Incremental Recomputations in Distributed
Materialized Views

Sandy Ganza

January 31, 2014

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Outline

0 Introduction
@ Terminology

© Incremental Recomputations in Materialized Views
@ The View Maintenance Problem - Dimensions
@ A Mechanism for Efficient Materialized View Updates
@ Production Rules for Incremental View Maintenance
@ Self-Maintainability of Views

© View Maintenance Policies
@ Policies

@ Incremental Recomputations in Distributed Materialized Views
@ Consistency in Incremental View Maintenance
@ Eager Compensating Algorithms (ECA)
@ The Strobe Algorithms

© Conclusion
Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Table of Contents

@ Introduction
@ Terminology

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

What is a view?

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

What is a view?

@ A relation that is derived from a set of base relations

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

What is a view?

@ A relation that is derived from a set of base relations

@ A function that maps a set of base tables to a derived table

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

What is a view?

@ A relation that is derived from a set of base relations
@ A function that maps a set of base tables to a derived table

@ A view can be used as a table

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

What is a view?

@ A relation that is derived from a set of base relations
@ A function that maps a set of base tables to a derived table
@ A view can be used as a table

@ Function recomputed every time the view is referenced

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

What is a view?
o
o
o
o
o

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

A relation that is derived from a set of base relations

A function that maps a set of base tables to a derived table
A view can be used as a table

Function recomputed every time the view is referenced

View results are virtual tables and are not stored on the disk

Introduction

Terminology

Drawbacks of views

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Drawbacks of views

@ Query executed every time the view is invoked

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Drawbacks of views

@ Query executed every time the view is invoked

@ Poor performance for repeated and complex queries

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

What is a materialized view (MV)?

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

What is a materialized view (MV)?

@ A view that has been precomputed and persisted

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

What is a materialized view (MV)?

@ A view that has been precomputed and persisted

@ A copy of the data defined by the view - data cache

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

What is a materialized view (MV)?

@ A view that has been precomputed and persisted
@ A copy of the data defined by the view - data cache

@ Query definition not executed on each reference to the view

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Why are MVs needed?

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Why are MVs needed?

@ Provide fast access to data, like caches

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Why are MVs needed?

@ Provide fast access to data, like caches

@ Performance benefits in computation-intensive environments
like data warehouses, where fast response time is required

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Why are MVs needed?

@ Provide fast access to data, like caches

@ Performance benefits in computation-intensive environments
like data warehouses, where fast response time is required

@ Index structures can be built on MVs

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Why are MVs needed?

Provide fast access to data, like caches

Performance benefits in computation-intensive environments
like data warehouses, where fast response time is required

Index structures can be built on MVs

Used for query optimization and integrity constraint checking

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

The consistency problem in MVs

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

The consistency problem in MVs

@ MV data may become obsolete when base data changes

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

The consistency problem in MVs

@ MV data may become obsolete when base data changes

@ Important to update the MV — view maintenance

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

View maintenance approaches

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

View maintenance approaches

e Approach 1:

o Fully recompute the MV from scratch
o Often costly and inefficient

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

View maintenance approaches

e Approach 1:

o Fully recompute the MV from scratch
o Often costly and inefficient

@ Approach 2:

e Only recompute changes (deltas) in the MV — incremental
view maintenance
o Often cheaper and more efficient

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Traditional database systems

/\ @ MV and base relations

\/ controlled by the same

database system

Materialized

Base Tables View

@ Base relations understand

| D view management

@ Base relations have

‘\/ information regarding the

view

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Distributed database systems

Properties
Materialized View

@ MV and the base relations
are decoupled e.g in data

27 % warehouses
- @ Immediate view

Base Tables Base Tables maintenance, therefore, not

J L possible

Sources

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Introduction

Terminology

Challenges of maintaining distributed MVs

Data sources are autonomous

°
@ MVs span multiple sources

@ Transactions contain updates from one or multiple sources
°

Difficult to achieve consistency

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

intenance Problem - Dimensions
Incremental Recomputations in Materialized Views sm for Efficient Materialized w Updates
o on Rules for Incre al View Maintenance
-Maintainability of Views

Table of Contents

© Incremental Recomputations in Materialized Views
@ The View Maintenance Problem - Dimensions
@ A Mechanism for Efficient Materialized View Updates
@ Production Rules for Incremental View Maintenance
@ Self-Maintainability of Views

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Vo/d:RNS

J insert tuples Ag

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Vold =RxS
J insert tuples Ag

Voew = (RUAR) 4 S

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Incre tal Join
Voig = R S

J insert tuples Ag
View = (RUAR) < S

J join distributive w.r.t union

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

Incre tal Join
Voig = R S

J insert tuples Ag
View = (RUAR) < S
J join distributive w.r.t union

Voew = (R4 S) U (Ag b4 S)

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

| ntal Join

Vog = R S

J insert tuples Ag

View = (RUAR) < S

J join distributive w.r.t union
View = (R S)U (A< S)
Jif Arg=ArxS

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental recomputations - in a nutshell

| ntal Join

Vog = R S

J insert tuples Ag

View = (RUAR) < S

J join distributive w.r.t union
View = (R S)U (A< S)
Jif Arg=ArxS

Vnew = Voig U AR

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions
Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
If-Maintainability of Vi

The View Maintenance Problem - Dimensions

Expressiveness of View

Amount of Information Definition Language

: Recursion
Integrity Difference
Constraints Outer—Joins
Chronicle Algebra o
Other Views Union o |nf0rmat|0n
Base Subqueries
Relations Aggregation o Modifi i
ITication
Avrithmetic
Materialized Dupli
a plicates
View
Conjunctive C La nguage
queries
Insertions) (*] |nSta nce
Deletions
Updates

Sets of each
Group Updates
Change view definitioi

Type of Modification

ndy Ganza Incremental Recomputations in Distributed Materialized Views

The Vi laintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental Vie intenance
Self-Maintainability of Views

A Mechanism for Efficient Materialized View Updates

Two components of the mechanism

@ Detect updates that do not affect the MV - irrelevant
updates

o For relevant updates, use a differential algorithm to
re-evaluate the MV

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions
Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates

Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Example (Irrelevant update detection)

Consider relations r and s with R = {A,B} and S = {C,D}. Let
the view be defined as

V= 7TA,D(U(A>5)/\(c<10)/\(5:6)(f X s))
Selection condition = C(Y), where Y is a set of attributes from the
relations. C(A,B,C) = (A > 5) A (C < 10) A (B = C). Given,

A B cC D A D
rr 6 8 s 11 30 v: 6 20
2 20 8 20 2 30

@ inserting tuple (7,8) into ris relevant

e inserting tuple (1,5) into ris irrelevant

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

e intenance Problem - Dimensions
Incremental Recomputations in Materialized Views for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Differential re-evaluation algorithm

o Identifies tuples to be inserted/deleted from current view
instance

The net effect of updates from all committed transactions are
captured

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Example (Select views)

A select view is defined by V = o¢(y)(R),

where: C = selection condition, Y C R.

If A, and v/, are inserted and deleted tuples respectively, the new
view state V' is given by: vV = v U aci)(Dr) - ocvy(Vr)- This
corresponds to the sequence of operations:

insert(V,oc(yy(2Ar))

delete(V,o c(v)(V+))

@ Cheaper to update the MV by this sequence of operations,
when |v| > |d,|

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Example (Project views)

A project view is defined by V = mx(R), where X C R. Given a
relation R = {A,B} and a view definition 74 (R), with

A B A
L2 1
1 3 7 4
4 5 2

o delete(R,{(4, 5)}) on r results into delete(V,{4})

o delete(R,{(1, 2)} on relation r though, leads to an
inconsistent view

@ Solutions: multiplicity counter, projection of keys in the view

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions
Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates

Production Rules for Incremental View Maintenance
Self-Maintainability of Views

A join view is defined by V = Ry <1 Ry <1...0<1 Rp.

Example (Join views - insert operations)

R and S are two relation schemes with R = {A,B} and S = {B,C}.
If a view V = R xS is defined and a view v is materialized.
Assume relation ris modified by inserting tuples A,. Modified
relation ¥ = r U A, and new state of MV v/ is:

Vi=rids=(rUl,)as = (rxas)U (A, >as)

If A, =/A,1xs, then vi = vUA,.
e MV is modified by inserting deltas into relation v

@ Cheaper than recomputing the whole join from scratch

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions
Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized w Updates

Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Example (Join views - delete operations

)

Let the view definition be V = Rt S and r' = r — x7,. The new
state v/ is given by:

Vi=rids=(r—v,)xs=(rxs)— (v,)

If 7y = /D48, then vi = v — 7.
@ MV is updated by deleting deltas 5/, from v
@ When |v| > |v/,|, cheaper than recomputing MV from scratch

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions
Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates

Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Example (Select-Project-Join(SPJ) views)
If R={A,B} and S = {B, C}, and view V = ma(o¢(y)(R > 5)).
Let ' = rUA,. New MV is:

vi=ma(oc(y)(r' 2s)) = malocyy((rU L) »as)) =
7TA(O'C(y)(r X s))U WA(UC(y)(A,» Xs))=vU WA(UC(y)(A,» 's))

If A, = ma(ocv)(Lr>s)), then vVi=vUA,.
@ MV is updated by inserting deltas /\, into relation v

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

intenance Problem - Dimensions
Incremental Recomputations in Materialized Views sm for Efficient Materialized View Updates
on Rules for Incremental View Mai ance
aintainability of Views

Production rules for incremental view maintenance

Used to automatically maintain derived data e.g views
User: Initially enters view definition as SQL select expression
Information about keys for the view's base tables also needed

System: Automatically derives production rules to maintain
the MV

Rules produced for insert, delete, and update operations

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensior

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

System structure

View Editor (User)

View Definition and Key Information Feedback

¢

| View Analyzer

Final View with Analysis Information

!

| Rule Generator |

!

View-Maintaining Rules

Figure : Rule derivation system

Incremental Recomputations in Distributed Materialized Views

aintenance Problem - Dimensi
Incremental Recomputations in Materialized Views \Y sm for Efficient Materialized V Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Production rule language

@ Set-oriented, SQL-base
production rule language

“Usual” database
functionality available

@ Rules based on notion of
transitions

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

intenance Problem - Dimensions
sm for Efficient Materialized View Updates
on Rules for Incremental View Mai ance
aintainability of Views

Incremental Recomputations in Materialized Views

Production rule language

@ Set-oriented, SQL-base
production rule language

o “Usual” database
functionality available

@ Rules based on notion of
transitions

Definition

A Transition is a database state
change resulting from a sequence
of data manipulation operations

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental Recomputations in Materialized Views

Production rule language

o Set-oriented, SQL-base create rule name
production rule language when transition predicate
@ “Usual” database then action
functionality available [precedes rule-list]

@ Rules based on notion of
transitions

Definition

A Transition is a database state
change resulting from a sequence
of data manipulation operations

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Incremental Recomputations in Materialized Views

Production rule language

The View Maintenance Problem - Dimensions

A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

@ Set-oriented, SQL-base
production rule language

o “Usual” database
functionality available

@ Rules based on notion of
transitions

Definition

A Transition is a database state
change resulting from a sequence
of data manipulation operations

create rule name

when transition predicate
then action

[precedes rule-list]

@ Transition predicate specifies
operations on tables:
inserted into T, deleted from
T, or updated T

o Rule triggered when at least
one of the operations occurs
in transaction

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

aintenance Problem - Dimensions
Incremental Recomputations in Materialized Views \Y sm for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Transition tables

Definition

A transition table is a logical table that reflects changes that
have occurred during a transition

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views nism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Transition tables

Definition

A transition table is a logical table that reflects changes that
have occurred during a transition

@ Transition table “inserted T": current tuples of table T
inserted by the transition

o “deleted T": pre-transition tuples of T deleted by the
transition

@ “old updated T": pre-transition tuples of T updated by the
transition

e “new updated T": current tuples of T updated by the
transition

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental Recomputations in Materialized Views

View analysis process

For each list of table references in the view definition, the system:
o Computes “bound columns” of the table references

@ Determines “safety” of each table reference

View definition

define view V(Col-List):

select (C,...,C, from Ti,..., T, where P

where Ti,..., T, are top-level table references,

G, ..., Cy are columns of Ti,..,T,, and P is a predicate

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

View analysis process

For each list of table references in the view definition, the system:
o Computes “bound columns” of the table references
@ Determines “safety” of each table reference

This method doesn't support maintenance of views with duplicates

View definition

define view V(Col-List):

select (C,...,C, from Ti,..., T, where P

where Ti,..., T, are top-level table references,

G, ..., Cy are columns of Ti,..,T,, and P is a predicate

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

nism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental Recomputations in Materialized Views

Bound columns & Duplicate analysis

@ Bound columns used to determine whether the view may
contain duplicates

Property (Bound columns lemma for top-level tables)

If two tuples in the cross-product of top-level tables T1,..., T,
satisfy predicate P and differ in their bound columns, then the
tuples also must differ in view columns Cq,...,C,

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Bound columns & Duplicate analysis

@ Bound columns used to determine whether the view may
contain duplicates

Property (Bound columns lemma for top-level tables)

If two tuples in the cross-product of top-level tables T1,..., T,
satisfy predicate P and differ in their bound columns, then the
tuples also must differ in view columns Cq,...,C,

@ Duplicate analysis is only done when the view's definition
doesn't contain distinct

If the set of bound columns includes a key for every top-level table,
then V will not contain duplicates

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

laintenance Problem - Dimensions

Incremental Recomputations in Materialized Views nism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Safety analysis

@ To generate incremental view maintenance rules for operations
on a table, the reference to that table has to be safe

@ Safety of top-level table references is similar to duplicate
analysis

If table reference T; is safe, then insert, delete, and update
operations on T; can be reflected by incremental changes to V

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

intenance Problem - Dimensions
Incremental Recomputations in Materialized Views sm for Efficient Materialized View Updates
on Rules for Incremental View Mai ance
aintainability of Views

Rule generation

@ Last phase of the rule derivation process
@ First consider safe table references, then unsafe references

@ For each table reference generate 4 rules: one triggered by
inserted, one by deleted, and two by updated

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Rule for inserted

create rule ins-T;,—V

when inserted into T;

then insert into V

(select (,...,C,

from old Ti,..,inserted T;,.., Tp,

where P and < (i,...,C, > not in inserted V)

@ Use inserted T; instead of T; to propagate insertions

@ Insertion theorem says insertions cannot create duplicates in
the view, however

@ Check whether a tuple may not have been already inserted by
a different rule, to avoid duplicates. Use transition table
inserted V for this

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Rule for deleted

create rule del-T;, — V

when deleted from T;

then delete from V

where < (C1,...,C, > in

(select Ci,...,C,

from old T;,.. deletedT;,01d T,
where P-o0ld)

@ Deletion theorem says deleted tuples should no longer be in
the view, however

@ Check if other tables haven't been modified. Consider
pre-transition values of all other tables by use of P-old

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

intenance Problem - Dimensions
Incremental Recomputations in Materialized Views sm for Efficient Materialized View Updates
on Rules for Incremental View Mai ance
aintainability of Views

Rule for updated

e Update operations on base tables cause delete and/or insert
operations on views
@ Two rules are triggered by updated:

o One to perform deletions
e The second to perform insertions

@ The two rules are similar to rules for deleted and inserted

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Incremental Recomputations in Materialized Views

Self-maintainability of views

Definition

A self-maintainable view is a view that can be maintained using
only the content of the view and the database modifications
(deltas), without using underlying tables

o Self-maintainability is defined with respect to one of the
three modification types (insertions, deletions, or updates)

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Self-maintainability with respect to insertions

@ Self-maintainability with respect to insertions difficult to
achieve

Observations

@ Impossible to self-maintain a Select-Project-Join(SPJ) view
w.r.t insertions, because inserted tuples could originate from
other base tables

@ All SP views (don't involve joins) are self-maintainable w.r.t
insertions

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Self-maintainability with respect to deletions

@ An SPJ view that joins base relations Ry, R», ..., R, is said to
be self-maintainable w.r.t deletions in Ry, if the following
sufficient condition holds:

For some key candidate of Ry, each key attribute is either retained
in the view, or each key attribute is equated to a constant in the
view definition

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

The View Maintenance Problem - Dimensions

Incremental Recomputations in Materialized Views A Mechanism for Efficient Materialized View Updates
Production Rules for Incremental View Maintenance
Self-Maintainability of Views

Self-maintainability with respect to updates

@ To achieve self-maintainability, updates are modeled directly
rather than as deletions followed by insertions

@ Valuable information from deleted tuples helps to insert tuples
@ Self-maintainability depends on the attributes being updated

@ An SPJ joining two or more distinct relations Ry, R, ..., R, is
said to be self-maintainable w.r.t updates to R; if and only if:

The updated attributes are unexposed and not distinguished, or
the updated attributes are unexposed and the view is
self-maintainable w.r.t updates

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

" . . Policies
View Maintenance Policies -

Table of Contents

© View Maintenance Policies
@ Policies

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

- . . Policies
View Maintenance Policies

View maintenance policies

When and how are views maintained?

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

- . . Policies
View Maintenance Policies

View maintenance policies

When and how are views maintained?
o Immediate views: refresh view after every update
transaction

© Allows fast querying
© Update transaction overhead & not applicable in distributed
environments

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

- . . Policies
View Maintenance Policies

View maintenance policies

When and how are views maintained?
o Immediate views: refresh view after every update
transaction
© Allows fast querying
© Update transaction overhead & not applicable in distributed
environments
o Deferred views: refresh view when queried (on-demand)
© Fast update transactions & batched updates possible
© Slow querying & view may become inconsistent with it's
definition

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

- . . Policies
View Maintenance Policies

View maintenance policies

When and how are views maintained?
o Immediate views: refresh view after every update
transaction

© Allows fast querying
© Update transaction overhead & not applicable in distributed
environments

o Deferred views: refresh view when queried (on-demand)
© Fast update transactions & batched updates possible
© Slow querying & view may become inconsistent with it's
definition
@ Snapshot views: refresh view periodically (e.g weekly)

© Fast querying & fast updates
© Queries may read obsolete data

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Comg ing Algorithms (ECA)

ag
. . . - . The Strobe A hms
Incremental Recomputations in Distributed Materialized Views ODe

Table of Contents

@ Incremental Recomputations in Distributed Materialized Views
@ Consistency in Incremental View Maintenance
@ Eager Compensating Algorithms (ECA)
@ The Strobe Algorithms

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Comg ing Algorithms (ECA)

ag
. . . - . The Strobe A hms
Incremental Recomputations in Distributed Materialized Views ODe

Overview

In distributed environments the MV is decoupled from sources

Incremental maintenance in response to updates can't be
triggered by update transactions

Maintenance anomalies possible

Which levels of consistency exist?

Two classes of incremental view maintenance algorithms in
distributed environments

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compen Algorithms (ECA)

. . . - . The Strobe s
Incremental Recomputations in Distributed Materialized Views obe Alg

Consistency levels

The consistency is defined between the warehouse (source data)
and the materialized view
e Convergence: For finite executions, the view is consistent
with the source data after the last update and all activity is
complete
@ Weak consistency: Convergence holds & for every state of
the view, there is a valid source state in a corresponding order

@ Strong consistency: Weak consistency holds. Furthermore,
for every state of a view, there exists a valid source start

o Completeness: Strong consistency holds & between the
states of the view and those of the sources, there is complete
order-preserving mapping

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

Update processing in a single source model

@ When source is updated, it sends an update message to the
warehouse (view)

e Warehouse(WH) queries source for additional data necessary
to make changes

@ Source evaluates queries and sends answers to WH

@ During the evaluation, dirty reads may occur

Update

M

& Warehouse

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views =

View maintenance anomaly over a single source

Example (View maintenance anomaly)

Assume two relations r; and ry at the source with ry initially empty:

NP, W - BN B CH
3 4 - -
Let view definition be V = M(r1 > rp). Two consecutive updates
happen at the source:
Uy = insert(ro,[4,8]) and Ux = insert(r1,[5,4]). The materialized
view (MV) is initially empty MV = 0.

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views g0

View maintenance anomaly over a single source

:

Source
Warehouse

(

A B
M 3 4

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views =

View maintenance anomaly over a single source

D

ource
v Warehouse
A B
M 3 4
B C
r2 - -

insert(r2, [4,8])

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views g0

View maintenance anomaly over a single source

D

ource
_/ Warehouse
A B
M 3 4
B C
2 4 8

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental laintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views =

View maintenance anomaly over a single source

D

ource Update_1

U :> Warehouse
A B

M 3 4
B C

2 4 8

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental laintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views =

View maintenance anomaly over a single source

D

ource

Update_1
v if\/\ Warehouse

A B Q1=I1,(r1p4[4,8])
3 4 =

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views =

View maintenance anomaly over a single source

Update_1
v |:‘r> Warehouse

A B Q1=I1,(r1p4[4,8])
3 4 =

insert(r1,[5,4])

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental laintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views =

View maintenance anomaly over a single source

D

ource date_1
v - Warehouse
A B Q1 n (r1N[4 8])
3 4 \
r1 -- Update 2
B C
2 4 8

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental laintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views ne Strobe Algorithms

View maintenance anomaly over a single source

u

Source Undate 1
peate_ Warehouse
A B Q1=1,(r14[4,8])
r == Update_2
B C Q2=1,([5,4]4r2])
P

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental laintenance
Eager Compensating Algorithms (ECA)
L S . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views ne Strobe Algorithms

View maintenance anomaly over a single source

Update_1
_/ Rty Warehouse
A B Q1=,(r1>4[4,8])
M3 4 <
-- Update_2
B C Q2=11,,([5,4]4r2])
2g <

r2 A1 = (31,051

>

Incremental Recomputations in Distributed Materialized Views

Sandy Ganza

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
L S . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views ne Strobe Algorithms

View maintenance anomaly over a single source

:

Source Update_1
U if\/\ Warehouse
A B Q1=I1,(r1%[4,8])

r1 -- \Update_z
HE
B C Q2=11,,([5,4]p4r2])
<

A2= (i5) .

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views =

Compensating queries as a solution

A compensating query is added to queries sent to source to
offset the effect of concurrent queries

Solution to the view maintenance anomaly

WH receives U, before A; and infers that Qq will be evaluated on
incorrect data, since messages are supposed to be delivered in
order. WH therefore sends compensation query Q, to undo the
effect of Uy on A

Q2 = nA([5a4] > I’2) - nA([574] > [4a 8])

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental laintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views ne Strobe Algorithms

Query compensation

u

Source Update_1
peae_1r (" Warehouse
A B Q1=M1,(r154[4,8])
r1 == Update_2
B C Q2=11,([5,4]4r2]
- [5,4][4,8
2 .- [5,41»4[4,8])

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental laintenance
Eager Compensating Algorithms (ECA)
L S . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views ne Strobe Algorithms

Query compensation

Source Update_1
/ peae"_ (Warehouse
A B Q1=n,(r1p4[4,8])
M3 4 | —
-- Update_2
B C Q2=1,([5,4]r2]
48 | m—

A1 =([31,[5])

>

Incremental Recomputations in Distributed Materialized Views

Sandy Ganza

Consistency in Incremental laintenance
Eager Compensating Algorithms (ECA)

. . . - . The Strobe Algorithms
Incremental Recomputations in Distributed Materialized Views g0

Query compensation

Update_1
_/ > (Warehouse

A B Q1=,(r1>4[4,8])
3 4
r1 -- Update_2

B C Q2=I1,([5,4]4r2]
2 4 8 - [5,414[4,8])

Flik

|

A1 =([31,[5])

ﬂ

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compensating orithms (ECA)

Incremental Recomputations in Distributed Materialized Views The Strobe Algorithms

The Strobe Algorithms

@ Maintenance of consistency in multi-source environments

@ Updates arriving at the warehouse may need to be integrated
with data from other sources before being stored

@ Important to know if and how sources run transactions
@ Three transaction scenarios possible: single update,
source-local, or global transactions

@ Corresponding Strobe algorithms for the transaction scenarios
are:
e Strobe algorithm
e Transaction-Strobe algorithm
o Global-Strobe algorithm

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compensating orithms (ECA)

Incremental Recomputations in Distributed Materialized Views The Strobe Algorithms

The Strobe algorithm

@ Updates are not performed directly on the view. They are
processed but kept in an actions list AL

@ Actions in AL only applied to MV when consistent state can
be guaranteed

@ AL consists of insert and delete actions

@ A set called pending(Q) stores updates that occur during
query processing

@ Delete actions are added to AL straight away

@ Insert action is added after compensation of query Q has
terminated

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Consistency in Incremental View Maintenance
Eager Compensating Algorithms (ECA)

Incremental Recomputations in Distributed Materialized Views The Strobe Algorithms

Strobe algorithm

Example (Strobe)

Let UQS be the unanswered query set. Operation key_delete(R,
U;) deletes tuples from relation R whose key attributes are the
same as U;. V(U) is the view expression V with tuple U
substituted for U's relation. If we have relations rq, ro and r3
residing on sources x, y and z respectively, let view V be defined as
V = r1 1 rp < r3. Given that:

A B B C C D
ri:) ro: : and r3:374

Initially the materialized view is MV = (). Given two updates:
Uy = insert(r2,[2,3]) and Uy = delete(r1,[1,2]).

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

A|B
12

~— Warehouse

M

AL=[]

insert(r2,[2,3])

ndy Ganza Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

~— Warehouse
 sourcadd

Bn Update_1
= S

~_ AL=[]
pending(Q1) = @
Q1=r1p[2,3] M3

ndy Ganza Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

/—\ o

A|B

1|2
v Warehouse
sourcet)

Bn Update_1
= S

514
~_ AL=[]
pending(Q1) =@
Q1= M r3

ndy Ganza Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

e TN Qt4=rx2,3]

AlB| | AL1=123,
>

~— Warehouse
(Sourcad)

Bn Update_1
=] S

~_ AL=[]
pending(Q1) = @
Q1= M r3

ndy Ganza Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

/—\ o

AlB A1.1=[1,2,3};
1|2

~— Warehouse
 Sourcad)

Bn Update_1
BRl

~_ AL=[]
pending(Q1) = @
Q1= > r3

ndy Ganza Incremental Recomputations in Distributed Materialized Views

Consiste ntal V Maintenance

Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

Strobe algorithm

e TN a1 1=rx2,3]

Al B A1.1=[1,2,3t
1]2
\/ Warehouse
N oreey
Bn Update_1 [
~__
ST
~_ AL=[]
pending(Q1) = @
Q1= > r3

delete(r1,[1,2])

Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

e TNt 1=r2,3]

AlB | | AL1=0123

Update_2
)
Bn Update_1
3] ===

~_ AL=[]
pending(Q1) = {Update_2}
Q1= > r3

ndy Ganza Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

@ 1,1=r1042,3]

AlB | | AL1=[123

Update_2)
7 > Warehouse

Bn Update_1
5] ==

pending(Q1) = {Update_2}
Q1= > r3
AL = [key_delete(MV,Update_2)]

ndy Ganza Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

e f1 1=r1NF2,3]

AlB | | A11=[123

Update_2
)
ﬂn Update_1
a5 |

A1,25[1,2,3,4]

pending(Q1) = {Update_2}
Q1= > r3
AL = [key_delete(MV,Update_2)]

ndy Ganza Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

e TNt 1=r2,3]

AlB | | AL1=0123

\/ U?da!e 2 C

ﬂn Update_1
5] |
\ou_rce) 'Q1 2=[1,2,3]>4

A1,2=7

Q1= > r3

key_delete(A1,2 , Update_2)

ndy Ganza Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

e TNt 4=r2,3]

AlB | | A11=0123

\/ U?da!e 2 [

Q1= pr3
AL = [key_delete(MV,Update_2)]

ndy Ganza Incremental Recomputations in Distributed Materialized Views

y in Incremental View Maintenance
Eager Compensating Algorithms (ECA)
The Strobe Algorithms

Incremental Recomputations in Distributed Materialized Views

e TNt 4=r2,3]

AlB | | A11=0123

_/ U%date 2 [

ﬂn Update_1
[2[3] —
\/
@ Im z=i1 2,35
[c]D| |A2=0
)
pending(Q1) = @
Q1= P r3
AL=[]

ndy Ganza Incremental Recomputations in Distributed Materialized Views

Conclusion

Table of Contents

© Conclusion
Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Conclusion

Conclusion

Materialized views: fast data access & fast querying

Incremental view maintenance often cheap & efficient

Concurrent updates in distributed environments cause
maintenance anomalies

@ Compensation mechanisms used to overcome view
maintenance anomalies in distributed systems

Sandy Ganza Incremental Recomputations in Distributed Materialized Views

Conclusion

Thank You!

Incremental Recomputations in Distributed Materialized Views

	Introduction
	Terminology

	Incremental Recomputations in Materialized Views
	The View Maintenance Problem - Dimensions
	A Mechanism for Efficient Materialized View Updates
	Production Rules for Incremental View Maintenance
	Self-Maintainability of Views

	View Maintenance Policies
	Policies

	Incremental Recomputations in Distributed Materialized Views
	Consistency in Incremental View Maintenance
	Eager Compensating Algorithms (ECA)
	The Strobe Algorithms

	Conclusion

