
Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Incremental Recomputations in Distributed
Materialized Views

Sandy Ganza

January 31, 2014

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

1 Introduction
Terminology

2 Incremental Recomputations in Materialized Views
The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

3 View Maintenance Policies
Policies

4 Incremental Recomputations in Distributed Materialized Views
Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

5 Conclusion

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Table of Contents

1 Introduction
Terminology

2 Incremental Recomputations in Materialized Views
The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

3 View Maintenance Policies
Policies

4 Incremental Recomputations in Distributed Materialized Views
Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

5 Conclusion
Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

What is a view?

A relation that is derived from a set of base relations

A function that maps a set of base tables to a derived table

A view can be used as a table

Function recomputed every time the view is referenced

View results are virtual tables and are not stored on the disk

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

What is a view?

A relation that is derived from a set of base relations

A function that maps a set of base tables to a derived table

A view can be used as a table

Function recomputed every time the view is referenced

View results are virtual tables and are not stored on the disk

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

What is a view?

A relation that is derived from a set of base relations

A function that maps a set of base tables to a derived table

A view can be used as a table

Function recomputed every time the view is referenced

View results are virtual tables and are not stored on the disk

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

What is a view?

A relation that is derived from a set of base relations

A function that maps a set of base tables to a derived table

A view can be used as a table

Function recomputed every time the view is referenced

View results are virtual tables and are not stored on the disk

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

What is a view?

A relation that is derived from a set of base relations

A function that maps a set of base tables to a derived table

A view can be used as a table

Function recomputed every time the view is referenced

View results are virtual tables and are not stored on the disk

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

What is a view?

A relation that is derived from a set of base relations

A function that maps a set of base tables to a derived table

A view can be used as a table

Function recomputed every time the view is referenced

View results are virtual tables and are not stored on the disk

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Drawbacks of views

Query executed every time the view is invoked

Poor performance for repeated and complex queries

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Drawbacks of views

Query executed every time the view is invoked

Poor performance for repeated and complex queries

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Drawbacks of views

Query executed every time the view is invoked

Poor performance for repeated and complex queries

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

What is a materialized view (MV)?

A view that has been precomputed and persisted

A copy of the data defined by the view - data cache

Query definition not executed on each reference to the view

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

What is a materialized view (MV)?

A view that has been precomputed and persisted

A copy of the data defined by the view - data cache

Query definition not executed on each reference to the view

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

What is a materialized view (MV)?

A view that has been precomputed and persisted

A copy of the data defined by the view - data cache

Query definition not executed on each reference to the view

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

What is a materialized view (MV)?

A view that has been precomputed and persisted

A copy of the data defined by the view - data cache

Query definition not executed on each reference to the view

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Why are MVs needed?

Provide fast access to data, like caches

Performance benefits in computation-intensive environments
like data warehouses, where fast response time is required

Index structures can be built on MVs

Used for query optimization and integrity constraint checking

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Why are MVs needed?

Provide fast access to data, like caches

Performance benefits in computation-intensive environments
like data warehouses, where fast response time is required

Index structures can be built on MVs

Used for query optimization and integrity constraint checking

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Why are MVs needed?

Provide fast access to data, like caches

Performance benefits in computation-intensive environments
like data warehouses, where fast response time is required

Index structures can be built on MVs

Used for query optimization and integrity constraint checking

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Why are MVs needed?

Provide fast access to data, like caches

Performance benefits in computation-intensive environments
like data warehouses, where fast response time is required

Index structures can be built on MVs

Used for query optimization and integrity constraint checking

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Why are MVs needed?

Provide fast access to data, like caches

Performance benefits in computation-intensive environments
like data warehouses, where fast response time is required

Index structures can be built on MVs

Used for query optimization and integrity constraint checking

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

The consistency problem in MVs

MV data may become obsolete when base data changes

Important to update the MV → view maintenance

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

The consistency problem in MVs

MV data may become obsolete when base data changes

Important to update the MV → view maintenance

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

The consistency problem in MVs

MV data may become obsolete when base data changes

Important to update the MV → view maintenance

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

View maintenance approaches

Approach 1:
Fully recompute the MV from scratch
Often costly and inefficient

Approach 2:
Only recompute changes (deltas) in the MV → incremental
view maintenance
Often cheaper and more efficient

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

View maintenance approaches

Approach 1:
Fully recompute the MV from scratch
Often costly and inefficient

Approach 2:
Only recompute changes (deltas) in the MV → incremental
view maintenance
Often cheaper and more efficient

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

View maintenance approaches

Approach 1:
Fully recompute the MV from scratch
Often costly and inefficient

Approach 2:
Only recompute changes (deltas) in the MV → incremental
view maintenance
Often cheaper and more efficient

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Traditional database systems

Base Tables
Materialized

View

Properties

MV and base relations
controlled by the same
database system

Base relations understand
view management

Base relations have
information regarding the
view

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Distributed database systems

...

Materialized View

Base Tables Base Tables

Sources

Properties

MV and the base relations
are decoupled e.g in data
warehouses

Immediate view
maintenance, therefore, not
possible

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Terminology

Challenges of maintaining distributed MVs

Data sources are autonomous

MVs span multiple sources

Transactions contain updates from one or multiple sources

Difficult to achieve consistency

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Table of Contents

1 Introduction
Terminology

2 Incremental Recomputations in Materialized Views
The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

3 View Maintenance Policies
Policies

4 Incremental Recomputations in Distributed Materialized Views
Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

5 Conclusion
Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Incremental Join

Vold = R ./ S

↓ insert tuples 4R

Vnew = (R ∪4R) ./ S

↓ join distributive w.r.t union

Vnew = (R ./ S) ∪ (4R ./ S)

↓ if 4R = 4R ./ S

Vnew = Vold ∪4R

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Incremental Join

Vold = R ./ S

↓ insert tuples 4R

Vnew = (R ∪4R) ./ S

↓ join distributive w.r.t union

Vnew = (R ./ S) ∪ (4R ./ S)

↓ if 4R = 4R ./ S

Vnew = Vold ∪4R

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Incremental Join

Vold = R ./ S

↓ insert tuples 4R

Vnew = (R ∪4R) ./ S

↓ join distributive w.r.t union

Vnew = (R ./ S) ∪ (4R ./ S)

↓ if 4R = 4R ./ S

Vnew = Vold ∪4R

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Incremental Join

Vold = R ./ S

↓ insert tuples 4R

Vnew = (R ∪4R) ./ S

↓ join distributive w.r.t union

Vnew = (R ./ S) ∪ (4R ./ S)

↓ if 4R = 4R ./ S

Vnew = Vold ∪4R

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Incremental Join

Vold = R ./ S

↓ insert tuples 4R

Vnew = (R ∪4R) ./ S

↓ join distributive w.r.t union

Vnew = (R ./ S) ∪ (4R ./ S)

↓ if 4R = 4R ./ S

Vnew = Vold ∪4R

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Incremental Join

Vold = R ./ S

↓ insert tuples 4R

Vnew = (R ∪4R) ./ S

↓ join distributive w.r.t union

Vnew = (R ./ S) ∪ (4R ./ S)

↓ if 4R = 4R ./ S

Vnew = Vold ∪4R

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Incremental Join

Vold = R ./ S

↓ insert tuples 4R

Vnew = (R ∪4R) ./ S

↓ join distributive w.r.t union

Vnew = (R ./ S) ∪ (4R ./ S)

↓ if 4R = 4R ./ S

Vnew = Vold ∪4R

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Incremental Join

Vold = R ./ S

↓ insert tuples 4R

Vnew = (R ∪4R) ./ S

↓ join distributive w.r.t union

Vnew = (R ./ S) ∪ (4R ./ S)

↓ if 4R = 4R ./ S

Vnew = Vold ∪4R

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

The View Maintenance Problem - Dimensions

Type of Modification

Expressiveness of View
Definition Language

Other Views

Insertions
Deletions

Updates
Sets of each

Arithmetic

Aggregation

Duplicates

Amount of Information

Difference

Recursion

Outer−Joins

Chronicle Algebra

Conjunctive
queries

 Base
Relations

Materialized
 View

 Integrity
Constraints

Group Updates

Change view definition

Subqueries

Union

Figure 1: The problem space

Paper Outline

We study the view maintenance problem with respect to the space of Figure 1 using the \amount
of information" as the �rst discriminator. For each point considered on the information dimension,
we consider the languages for which view maintenance algorithms have been developed, and present
selected algorithms in some detail. Where appropriate, we mention how di�erent types of modi�cations
are handled di�erently. The algorithms we describe in some detail address the following points in the
problem space.

� (Section 3:) Information dimension: Use Full Information (all the underlying base relations
and the materialized view). Instance dimension: Apply to all instances of the database and all
instances of modi�cations. Modi�cation dimension: Apply to all types of modi�cations. Language
dimension: Consider the following languages |

{ SQL views with duplicates, UNION, negation, and aggregation (e.g. SUM, MIN).

{ Outer-join views.

{ Recursive Datalog or SQL views with UNION, strati�ed aggregation and negation, but no
duplicates.

� (Section 4:) Information dimension: Use partial information (materialized view and key con-
straints { views that can be maintained without accessing the base relations are said to be
self-maintainable). Instance dimension: Apply to all instances of the database and all instances
of modi�cations. Language dimension: Apply to SPJ views. Modi�cation dimension: Consider
the following types of modi�cations |

{ Insertions and Deletions of tuples.

{ Updates and group updates to tuples.

We also discuss maintaining SPJ views using the view and some underlying base relations.

4

Figure : The problem space

Dimensions

Information

Modification

Language

Instance

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

A Mechanism for Efficient Materialized View Updates

Two components of the mechanism

Detect updates that do not affect the MV - irrelevant
updates

For relevant updates, use a differential algorithm to
re-evaluate the MV

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Example (Irrelevant update detection)

Consider relations r and s with R = {A,B} and S = {C,D}. Let
the view be defined as

v = πA,D(σ(A>5)∧(C<10)∧(B=C)(r × s))

Selection condition = C(Y), where Y is a set of attributes from the
relations. C(A,B,C) = (A > 5) ∧ (C < 10) ∧ (B = C). Given,

r:

A B

6 8
2 20

s:

C D

11 30
8 20

v:

A D

6 20
2 30

inserting tuple (7,8) into r is relevant

inserting tuple (1,5) into r is irrelevant

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Differential re-evaluation algorithm

Identifies tuples to be inserted/deleted from current view
instance

Assumption

The net effect of updates from all committed transactions are
captured

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Example (Select views)

A select view is defined by V = σC(Y)(R),
where: C = selection condition, Y ⊆ R.
If 4r and 5r are inserted and deleted tuples respectively, the new
view state vi is given by: vi = v ∪ σC(y)(4r) - σC(Y)(5r). This
corresponds to the sequence of operations:

insert(V,σC(Y)(4r))

delete(V,σC(Y)(5r))

Cheaper to update the MV by this sequence of operations,
when |v | � |dr |

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Example (Project views)

A project view is defined by V = πX (R), where X ⊆ R. Given a
relation R = {A,B} and a view definition πA(R), with

r:

A B

1 2
1 3
4 5

v:

A

1
4
2

delete(R,{(4, 5)}) on r results into delete(V,{4})
delete(R,{(1, 2)} on relation r though, leads to an
inconsistent view

Solutions: multiplicity counter, projection of keys in the view

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

A join view is defined by V = R1 ./ R2 ./..../ RP .

Example (Join views - insert operations)

R and S are two relation schemes with R = {A,B} and S = {B,C}.
If a view V = R ./ S is defined and a view v is materialized.
Assume relation r is modified by inserting tuples 4r . Modified
relation ri = r ∪4r and new state of MV v i is:

v i = r i ./ s = (r ∪4r) ./ s = (r ./ s) ∪ (4r ./ s)

If 4r = 4r ./ s, then v i = v ∪4r .

MV is modified by inserting deltas into relation v

Cheaper than recomputing the whole join from scratch

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Example (Join views - delete operations)

Let the view definition be V = R ./ S and r i = r −5r . The new
state v i is given by:

v i = r i ./ s = (r −5r) ./ s = (r ./ s)− (5r ./ s)

If 5r = 5r ./ s, then v i = v −5r .

MV is updated by deleting deltas 5r from v

When |v | � |5r |, cheaper than recomputing MV from scratch

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Example (Select-Project-Join(SPJ) views)

If R = {A,B} and S = {B,C}, and view V = πA(σC(Y)(R ./ S)).

Let r i = r ∪4r . New MV is:

v i = πA(σC(Y)(r i ./ s)) = πA(σC(Y)((r ∪4r) ./ s)) =
πA(σC(Y)(r ./ s)) ∪ πA(σC(Y)(4r ./ s)) = v ∪ πA(σC(Y)(4r ./ s))

If 4r = πA(σC(Y)(4r ./ s)), then v i = v ∪4r .

MV is updated by inserting deltas 4r into relation v

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Production rules for incremental view maintenance

Used to automatically maintain derived data e.g views

User: Initially enters view definition as SQL select expression

Information about keys for the view’s base tables also needed

System: Automatically derives production rules to maintain
the MV

Rules produced for insert, delete, and update operations

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

System structure

Proc. of 1991 VLDB Conference, pages 577{589

Deriving Production Rules for Incremental View Maintenance

Stefano Ceri
�

Jennifer Widom

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120
ceri@cs.stanford.edu, widom@ibm.com

Abstract. It is widely recognized that production rules in
database systems can be used to automatically maintain de-
rived data such as views. However, writing a correct set of
rules for e�ciently maintaining a given view can be a di�-
cult and ad-hoc process. We provide a facility whereby a user
de�nes a view as an SQL select expression, from which the
system automatically derives set-oriented production rules
that maintain a materialization of that view.
The maintenance rules are triggered by operations on the

view's base tables. Generally, the rules perform incremental
maintenance: the materialized view is modi�ed according to
the sets of changes made to the base tables, which are ac-
cessible through logical tables provided by the rule language.
However, for some operations substantial recomputation may
be required. We give algorithms that, based on key infor-
mation, perform syntactic analysis on a view de�nition to
determine when e�cient maintenance is possible.

1 Introduction

In relational database systems, a view is a logical table
derived from one or more physical (base) tables. Views
are useful for presenting di�erent levels of abstraction or
di�erent portions of a database to di�erent users. Typi-
cally, a view is speci�ed as an SQL select expression. A
retrieval query over a view is written as if the view were
a physical table; the query's answer is logically equiv-
alent to evaluating the view's select expression, then
performing the query using the result. There are two
well-known approaches to implementing views. In the
�rst approach, views are virtual: queries over views are
modi�ed into queries over base tables [Sto75]. In the
second approach, views are materialized: they are com-
puted from the base tables and stored in the database
[BLT86,KP81,SI84]. Di�erent applications favor one or
the other approach. In this paper we consider the prob-
lem of view materialization.
Production rules in database systems allow speci�ca-

tion of data manipulation operations that are executed
automatically when certain events occur or conditions
are met, e.g. [DE89,MD89, SJGP90,WF90]. Clearly,
production rules can be used to maintain materialized
views: when base tables change, rules are triggered that
modify the view.1 Writing a correct set of rules for e�-

�Permanent address: Dip. di Elettronica, Politecnico di
Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy

1Production rules also can be used to implement virtual
views, as shown in [SJGP90].

View Editor (User)

View De�nition and Key Information Feedback

View Analyzer

Final View with Analysis Information

Rule Generator

View-Maintaining Rules
?

?

?

�

Figure 1: Rule derivation system

ciently maintaining a given view can be a di�cult pro-
cess, however. The rules could simply rematerialize the
view from the base tables, but this can be very inef-
�cient. E�ciency is achieved by incremental mainte-
nance, in which the changed portions of the base tables
are propagated to the view, without full recomputation.
We have developed a method that automatically derives
incremental maintenance rules for a wide class of views.
The rules produced are executable using the rule lan-
guage of the Starburst database system at the IBM Al-
maden Research Center [WCL91].
Figure 1 shows the structure of our system, which is in-

voked at compile-time when a view is created. Initially,
the user enters the view as an SQL select expression,
along with information about keys for the view's base
tables.2 Our system then performs syntactic analysis on
the view de�nition; this analysis determines two things:
(1) whether the view may contain duplicates (2) for each
base table referenced in the view, whether e�cient view
maintenance rules are possible for operations on that ta-
ble. The user is provided with the results of this analysis.
The results may indicate that, in order to improve the
e�ciency of view maintenance, further interaction with
the system is necessary prior to rule generation. In par-
ticular:

2Key information is essential for view analysis, as we will
show. Functional dependencies could be speci�ed as well, but
we assume that keys are more easily understood and speci�ed
by the user; in normalized tables, functional dependencies are
captured by keys anyway.

Figure : Rule derivation system

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Production rule language

Set-oriented, SQL-base
production rule language

“Usual” database
functionality available

Rules based on notion of
transitions

Definition

A Transition is a database state
change resulting from a sequence
of data manipulation operations

Syntax

create rule name

when transition predicate

then action

[precedes rule-list]

Transition predicate specifies
operations on tables:
inserted into T, deleted from
T, or updated T

Rule triggered when at least
one of the operations occurs
in transaction

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Production rule language

Set-oriented, SQL-base
production rule language

“Usual” database
functionality available

Rules based on notion of
transitions

Definition

A Transition is a database state
change resulting from a sequence
of data manipulation operations

Syntax

create rule name

when transition predicate

then action

[precedes rule-list]

Transition predicate specifies
operations on tables:
inserted into T, deleted from
T, or updated T

Rule triggered when at least
one of the operations occurs
in transaction

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Production rule language

Set-oriented, SQL-base
production rule language

“Usual” database
functionality available

Rules based on notion of
transitions

Definition

A Transition is a database state
change resulting from a sequence
of data manipulation operations

Syntax

create rule name

when transition predicate

then action

[precedes rule-list]

Transition predicate specifies
operations on tables:
inserted into T, deleted from
T, or updated T

Rule triggered when at least
one of the operations occurs
in transaction

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Production rule language

Set-oriented, SQL-base
production rule language

“Usual” database
functionality available

Rules based on notion of
transitions

Definition

A Transition is a database state
change resulting from a sequence
of data manipulation operations

Syntax

create rule name

when transition predicate

then action

[precedes rule-list]

Transition predicate specifies
operations on tables:
inserted into T, deleted from
T, or updated T

Rule triggered when at least
one of the operations occurs
in transaction

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Transition tables

Definition

A transition table is a logical table that reflects changes that
have occurred during a transition

Transition table “inserted T”: current tuples of table T
inserted by the transition

“deleted T”: pre-transition tuples of T deleted by the
transition

“old updated T”: pre-transition tuples of T updated by the
transition

“new updated T”: current tuples of T updated by the
transition

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Transition tables

Definition

A transition table is a logical table that reflects changes that
have occurred during a transition

Transition table “inserted T”: current tuples of table T
inserted by the transition

“deleted T”: pre-transition tuples of T deleted by the
transition

“old updated T”: pre-transition tuples of T updated by the
transition

“new updated T”: current tuples of T updated by the
transition

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

View analysis process

For each list of table references in the view definition, the system:

Computes “bound columns” of the table references

Determines “safety” of each table reference

This method doesn’t support maintenance of views with duplicates

View definition

define view V(Col-List):

select C1, ...,Cn from T1, ...,Tm where P

where T1, ...,Tm are top-level table references,

C1, ...,Cn are columns of T1, ...,Tm, and P is a predicate

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

View analysis process

For each list of table references in the view definition, the system:

Computes “bound columns” of the table references

Determines “safety” of each table reference

This method doesn’t support maintenance of views with duplicates

View definition

define view V(Col-List):

select C1, ...,Cn from T1, ...,Tm where P

where T1, ...,Tm are top-level table references,

C1, ...,Cn are columns of T1, ...,Tm, and P is a predicate

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Bound columns & Duplicate analysis

Bound columns used to determine whether the view may
contain duplicates

Property (Bound columns lemma for top-level tables)

If two tuples in the cross-product of top-level tables T1,...,Tm

satisfy predicate P and differ in their bound columns, then the
tuples also must differ in view columns C1,...,Cn

Duplicate analysis is only done when the view’s definition
doesn’t contain distinct

Theorem

If the set of bound columns includes a key for every top-level table,
then V will not contain duplicates

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Bound columns & Duplicate analysis

Bound columns used to determine whether the view may
contain duplicates

Property (Bound columns lemma for top-level tables)

If two tuples in the cross-product of top-level tables T1,...,Tm

satisfy predicate P and differ in their bound columns, then the
tuples also must differ in view columns C1,...,Cn

Duplicate analysis is only done when the view’s definition
doesn’t contain distinct

Theorem

If the set of bound columns includes a key for every top-level table,
then V will not contain duplicates

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Safety analysis

To generate incremental view maintenance rules for operations
on a table, the reference to that table has to be safe

Safety of top-level table references is similar to duplicate
analysis

Theorem

If table reference Ti is safe, then insert, delete, and update
operations on Ti can be reflected by incremental changes to V

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Rule generation

Last phase of the rule derivation process

First consider safe table references, then unsafe references

For each table reference generate 4 rules: one triggered by
inserted, one by deleted, and two by updated

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Rule for inserted

Rule

create rule ins-Ti − V
when inserted into Ti

then insert into V

(select C1, ...,Cn

from old T1,..,inserted Ti , ..,Tm

where P and < C1, ...,Cn > not in inserted V)

Use inserted Ti instead of Ti to propagate insertions
Insertion theorem says insertions cannot create duplicates in
the view, however
Check whether a tuple may not have been already inserted by
a different rule, to avoid duplicates. Use transition table
inserted V for this

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Rule for deleted

Rule

create rule del-Ti − V
when deleted from Ti

then delete from V

where < C1, ...,Cn > in

(select C1, ...,Cn

from old Ti , .., deletedTi,old Tm

where P-old)

Deletion theorem says deleted tuples should no longer be in
the view, however

Check if other tables haven’t been modified. Consider
pre-transition values of all other tables by use of P-old

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Rule for updated

Update operations on base tables cause delete and/or insert
operations on views

Two rules are triggered by updated:

One to perform deletions
The second to perform insertions

The two rules are similar to rules for deleted and inserted

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Self-maintainability of views

Definition

A self-maintainable view is a view that can be maintained using
only the content of the view and the database modifications
(deltas), without using underlying tables

Self-maintainability is defined with respect to one of the
three modification types (insertions, deletions, or updates)

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Self-maintainability with respect to insertions

Self-maintainability with respect to insertions difficult to
achieve

Observations

Impossible to self-maintain a Select-Project-Join(SPJ) view
w.r.t insertions, because inserted tuples could originate from
other base tables

All SP views (don’t involve joins) are self-maintainable w.r.t
insertions

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Self-maintainability with respect to deletions

An SPJ view that joins base relations R1,R2, ...,Rn is said to
be self-maintainable w.r.t deletions in R1, if the following
sufficient condition holds:

Condition

For some key candidate of R1, each key attribute is either retained
in the view, or each key attribute is equated to a constant in the
view definition

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Self-maintainability with respect to updates

To achieve self-maintainability, updates are modeled directly
rather than as deletions followed by insertions

Valuable information from deleted tuples helps to insert tuples

Self-maintainability depends on the attributes being updated

An SPJ joining two or more distinct relations R1,R2, ...,Rn is
said to be self-maintainable w.r.t updates to R1 if and only if:

Condition

The updated attributes are unexposed and not distinguished, or
the updated attributes are unexposed and the view is
self-maintainable w.r.t updates

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Policies

Table of Contents

1 Introduction
Terminology

2 Incremental Recomputations in Materialized Views
The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

3 View Maintenance Policies
Policies

4 Incremental Recomputations in Distributed Materialized Views
Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

5 Conclusion
Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Policies

View maintenance policies

When and how are views maintained?

Immediate views: refresh view after every update
transaction

© Allows fast querying
§ Update transaction overhead & not applicable in distributed

environments

Deferred views: refresh view when queried (on-demand)

© Fast update transactions & batched updates possible
§ Slow querying & view may become inconsistent with it’s

definition

Snapshot views: refresh view periodically (e.g weekly)

© Fast querying & fast updates
§ Queries may read obsolete data

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Policies

View maintenance policies

When and how are views maintained?

Immediate views: refresh view after every update
transaction

© Allows fast querying
§ Update transaction overhead & not applicable in distributed

environments

Deferred views: refresh view when queried (on-demand)

© Fast update transactions & batched updates possible
§ Slow querying & view may become inconsistent with it’s

definition

Snapshot views: refresh view periodically (e.g weekly)

© Fast querying & fast updates
§ Queries may read obsolete data

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Policies

View maintenance policies

When and how are views maintained?

Immediate views: refresh view after every update
transaction

© Allows fast querying
§ Update transaction overhead & not applicable in distributed

environments

Deferred views: refresh view when queried (on-demand)

© Fast update transactions & batched updates possible
§ Slow querying & view may become inconsistent with it’s

definition

Snapshot views: refresh view periodically (e.g weekly)

© Fast querying & fast updates
§ Queries may read obsolete data

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Policies

View maintenance policies

When and how are views maintained?

Immediate views: refresh view after every update
transaction

© Allows fast querying
§ Update transaction overhead & not applicable in distributed

environments

Deferred views: refresh view when queried (on-demand)

© Fast update transactions & batched updates possible
§ Slow querying & view may become inconsistent with it’s

definition

Snapshot views: refresh view periodically (e.g weekly)

© Fast querying & fast updates
§ Queries may read obsolete data

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Table of Contents

1 Introduction
Terminology

2 Incremental Recomputations in Materialized Views
The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

3 View Maintenance Policies
Policies

4 Incremental Recomputations in Distributed Materialized Views
Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

5 Conclusion
Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Overview

In distributed environments the MV is decoupled from sources

Incremental maintenance in response to updates can’t be
triggered by update transactions

Maintenance anomalies possible

Which levels of consistency exist?

Two classes of incremental view maintenance algorithms in
distributed environments

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Consistency levels

The consistency is defined between the warehouse (source data)
and the materialized view

Convergence: For finite executions, the view is consistent
with the source data after the last update and all activity is
complete

Weak consistency: Convergence holds & for every state of
the view, there is a valid source state in a corresponding order

Strong consistency: Weak consistency holds. Furthermore,
for every state of a view, there exists a valid source start

Completeness: Strong consistency holds & between the
states of the view and those of the sources, there is complete
order-preserving mapping

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Update processing in a single source model

When source is updated, it sends an update message to the
warehouse (view)
Warehouse(WH) queries source for additional data necessary
to make changes
Source evaluates queries and sends answers to WH
During the evaluation, dirty reads may occur

WarehouseSource

Update

Query

Answer

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Example (View maintenance anomaly)

Assume two relations r1 and r2 at the source with r2 initially empty:

r1:
A B

3 4
and r2:

B C

- -

Let view definition be V = ΠA(r1 ./ r2). Two consecutive updates
happen at the source:
U1 = insert(r2,[4,8]) and U2 = insert(r1,[5,4]). The materialized
view (MV) is initially empty MV = ∅.

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Source

Warehouse

A B

3 4

B C

- -

r1

r2

A

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Source

Warehouse

A B

3 4

B C

- -

r1

r2

A

insert(r2,[4,8])

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Source

Warehouse

A B

3 4

B C

4 8

r1

r2

A

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Source

Warehouse

A B

3 4

B C

4 8

r1

r2

Update_1

A

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Source

Warehouse

A B

3 4

B C

4 8

r1

r2

Update_1

Q1=Π
A
(r1 [4,8])⋈

A

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Source

Warehouse

A B

3 4

B C

4 8

r1

r2

Update_1

Q1=Π
A
(r1 [4,8])⋈

insert(r1,[5,4])

A

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Source

Warehouse

A B

3 4

5 4

B C

4 8

r1

r2

Update_1

Q1=Π
A
(r1 [4,8])⋈

Update_2
A

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Source

Warehouse

A B

3 4

5 4

B C

4 8

r1

r2

Update_1

Q1=Π
A
(r1 [4,8])⋈

Update_2

Q2=Π
A
([5,4] r2])⋈

Source

Warehouse

A B

3 4

5 4

B C

4 8

r1

r2

Update_1

Q1=Π
A
(r1 [4,8])⋈

Update_2

Q2=Π
A
([5,4] r2])⋈

A

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Source

Warehouse

A B

3 4

5 4

A

3
5

B C

4 8

r1

r2

Update_1

Q1=Π
A
(r1 [4,8])⋈

Update_2

Q2=Π
A
([5,4] r2])⋈

A1 = ([3],[5])

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

View maintenance anomaly over a single source

Source

Warehouse

A B

3 4

5 4

A

3
5

5
B C

4 8

r1

r2

Update_1

Q1=Π
A
(r1 [4,8])⋈

Update_2

Q2=Π
A
([5,4] r2])⋈

A1 = ([3],[5])

A2 = ([5])

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Compensating queries as a solution

Definition

A compensating query is added to queries sent to source to
offset the effect of concurrent queries

Solution to the view maintenance anomaly

WH receives U2 before A1 and infers that Q1 will be evaluated on
incorrect data, since messages are supposed to be delivered in
order. WH therefore sends compensation query Q2 to undo the
effect of U2 on A1

Q2 = ΠA([5, 4] ./ r2) - ΠA([5, 4] ./ [4, 8])

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Query compensation

Source

Warehouse

A B

3 4

5 4

A

B C

4 8

r1

r2

Update_1

Q1=Π
A
(r1 [4,8])⋈

Update_2

Q2=Π
A
([5,4] r2]⋈

 - [5,4] [4,8]⋈)

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Query compensation

Source

Warehouse

A B

3 4

5 4

A
3

5
B C

4 8

r1

r2

Update_1

Q1=Π
A
(r1 [4,8])⋈

Update_2

Q2=Π
A
([5,4] r2]⋈

 - [5,4] [4,8]⋈)

A1 = ([3],[5])

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Query compensation

Source

Warehouse

A B

3 4

5 4

A
3

5
B C

4 8

r1

r2

Update_1

Q1=Π
A
(r1 [4,8])⋈

Update_2

Q2=Π
A
([5,4] r2]⋈

 - [5,4] [4,8]⋈)

A1 = ([3],[5])

A2 = Ø

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

The Strobe Algorithms

Maintenance of consistency in multi-source environments

Updates arriving at the warehouse may need to be integrated
with data from other sources before being stored

Important to know if and how sources run transactions

Three transaction scenarios possible: single update,
source-local, or global transactions

Corresponding Strobe algorithms for the transaction scenarios
are:

Strobe algorithm
Transaction-Strobe algorithm
Global-Strobe algorithm

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

The Strobe algorithm

Updates are not performed directly on the view. They are
processed but kept in an actions list AL

Actions in AL only applied to MV when consistent state can
be guaranteed

AL consists of insert and delete actions

A set called pending(Q) stores updates that occur during
query processing

Delete actions are added to AL straight away

Insert action is added after compensation of query Q has
terminated

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Example (Strobe)

Let UQS be the unanswered query set. Operation key delete(R,
Ui) deletes tuples from relation R whose key attributes are the
same as Ui . V(U) is the view expression V with tuple U
substituted for U’s relation. If we have relations r1, r2 and r3

residing on sources x, y and z respectively, let view V be defined as
V = r1 ./ r2 ./ r3. Given that:

r1:
A B

1 2
r2:

B C

- -
and r3:

C D

3 4

Initially the materialized view is MV = ∅. Given two updates:
U1 = insert(r2,[2,3]) and U2 = delete(r1,[1,2]).

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

1 2

B C

- -

C D

3 4

A B C D

AL = []

insert(r2,[2,3])

r1

r2

r3

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

1 2

B C

2 3

C D

3 4

A B C D

AL = []

Update_1

Q1 = r1 [2,3] r3⋈ ⋈

pending(Q1) = Ø

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

1 2

B C

2 3

C D

3 4

A B C D

AL = []

Update_1

Q1 = r1 [2,3]⋈ r3⋈

pending(Q1) = Ø

Q1,1=r1 [2,3]⋈

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

1 2

B C

2 3

C D

3 4

A B C D

AL = []

Update_1

Q1 = r1 [2,3]⋈ r3⋈

pending(Q1) = Ø

Q1,1=r1 [2,3]⋈

A1,1=[1,2,3]

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

1 2

B C

2 3

C D

3 4

A B C D

AL = []

Update_1

Q1 = r1 [2,3]⋈ r3⋈

pending(Q1) = Ø

Q1,1=r1 [2,3]⋈

A1,1=[1,2,3]

Q1,2=[1,2,3] r3⋈

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

1 2

B C

2 3

C D

3 4

A B C D

AL = []

Update_1

Q1 = r1 [2,3]⋈ r3⋈

pending(Q1) = Ø

Q1,1=r1 [2,3]⋈

A1,1=[1,2,3]

Q1,2=[1,2,3] r3⋈

delete(r1,[1,2])

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

- -

B C

2 3

C D

3 4

A B C D

AL = []

Update_1

Q1 = r1 [2,3]⋈ r3⋈

pending(Q1) = {Update_2}

Q1,1=r1 [2,3]⋈

A1,1=[1,2,3]

Q1,2=[1,2,3] r3⋈

Update_2

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

- -

B C

2 3

C D

3 4

A B C D

AL = [key_delete(MV,Update_2)]

Update_1

Q1 = r1 [2,3]⋈ r3⋈

pending(Q1) = {Update_2}

Q1,1=r1 [2,3]⋈

A1,1=[1,2,3]

Q1,2=[1,2,3] r3⋈

Update_2

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

- -

B C

2 3

C D

3 4

A B C D

AL = [key_delete(MV,Update_2)]

Update_1

Q1 = r1 [2,3]⋈ r3⋈

pending(Q1) = {Update_2}

Q1,1=r1 [2,3]⋈

A1,1=[1,2,3]

Q1,2=[1,2,3] r3⋈

Update_2

A1,2=[1,2,3,4]

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

- -

B C

2 3

C D

3 4

A B C D

 AL = [key_delete(MV,Update_2)]

Update_1

Q1 = r1 [2,3]⋈ r3⋈

pending(Q1) = Ø

Q1,1=r1 [2,3]⋈

A1,1=[1,2,3]

Q1,2=[1,2,3] r3⋈

Update_2

A1,2=?

 key_delete(A1,2 , Update_2)

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

- -

B C

2 3

C D

3 4

A B C D

- - - -

 AL = [key_delete(MV,Update_2)]

Update_1

Q1 = r1 [2,3]⋈ r3⋈

pending(Q1) = Ø

Q1,1=r1 [2,3]⋈

A1,1=[1,2,3]

Q1,2=[1,2,3] r3⋈

Update_2

A2 = Ø

 key_delete(A1,2 , Update_2)

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Strobe algorithm

Warehouse

Source x

Source y

Source z

A B

- -

B C

2 3

C D

3 4

A B C D

- - - -

 AL = []

Update_1

Q1 = r1 [2,3]⋈ r3⋈

pending(Q1) = Ø

Q1,1=r1 [2,3]⋈

A1,1=[1,2,3]

Q1,2=[1,2,3] r3⋈

Update_2

A2 = Ø

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Table of Contents

1 Introduction
Terminology

2 Incremental Recomputations in Materialized Views
The View Maintenance Problem - Dimensions
A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

3 View Maintenance Policies
Policies

4 Incremental Recomputations in Distributed Materialized Views
Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

5 Conclusion
Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

Conclusion

Materialized views: fast data access & fast querying

Incremental view maintenance often cheap & efficient

Concurrent updates in distributed environments cause
maintenance anomalies

Compensation mechanisms used to overcome view
maintenance anomalies in distributed systems

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline
Introduction

Incremental Recomputations in Materialized Views
View Maintenance Policies

Incremental Recomputations in Distributed Materialized Views
Conclusion

...

Thank You!

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

	Introduction
	Terminology

	Incremental Recomputations in Materialized Views
	The View Maintenance Problem - Dimensions
	A Mechanism for Efficient Materialized View Updates
	Production Rules for Incremental View Maintenance
	Self-Maintainability of Views

	View Maintenance Policies
	Policies

	Incremental Recomputations in Distributed Materialized Views
	Consistency in Incremental View Maintenance
	Eager Compensating Algorithms (ECA)
	The Strobe Algorithms

	Conclusion

