Only the current state is

relevant
 relatively low update rate
 Little or no time

requirements
 Assumes exact data
 Plannable query processing

 volatile data streams
 Sequential access
 Continuous queries
 limited main memory
 Consideration of the order of

the input
 potentially extremely high

update rate
 Real-time requirements
 Assumes

outdated/inaccurate data
 Variable data arrival and

data characteristics

 Amazon/Cougar (Cornell) – sensors

 Aurora (Brown/MIT) – sensor monitoring, dataflow

 Hancock (AT&T) – telecom streams

 Niagara (OGI/Wisconsin) – Internet XML databases

 OpenCQ (Georgia) – triggers, incr. view maintenance

 Stream (Stanford) – general-purpose DSMS

 Tapestry (Xerox) – pub/sub content-based filtering

 Telegraph (Berkeley) – adaptive engine for sensors

 Tribeca (Bellcore) – network monitoring

 General

 Continuous Query Language (CQL)

 Windows

 CQL Examples

 Query Plan

 Query Approximation

 Summarize

 originally part of the homonymous research
project at Stanford University

 http://infolab.stanford.edu/stream/

http://infolab.stanford.edu/stream/
http://infolab.stanford.edu/stream/

 Expressive SQL-based declarative language

Abbildung (3), [9]

 Mechanism for extracting a finite relation from
an infinite stream

 Various window proposals for restricting
operator scope.

 Windows based on ordering attribute (e.g. time)

 Windows based on tuple counts

 Terminology

Start time Current time

time

t1 t2 t3 t4 t5

Sliding Window

time Tumbling Window

Find all Fotos where the name is like “foo” and
they are at most 1 day old

 Select *

 From Fotos Fo [Range 1 Day Precending]

 Where Fo.name like „foo‟

Take the names of the 5 most recent Fotos bigger
then 4000 bytes

Select F.name

From Fotos F

 [Partition BY F.name Rows 5]

Where F.größe < 40000

Find all Fotos and Filme where the names are
equals

Select *

From Fotos Fo, Filme Fi [Range 1 Day]

Where Fo.name = Fi.name

Get random 30% of the Fotos and all Films that are
not older than one Day where the names are
equals

Select *

From Fotos Fo Sample(30), Filme Fi [Range 1 Day]

Where Fo.name = Fi.name

Insert the name of every new foto to an Stream

Select Istream(F.name)

From F [Rows 100]

Group By F.name

Abbildung (4), [9]

 Query-Operators

 Inter-Operator-Queues

 Connections between the operators

 Synopsis

 summarizes the tuples seen so far, as needed for
future evaluation of that operator

Select * From S1 [Range 15 Minutes], S2 [Rows 1000]

Where S1.A = S2.A And S1.A <20

Abbildung (6), [9]

Abbildung (7), [9]

 Novel notions of optimization:

 Stream rate based [e.g. NiagaraCQ]

 Resource based [e.g. STREAM]

 QoS based [e.g. Aurora]

 Why we need Approximation?

 CPU-limited Approximation

 Memory-limited Approximation

 Static Approximation

 Dynamic Approximation

 Handling load – streams comming too fast

 Avoid unbounded storage and computation

 2 factors can become a constraint:

 CPU

 Memory

 Data arrived too fast

 load-shedding - dropping elements from query
plans and saving the CPU time that would be
required to process them to completion

 too many queries -> memory becomes a
constraint -> results may partly disappear

 memory usage can be reduced at the cost of
accuracy by reducing the size of synopses

 Optimization during submitting a new query
to the system

 window reduction

 sampling rate reduction

 Reduction of the size
of the window

 Saving of compution
time and storage

 Exception:

 Elimination of
duplicates

 Negations

Select *

From Fotos Fo, Filme Fi
[Range 1 Day]

Where Fo.name =
Fi.name

 Minimization of the
Input-Stream

Select *

From Fotos Fo
Sample(30), Filme Fi
[Range 1 Day]

Where Fo.name =
Fi.name

 Optimization if the system is already running

 Synopsis Compression

 Sampling/Load Shedding

 Reduction of the
Synopsis Size

 Same approach
as in Memory-
Limited
Approximation

Abbildung (6), [9]

 Reduction of the memory usage

 Sampling:

 Undistorted result

 Load-Shedding:

 Easier to implement

 CQL an expressive SQL-based declarative
language

 Query Plan

 One Query Plan for each Query

 Approximation

 CPU-limited

 Memory-limited

 Static approximation

 Dynamic approximation

 general

 Aurora vs. Stream

 Query Plan

 Optimizations

 Quality of Service

 developed in cooperation of the M.I.T., the
Brandeis University and the Brown University

STREAM AURORA

 Evey query has it own
query plan

 Synopses and queues

 Direct entry of plans

 One big query plan for
all queries

 „Boxes and Arrows“
Paradigm

 Ad Hoc queries and
views

 Qos for each output
stream

Abbildung (8), [10]

 Based on eight primitive operations:
 Windowed operators:

 Slide
 Advances a window by sliding it downstream by some tuples

 Tumble
 Resembles slide except that consecutive windows have no tuples in common
 Partitions a stream into disjoint windows

 Latch
 Produces a partially synthetic stream by interpolating tuples between actual tuples

of an input stream

 non-windowed operators:
 Filter
 Drop
 Map
 Groupby
 Join

 Other Operators:
 Resample

 Only one big plan (AURORA)

 Easier to optimize

 Adding or deleting queries always leads to bigger
overhead

 One query plan for each query (STREAM)

 Optimization is more difficult

 Adding or deleting is quite easy

 3 Modes

 Continual
queries

 Views

 Ad-hoc
queries

Abbildung (9) [10]

 Dynamic Continuous Query Optimization

 Map-Operator

 Combination of Boxes

 Reordering of Boxes

 Inserting of the map Operator for eliminating
uneeded tuples

 System must provide operator signatures

 Combination of
different boxes

 Saves overhead

 Reducing quantity of
boxes

 For suspending tuples
earlier in the query
plan

 For example with
pushing down a filter
operator

 Aim: improve quality of the output

 Multidimensional function with 3 properities:

 Delay

 Tuples delivered

 Output value

Abbildung (11),[10]

 Data Stream Processing is getting more and
more important

 => so there are several projects to deal with it

 Between these projects you can find some
differences

 Development is going on

Any questions?

