University of Kaiserslautern
Department of Computer Science
Database and Information Systems

Seminar

Database and the Cloud

Winter Semester 2013/14

Table of Contents

Introduction.o 3
Incremental Recomputations in Materialized Views................. ... 4
2.1 The View Maintenance Problem - Dimensions.................... 5
2.2 A Mechanism for Efficient Materialized View Updates............. 6
2.3 Production Rules for Incremental View Maintenance 10
2.4 Self-Maintainability of Views i 14
View Maintenance Policies i 15
Incremental Recomputations in Distributed Materialized Views 16
4.1 Consistency in Incremental View Maintenance 16
4.2 Eager Compensating Algorithms 18
4.3 The Strobe Algorithms. i, 19

ConcClUSION . . .ot 22

Incremental Recomputations in Distributed
Materialized Views

Sandy Ganza

University of Kaiserslautern

Abstract. Materialized views are like data caches; they provide fast access
to data and significantly increase querying speed. Materialized views are
therefore important for applications such as data warehouses that deal with
huge amounts of data and perform complex computations, while requiring
fast response times. To ensure consistency with the underlying data, mate-
rialized views have to be maintained. A straightforward way to maintain a
view is to fully re-compute it from scratch each time the base tables change.
This, however, is often inefficient and costly. The other approach, which in
most cases is more efficient, is to compute the changes to a view in response
to incremental changes to the base tables. In this case, only those portions
of the underlying data that have been changed will be re-computed. This is
known as incremental view maintenance, and is the focus of this paper.
We first discuss incremental view maintenance in traditional databases,
where both the materialized view and the base tables are controlled by
the same database system. We then provide an overview of view mainte-
nance policies. Finally, we analyze materialized view maintenance algorithms
in distributed environments, where the base tables are decoupled from the
materialized view. The resulting distributed incremental view maintenance
anomalies caused by concurrent updates are described, and approaches to
overcome them.

1 Introduction

In database systems, incremental recomputations help to efficiently maintain ma-
terialized views when base tables are changing. An alternative approach is to fully
recompute the view from scratch, which for complex recurrent queries is often ex-
tremely costly. For such queries, it is important to pre-compute and persist them
in a view, in order to guarantee fast access to data and improve the performance
of the system. Traditionally, views are not materialized but rather stored just as
definitions, which are then computed by the query processor every time the view
is invoked. Database operators such as aggregations and joins need much time and
processing power to compute and could significantly be performed more efficiently
when precomputed and stored in materialized views. Moreover, materialized views
can be used to build index structures. However, materialized views are susceptible
to staleness when base data changes. There is, therefore, need for view maintenance
in order to keep track of the changes made at the base tables and reflect them in the
materialized view. In cases where only small parts of the base data change, the more
efficient way to maintain a materialized view is to capture such changes and only
modify those parts of the view that have changed. This is known as incremental
view maintenance.

The concept of materialized views traditionally applies to local systems, in which
both base tables and the view are under the control of a single database system.
Here, the base tables know the view definition and understand view management,
making it easier to propagate modifications to the view. In section 2, a mechanism
to efficiently update materialized views is presented. First, a method to detect irrel-
evant updates is given, which narrows down the number of tuples to be considered

while maintaining the view [BLLT86]. For the relevant updates, a differential al-
gorithm is suggested to re-evaluate the view expression by identifying the correct
insertions or deletions to be made in the current view instance. It should be noted,
however, that materialized views assume that base tables are updated by transac-
tions which contain the differential update mechanism as the last operation. The
third part of section 2 deals with deriving production rules for incremental view
maintenance [CW91]. These are set-oriented rules that are triggered by events oc-
curring on the base tables to enable propagation of the changed portions to the
materialized view, without completely re-computing the view. How and when such
rules can be automatically generated, will be studied. Finally, in section 2, the con-
cept of self-maintainability in views is introduced [GJM96]. These views can be
maintained using only the content of the materialized view and the data changes
at the sources, commonly known as deltas. Unlike previous approaches, underlying
tables are not accessed.

Section 3 introduces view maintenance policies. When implementing material-
ized views, it is important to know when and how to maintain the views after the
base tables have been modified. Different approaches to this problem are discussed.
Some policies maintain the view immediately when changes at the sources are de-
tected, while others maintain the views on-demand when the views are queried, or
periodically [AL80,CGL197,CKL*97].

Today, the concept of materialized views has been generalized to distributed
environments, where base tables and materialized views are controlled by different
database systems on a network. Here, both view definitions and view management
are unknown to the remote sources. In a distributed environment, modifications on
the sources may need to integrate with data from other sources before being propa-
gated to the materialized view. An example of such an environment is a data ware-
house. A data warehouse consists of integrated data from distributed, autonomous,
and possibly heterogeneous sources. Maintaining the warehouse is therefore a chal-
lenging task and may result in distributed incremental view maintenance anomalies,
which render traditional view maintenance algorithms inapplicable to distributed
environments. Distributed materialized views and their incremental recomputations
are the focus of section 4. We begin by defining the term consistency as applied
to materialized views in distributed systems and which levels of consistency exist
[ZGmJW98]. Then, two classes of view maintenance algorithms that are based on
compensation queries are discussed. Compensation queries are used to overcome
maintenance anomalies in distributed environments. The first class of algorithms
applies to single-source systems and is known as Eager Compensating Algorithms
(ECA) [ZGMHW95]. The second class can also be applied multi-source environ-
ments and is known as the Strobe Algorithms [ZGmJW98,ZGMW96].

2 Incremental Recomputations in Materialized Views

Regular database views are wvirtual relations that consist of fields from several or
one relation of the database. They are called virtual because the physical data is
stored in base relation and not in the views themselves. Views can be seen as saved
queries, that enable dealing with the same set of data from different perspectives
by different users. When a view is invoked, the query processor replaces it by its
definition, which is an SQL query, and then executes the query.

For performance reasons, however, more sophisticated queries and complex data
transformations need to be materialized or pre-computed at the expense of always
being up-to-date as is the case when directly querying the base relations. Material-
ized views are especially important in data warehouse applications. In the following
parts of this section, we discuss the view maintenance problem and how to classify

incremental view maintenance algorithms according to given dimensions. A mech-
anism for efficient materialized view updates is described, and we a set of rules for
incremental view maintenance is studied. Furthermore, we define the concept of
self-maintainability in views.

2.1 The View Maintenance Problem - Dimensions

Since the data residing in the base relations is bound to change with time, it is
important that the changes be reflected in the respective materialized views. This
process is known as view maintenance and can be achieved in two ways: naively,
the materialized views can be fully re-computed from scratch or only the portions
of data that have been altered will be re-computed in the materialized views. Since
in most cases the amount of changed data is less compared to the existing data, the
latter option is often the most efficient and is known as incremental re-computation.
Gupta et al.[GM95] classify incremental view maintenance algorithms according to
the following four dimensions. The problem space resulting from the use of three of
the four dimensions is shown in Figure 1.

Expressiveness of View

Amount of Information Definition Language
Recursion
Integrity Difference
Constraints OuterJoins
Other Views .Chronlcle Algebra
Union
Base Subqueries
Relations Aggregation
Arithmetic
Materialized Dublicat
View _ uP icates
Conjunctive
queries
Insertions

Deletions
Updates

Sets of each

Group Updates Type of Modification
Change view definitio ;

Fig. 1. The problem space (Source:[GM95])

— Information dimension. This deals with the amount of information available
to determine the changes to the view. Whether there is access to the base
relations, the materialized view, or whether information about constraints and
keys is known, will determine which algorithm to use. Access to everything is
not always guaranteed

— Modification dimension. Determines how the base relations and views are mod-
ified. The kind of modifications that can be performed and how to handle, for
instance, insertions, deletions or updates determines the type of algorithm to
apply. There are algorithms which implement updates directly and other which
model them as deletions followed by insertions. Whether view maintenance is

performed by recomputing the whole view or only the changed portions also
distinguishes algorithms

— Language dimension. Under this dimension, algorithms defer based on their
syntactic representation of the view. Some might be based on relational algebra
or subsets of it, SQL or a subset of it. The support for duplicates, recursion or
aggregations can also be studied

— Instance dimension. This dimension can be analyzed in two ways. On the one
hand, a view maintenance algorithm could be valid for all instances of a database
or only for some, whereas on the other hand the algorithm could support all
instances of modification or only a few instances of modification

Ezample 1. course(course_code, course_grade, student_name)

Take Example 1 of the course relation showing students’ grade in respective
university courses. Assuming, there is a view best_courses defined as:

best_course(course_grade) = Ilcoursecode Ocoursegrade>so(COUrse)

that returns distinct course codes in which a score of over 90 points has been
obtained (duplicates are eliminated by projection).

View maintenance scenarios:

Insertion in relation course: If inserted tuple has course_grade<=290, then the view
remains unchanged. If, however, a tuple course(C123,95,John_Smith) is inserted
with course_grade> 90, it is possible to update the view by applying different view
maintenance algorithms depending upon which information is available: (a) If only
the materialized view is available, compare this to the old materialized view to check
whether the course_grade already exists in the view. If yes, no change is applied to
the view, otherwise materialize course C123. (b) Considering only the base relation
is available, if the course relation already has a tuple with the same course_code
but the course_grade is equal or greater than that being inserted, then no changes
are necessary to the materialized view. (c) If course_code is the key, then it must
be inserted since course_code cannot have been present in the view.

2.2 A Mechanism for Efficient Materialized View Updates

We assume a database system that consists of base relations and derived relations.
In this case, the derived relation is the materialized view, which stores its data
physically in the database. When base relations change, there is need to update the
materialized view such that its data is kept consistent with the base relations. Since
the materialized view is basically defined by an SQL expression, this expression is
completely re-evaluated to obtain the current state. This, however, is often a very
slow and costly method.

A more efficient mechanism to update materialized views is proposed by Blakeley
et al. [BLLT86]. In the following we describe the two main components of this mech-
anism: detecting updates that do not affect the view, and a method for differentially
updating the materialized view. The view is expressed in relational algebra (lan-
guage dimension) formed from combinations of selections, projections, and joins
(SPJ expressions). Furthermore, transactions represent a sequence of updates on
base tables, such that either all the update operations are correctly carried out or
none of them is executed. A transaction may span several base relations.

Relevant and irrelevant updates. For efficiently updating the materialized view,
it is important to identify those updates which , regardless of the database state,

have no effect on the state of the view. These are known as irrelevant updates and
are helpful to avoid unnecessary re-evaluation of the view expression or at least to
narrow down the number of involved tuples. The mechanism to identify irrelevant
updates is illustrated by Example 2:

Ezample 2. Consider relations r and s with R = {A,B} and S = {C,D}. Let the
view be defined as

v = 7TA,D(U(A>5)A(C<10)A(B:C)(T X 5))
Let the selection condition be C(Y), where Y is a set of attributes from the relations.
Then, C(A,B,C) = (A > 5) A (C < 10) A (B = C). Consider the following instances
of the relations:
A B C D AD

r:6 8 s:1130 v: 6 20
2 20 8 20 2 30

Suppose tuple (7,8) is inserted into relation r, equation C(A,B,C) becomes
C(7,8,C) = (7 > 5) A (C < 10) A (8 = C). We see that the condition C(7,8,C)
is satisfiable, since relations R and S can have an instance containing tuples (7,8)
and (8,0) for some ¢ such that C(7,8,0) = True. Inserting tuple (7,8) is hence rele-
vant to view v. In a similar way, it can be seen that, for example, if tuple (1,5) was
inserted into relation r, the selection condition C would be unsatisfiable regardless
of the database state. Tuple (1,5) into = would therefore be irrelevant to view wv.
the same procedure applies for deletions.

Detection of relevant updates. Having known, from Example 2 what an irrele-
vant or relevant update is, it remains to be shown how algorithms can automatically
determine the satisfiability of Boolean expressions. In general, this is in fact NP-
complete. Rosenkrantz and Hunt [RHI80] however have shown that there is still a
large class of Boolean expressions for which satisfiability can be efficiently decided.
Such expressions are made of conjunctions of atomic formulae: x op y, = op ¢ and
x op y + ¢, where z and y are variables, ¢ is a constant, and ope{=, <, >, <, >
}. For better efficiency # is not allowed in op. The algorithm can also be applied
to disjunctions of conjunctions. Based on the algorithm of Rosenkrantz and Hunt,
an algorithm for the detection of relevant updates is proposed by Blakeley et al.
[BLLTS6].

Differential re-evaluation of views. Differential updates on a materialized view
decide the tuples that must be inserted or deleted from the current view instance
when the base relations change. An algorithm by Blakeley et al. is briefly described
here. The algorithm is designed for SPJ expressions and works under the assumption
that base relations are updated by transactions and the commit of the transaction
contains the differential update mechanism. Furthermore, it is assumed that the fol-
lowing information is known when invoking the differential view update mechanism:
contents of base relations before the transaction is executed, inserted/deleted tuples
into/from the base relation, view definition, and content of view that corresponds
to that of the base relation before the transaction.

In the following, different types of views are explained. For each view we consider
how its expression behaves when insert and delete operations are made to the base
relations.

— Select views: The definition of a select view is V = o¢(y)(R), with C, the
selection condition which is given a Boolean expression on Y C R. If 4, and d,

are inserted and deleted tuples respectively, the new view state ¢* is given by:
V=0 U oc(y) - 0c(y)(dr). The view is therefore updated by running insert
and delete operations in sequence. This way, the view can be computed faster
and cheaper than computing V from scratch, especially when the tuples being
modified are far less then the total tuples that make up the view

Project views: We define a project view by the expression V = 7x (R), where
X C R. Project operation is not as straightforward as the select operation. This

can be shown by Example 3, when a deletion occurs in the base relation.

Ezample 3. Given a relation R = {A,B} and a view definition 74 (R), with

[l 6
ot o
M%H‘:D

The operation delete(R,{(4, 5)}) when applied to relation r can result into the
view operation delete(V,{4}) with no problems. Trying to execute delete(R,{(1,
2)} on relation r though, leads to an inconsistent view if delete(V,{1}) is to be
applied there. The tuple to be deleted in the view is referenced by more than one
tuple in the base relation. In a broader sense, it their could be several potential
sources for a view tuple to be deleted. The reason for the inconsistence is that,
over the difference operation, the distributive property of projection does not
hold: wx (r1 — ra) # wx(r1) - wx (ra).

Two solutions exist for this problem:

e Introduce an additional attribute in the view, which records for each tuple
a multiplicity counter. When a tuple is inserted that already exists in the
view, the counter value is incremented by one. On deletion it is decremented
by one. The tuple can be deleted from the view when the counter becomes
Z€ro

e Alternatively, we could choose to project key attributes of the base tables
in the view. In this case, every tuple in the view can be uniquely traced to
its base table. Insertions and deletions are therefore safe

Join views: Unlike select and project views, a join view is defined on multiple
base relations. The view definition is given by: V = R; <1 Ry ... Rp. First,
only insert operations to base relations are considered, then only deletions are
considered, and finally changes caused by a combination of both operations are
shown.

Ezample 4. Let R and S be two relation schemes with R = {A,B} and S =
{B,C}. If a view V = R xS is defined and a view v is materialized. Assume
relation r is modified by inserting a set of tuples .. The modified relation 7* =
r U4, and the new state of the view v’ is defined as follows:

vi=ripas = (rUi.) s = (rxs)U(i.xs)

If i, = 4, 4 s, then we get v = v U4,. This implies that the view can be
modified by inserting only the new tuples in relation v. As a result, computing
the view v’ is similar to adding %, to v, which is cheaper than recomputing the
whole join from scratch.

This idea can be expanded to insertions in an arbitrary number of base relations.
The distributive property of join over union operator is used here. For a database
D = ry,rg,...,7p and a view definition V = R; >4 Ry > ...) Rp, assume
a materialized view v and let tuples i,1,%.2,...,%, be inserted into relations
1,72, ...,7p. The new state of view v* is computed as follows:

v = (r1 Udp1) 54 (12 Uidpg) Do (1 Uy

We now introduce a binary variable B; for each relation scheme R; : 1 <17 < p.
B; has a value zero when old tuples (before insertion into relation r;) are con-
sidered, when it refers to tuples inserted into r; since the latest materialization
it acquires the value one. The expression v’ is illustrated by the truth table of
variables B; for p = 3.

B, By Bs

el = i e B e B e B an}
— —_ OOk FEOO
_ O = O = OO

From the truth table, the new view v’ can be obtained by making a union of
all the 8 rows. This gives:

vt = (Tl > 7g [><17’3)U(’I"1 > 1o D<1i7«3)U(’I”1 l><lZ}»2[><l7’3)U(’/’1 D 3.0 DX
irg) U (7:7«1 > 1o X Tg) U (irl > 1o X irg) U (irl > irg > Tg) U (irl > 7;7-2 > 7;7,3)

We observe that not all rows are often relevant for computing the new view. The
first row, for instance, only considers old tuples. Furthermore, it’s not often that
updates happen to all relations in a view definition. If we assume a transaction
that only inserts tuples in r; and ro, all rows in which B3 has a value of one
can be neglected. As a result, to compute the new view, only joins represented
by rows 3, 5, and 7 are relevant. Therefore, this mechanism is cheaper than a
full computation of the whole join.

Ezample 5. Now we consider an example that only illustrates the deletion of
tuples from base relations. Let us consider two relation schemes again: R =
{A,B} and S = {B, C}, also let the view definition be V"= R S. If view v is
materialized and relation r is updated by deletion of of tuples d,.. Let r* = r—d,..
The new state v’ is given by:

vi=rias=(r—d,)xs=(reis)— (d.xs)

If d, = d, > s, then v' = v — d,,. We can therefore update the view by deleting
the new set of tuples d, from v. When the number of tuples of d, are much
less compared to the tuples of v, this is an easier way to compute the new
materialized view v;.

Analogously, this differential update can be expressed in terms of binary tables.
In the following, we assume tuples are tagged as inserted, deleted, or old tuples.
A tag of a tuple obtained from a join of two tuples is shown by the following
table.

T To |T'1 XITI9
insert |insert| insert
insert |delete| ignore
insert| old | insert
delete|insert| ignore
delete|delete| delete
delete| old | delete
old |insert| insert
old |delete| delete
old old old

10

When performing a join, tuples tagged as ignore are not computed. It is there-
fore, necessary to expand the semantics of the join operation to include tag
values of tuples involved in a join. Furthermore, if there is a projection present,
a count value for join tuples has to be maintained as explained earlier. The
following table shows tag values for tuples resulting from selection or projection
operations.

r oo (r)|mx(r)
insert| insert |insert
delete| delete |delete
old old old

Tables of 2P rows are often not necessary in practice. Knowing which tables
have been modified, only corresponding rows can be built for evaluation.

— Select-Project-Join (SPJ) views: The distributive property of join, select,
and project over union is used to build a differential update algorithm for SPJ
views. An SPJ view is defined as follows:

V= Wx(dc(y)(Rl > R2 B RP))

where X is a set of attributes and C(Y) is a Boolean expression of the selection
condition. Example 6 illustrates the idea behind the algorithm that updates
SPJ views differentially.

Ezample 6. Consider two relation schemes R = {A,B} and S = {B,C} and
a view V = ma(ooy) (R > 5)). If v is the materialized view and relation r is
updated by insertion of tuples 7,.. Assuming r* = r U 4,. The new value of the
view is given by:

vt = Ta(oc)(r' s)) = malocw) ((rUir) xs)) = malocy)(r
S)) @] WA(Uc(y) (ZT > S)) =vU WA(Uc(y) (lr > 8))

Let iy, = ma(0c(y)(ir 54 8)), then v* = v U4,. It is therefore shown that only by
inserting the new set of tuples into relation v, the view will be updated.

2.3 Production Rules for Incremental View Maintenance

The concept of production rules is important in database systems when dealing
with a number of advanced database features such as enforcing integrity constraints,
maintaining derived data, triggers, version control, and more. This section discusses
production rules that are used to maintain materialized views. The rules are auto-
matically generated basing on a view definition that is provided by a user.

When the base tables of a view are modified, maintenance rules will be trig-
gered, often incrementally. To modify the materialized views, changes made to the
base tables and stored in logical tables are required. In this section an overview
of the production rule language that provides the logical tables will be given. In
some cases, however, operations may require substantial recomputations. Syntactic
analysis based on key information is performed to determine whether efficient view
maintenance is possible or not.

When certain events or conditions are fulfilled, production rules specify manip-
ulation operations to be carried out automatically. This principle, can therefore be
used to maintain materialized views, whereby rules will be triggered in response to
changing base tables. Obtaining the right set of rules for efficient view maintenance
is not straightforward. There are two options to take: A complete recomputation
of the view from the base tables can be done, which is often inefficient, or more
efficiently, only portions of the base table that have changed are propagated to the

11

| View Editor (User) |
|

View Definition and Key Information Feedback

¢
| View Analyzer }—/
|

Final View with Analysis Information

!

| Rule Generator |

!

View-Maintaining Rules

Fig. 2. Rule derivation system (Source:[CW91])

view, incrementally. Ceri and Widom [CW91] have developed a method that auto-
matically derives incremental maintenance rules for a wide class of views. Figure 2
shows the structure of their system. It is invoked in response to view creation at
compile time.

In the first step, a view definition in form of an SQL select expression is entered
along with the keys of the base tables of the view. Next, a syntactic analysis is
performed by the system on the view definition in order to answer the following
two questions: Can the view contain duplicates? and are efficient view maintenance
rules possible for operations on each base table referenced in the view? The analysis
result is given to the user. At this point, a feedback to the system may be necessary
before the rules are generated. For instance, if the system finds out that the view may
contain duplicates, the user should add distinct to the view to preserve efficient
maintenance. On the other hand, if the impossibility of efficient maintenance is
detected by the system, the user may include more key information or modify the
view definition. View analysis is repeated, in case of changes. The user weighs the
results and the trade-offs for materializing the view or not and once the user is
satisfied with the definition and properties of the view, the system generates the
set of rules for maintaining the view. Rules produced include insert, delete and
update on base tables of the view. A complete computation of the view is necessary
and thereafter the view can be maintained automatically.

Overview of the production rule language. The rule language used is set-
oriented and therefore sets of changes to the database trigger the rules. Moreover,
the production rule language discussed here is SQL-based. Operations that can be
maintained efficiently, changes made to base tables determine the incremental main-
tenance of the view by maintenance rules. Transition tables are used to store these
changes. Only a subset of the rule language used by the view maintenance rules is
described. Usual database functionality can be expressed by this set of rules, since
they are fully integrated in Starburst database system[WCL91].

Rules result from database state changes called transitions, which are a result
of executing a sequence of data manipulation operations. Production rules are de-
scribed by the following syntax:

create rule name
when transition predicate
then action

12

[precedes rule-list]

The production rule is given an arbitrary name, whereas a transition predicate
refers to one or more operations on tables, namely: inserted into T, deleted from
T, or updated T. If at least one of the operations on the tables has taken place
within a transition, then a rule is triggered. The SQL data manipulation operations
that are executed when the rule is triggered are indicated by the action. Optionally,
an ordering on the set of rules can be specified in the precedes list. If R, has Ry
in it’s precedes list, then R, is ordered before Ry.

In addition to the current state of the database through top-level or nested SQL
select operations, a rule’s action may also refer to transition tables. A transition
table is a logical table that shows changes that occurred during a transition. The
following transition tables exist: inserted T contains tuples of table T in the current
state that were inserted by the transition, table deleted T contains pre-transition
tuples of table T that were deleted by the transition, transition table old updated
T contains pre-transition tuples of table T that were updated by the transition, and
transition table, finally, transition table new updated T contains current values of
the same tuples. Rule assertion points are points where rules are activated. Assertion
points are found at transaction commit but users can also define other points within
transactions. The user-generated database operations that are executed after the
last assertion point result into a state change, which in turn creates the first relevant
transition. This transition may also trigger other sets of rules. The highest ordered
rule determines the triggered rule R that is then executed. R’s actions become part
of the initial transition to determine the rule to be triggered next. This leads to a
new set of rules, in which a rule is chosen such that no other is higher in ordering.
Transition predicates should also hold with respect to the transition since the action
was executed or since the last rule assertion point. Rule processing terminates when
the set of triggered rules is empty. When maintaining views, sometimes, there is
need to consider the entire pre-transition value of a table. Although this can not be
achieved directly through the rule facility, it can be derived from transition tables.
The value of a table T at the start of the transition triggering rule is referred to as
“old T” and is given by:

(T minus inserted T minus new updated T)
union deleted T union old updated T

Methods for view analysis and rule generation. From the rule derivation
system described above, initially, the user defines the view and also provides infor-
mation on keys for the view’s base tables. The next step of view analysis relies on
thorough information on keys from the initial step. The view analysis then computes
bound columns from each list of table references, after this, the safety of the refer-
ence for each table reference is determined. A safe table reference enables generation
of incremental view maintenance rules for that table. Bound columns are used by
top-level tables to determine whether the view may or may not contain duplicates.
In the presence of duplicates, the methods discussed here do not support efficient
view maintenance. In the following, we use a view V with the form:

define view V(Col-List):
select Cy,...,C, from Ti,..,T,, where P

where T7,...,T,, are top-level table references,
Cy,...,C, are columns of Ti,..,7,,, and P is a predicate

13

Bound columns. Bound columns are essential for view analysis. According to
[CWO1], the following steps are taken to compute bound columns B(V) of the top-
level table references in view V.

— Initialize B(V) to contain the columns Cy,...,C,, projected in the view definition
— Add to B(V) all columus of T4,...,T,, such that predicate P includes an equality
comparison between the column and a constant
— Repeat until B(V) is unchanged:
e Add to B(V) all columns of Ty,...,T,, such that predicate P includes an
equality comparison between the column and a column in B(V)
e Add to B(V) all columns of any table T;, 1 <14 < m, if B(V) includes a key
for T;

Bound columns guarantee the property: If two tuples in the cross-product of top-
level tables Ty,..., Ty, satisfy predicate P and differ in their bound columns, then the
tuples also must differ in view columns Ci,...,C,.

Duplicate analysis. Duplicate analysis is easy to perform, if the computation
of bound columns for top-level table references has terminated. The system only
does duplicate analysis if the view’s definition does not include distinct. Once
the possibility of occurrence of duplicates is detected by the system, the user is
notified and unless V is modified to include distinct, maintenance rules will not
be generated for V. The following theorem is true for duplicates: If B(V) includes
a key for every top-level table, then V will not contain duplicates.

Safety analysis. For top-level table references, both safety analysis and duplicate
analysis are the same. [CW91] show that if table T; is safe, then insert, update,
and delete operations on T; can be propagated incrementally to V.

Rule generation. Having completed the view analysis phase, we focus on how
maintenance rules are generated for top-level tables. Safe table references are studied
first, followed by unsafe references. Four rules are generated for each table reference.
The rules are triggered by: insertion, deletion, and two rules by update. How
some rules can be combined and how the rule set is ordered, is discussed in the
following.

Assuming T, is a safe top-level table reference in view V. We aim at reflecting
tuples inserted into T; into V by using transition table inserted T; instead of
table T;. The insertion theorem for top-level tables states that, such insertion cannot
create duplicates in the view. Duplicates would however occur if tuples were inserted
into a different top-level table applying a similar rule. It is therefore important to
check if the tuple has not been inserted by a different rule already. To do this, table
inserted V is used. The rule for inserted is:

create rule ins-T; —V
when inserted into T;
then insert into V
(select C4,...,C,
from old Ti,..,inserted T;,..,T},
where P and < Cy,...,C), > not in inserted V)

Similarly, when tuples are deleted from T;, our aim is to delete them from V with
help of deleted T, instead of table T;. The deletion theorem for top-level tables
says that these tuples should no longer be in the view. It is possible, however, that

14

other tables in the top-level table list have been modified. For a correct set of tuples
to delete from V, we therefore use pre-transition values of all the other tables.
Furthermore, we use P-old which denotes predicate P with all table references T
replaced by old T. The rule for deleted is:

create rule del-T; —V
when deleted from T;
then delete from V
where < (C1,...,C), > in
(select C4,...,C,
from old Tj,..,deleted T;,0ld T,,
where P-old)

Update operations on base tables, on the other side, are split into delete and/or
insert operations on views. Updated in effect triggers two separate rules. These
are similar to rules for delete and insert explained above. Delete is eventually
followed by insert.
These rules are generated for each table reference, even when a table appears mul-
tiple times in the top-level table list. The combination of rules occurs when rules
have identical triggering operations and their actions perform the same operation
like delete or insert. When the whole set of rules has been generated, a precedes
clause is used to order them, with deletions coming before insertions.

For unsafe top-level references T;, the theorems given above are not valid any-
more.

2.4 Self-Maintainability of Views

Views are said to be self-maintainable when they can be maintained using only
the content of the materialized view and the data changes at the sources, com-
monly known as deltas. The underlying base tables should not be accessed. Self-
maintainability in views leads to performance improvements when maintaining large
views made up of data from multiple sources. The concept of self-maintainable views
originates from [GJM96]. Select-Project-Join (SPJ) views are considered in response
to insertions, deletions, or updates. As a result, the term self-maintainability is de-
fined with respect to one of the three modification types, if, in response to the mod-
ification to base relations, for all database states the view can be self-maintained.

Conditions under which SPJ views are self-maintainable under insertions, dele-
tions, and updates are presented in [GJM96] and some results are stated in the
following. First, however, some terms are introduced: An attribute is said to be dis-
tinguished if it appears in the select clause of the view definition, and an attribute
is said to be exposed if it is used in a predicate of the view definition. If it not
exposed, it is said to be unezrposed.

Self-maintainability with respect to insertions. Self-maintainability for inser-
tions is very difficult to achieve. The following observations are true for insertions:

— It is impossible to self-maintain an SPJ view with respect to insertions. This is
because inserted tuples may be tuples that haven’t been in the view previously
or even in the deltas. They could be tuples from any other base relation

— All SP views (do not involve joins) are self-maintainable with respect to inser-
tions

15

Self-maintainability with respect to deletions. An SPJ view that joins base
relations Ry, Rs, ..., R, is said to be self-maintainable with respect to deletions in
R, if the following sufficient condition holds:

— For some key candidate of Ry, each key attribute is either retained in the view,
or
— Each key attribute is equated to a constant in the view definition

The key attributes help us to identify the view tuples to be deleted.

Self-maintainability with respect to updates. To achieve self-maintainability
with respect to updates, updates are modeled directly rather than in the conven-
tional way as deletions followed by insertions. In so doing, valuable information is
kept from the deleted tuple that is used to insert a new tuple into the view. This
information from the deleted tuple also makes it possible for many views to be
self-maintainable with respect to updates, despite not being self-maintainable with
respect to insertions. Self-maintainability depends on the attributes being updated
and an SPJ that joins two or more distinct relations Rj, Ro, ..., R, is said to be
self-maintainable with respect to updates to Ry if and only if either:

— The updated attributes are unexposed and not distinguished. In this case the
updated attributes are irrelevant to the view. Or

— The updated attributes are unexposed and the view is self-maintainable with
respect to updates. Here the updated attributes appear in the view and for view
tuples to be updated, can be identified by their key attributes as in the case of
deletions.

3 View Maintenance Policies

When implementing materialized views, it is important to know when and how to
maintain the views after the base tables have been modified. To this end, several
view maintenance policies have been proposed [AL80,CGLT97,CKL"97]. Although
materialized views are often used to increase query performance, the maintenance
process has a drawback of slowing down update transactions. This trade-off be-
tween the speed of queries and the speed of transactions has given rise to different
approaches to this view maintenance problem. Some policies maintain the view im-
mediately when changes at the sources are detected, while others maintain the views
on-demand when the views are queried, or periodically. The process of updating the
view is also known as refresh. Three major policies used to refresh materialized
views are briefly explained below:

1. Immediate Views: The view is refreshed immediately within the transaction
that updates the base table. The advantage of immediate maintenance is that
it allows fast querying. On the other hand, however, update transactions incur
a significant overhead, since each transaction can potentially update the view.
Many applications can not tolerate the transaction overhead

2. Deferred Views: The view is refreshed when it is queried (on-demand) [CGL197].
Unlike immediate updates, there is a separate transaction to maintain the view
that is called when the view is queried or when certain conditions are fulfilled.
As a result, updates are faster, and several updates may be batched together.
In deferred views, however, a view may become inconsistent with it’s definition.
Furthermore, the querying process is slower

16

3. Snapshot Views: Snapshot views are refreshed periodically, for example, each
day, week, or month [AL80]. They combine the two advantages of the previous
methods by allowing fast querying and fast updates, however, the drawback is
that queries may read obsolete data that doesn’t match the current state of the
base relations. Snapshot views are therefore suitable for those applications that
may require or tolerate obsolete data and do not need to update the current
state. They view the data “as of” a specific point in time

We note that immediate view maintenance may not be applicable in some en-
vironments. In data warehouses, for example, sources may lack information about
the materialized view and, therefore, can not modify the update transactions so
that they can refresh the materialized view. Deferred and snapshot maintenances,
therefore remains the only viable options.

Determining a suitable view maintenance policy for one’s view is not a straight-
forward process. A set of heuristics for policy selection for views with multiple het-
erogeneous are proposed by [ECLO03]. The heuristics are based on the importance
of the following service requirements for the application:

— Consistency. Determines whether a one-to-one correspondence between states
of a materialized view and source tables is important

— Data staleness. A measure of elapsed time between receiving an answer to a
query and the first source change to invalidate it

— Response time. A measure of the elapsed time until a query is answered by the
view. In the worst case, the view must be fully re-computed for each update on
the base tables

— Storage capabilities. This specifies how much data the system is capable of stor-
ing

Based on these service requirements and on the characteristics of underlying sources,
several possible policies are are developed by the heuristic. Thereafter, a two-stage
selection process determines the suitable maintenance policy.

4 Incremental Recomputations in Distributed Materialized
Views

Until now, we have considered materialized views in traditional database environ-
ments, where both the the materialized view and the sources are controlled by the
same database system. In such systems, the sources understand view management
and have information regarding the view. Our focus is now turned to distributed
systems like data warehouse, in which the view and the sources are decoupled. In
a distributed environment, immediate view maintenance can not be achieved, since
the sources are not able to invoke view maintenance through update transactions
at commit. Maintaining views incrementally in distributed systems therefore poses
new challenges and requires new algorithms. In this section, we begin by defining
the term consistency as applied to materialized views in distributed environment
and which levels of consistency exist. We then discuss two major classes of incre-
mental view maintenance algorithms, namely: the Eager Compensating Algorithms
(ECA), and the Strobe algorithms.

4.1 Consistency in Incremental View Maintenance

Maintaining the consistency of distributed materialized views is challenging, since
the views may span several data sources that are autonomous and multiple sources

17

are bound to transactions containing multiple updates. View definitions are decou-
pled from data sources and this can result in anomalies when executing updates on
data sources. To integrate new data into the view in a consistent way is a complex
task and requires, first, to identify possible levels of consistency and correctness, and
when to apply each of them. This section introduces the definition of consistency as
applied to a materialized view and it’s original source data. Since views may be con-
tained in a data warehouse, we first describe the states at both the warehouse and
the sources. A data warehouse integrates information from multiple sources, which
may be distributed, autonomous or even heterogeneous. Furthermore, four levels of
consistency for warehouse views are defined according to [ZGmJW98,ZGMHW95],
in increasing order of difficulty to guarantee.

States of warehouses and sources. A warehouse state ws represents the con-
tents of the warehouse, whereas source states ss represent the contents of source
base relations. When updates occur on a system, at both the warehouse and data
sources, events are triggered. These events yield different states on both sides. Let
the corresponding resulting states at the warehouse be wsy,wsy,..,wsy and those at
the sources ss1,5s2,..,55;. wsy and ss; being the corresponding final states after all
activity has completed. At the warehouse, the state of a materialized view V after
event 4 has occurred is given by V(ws;). Similarly, V(ss;) is the state of V if it
computed over the source after event i has been triggered. It is expected that each
source transaction brings the sources from one consistent state to the other.

Consistency levels. The four levels of consistency for materialized views at ware-
houses are obtained under the assumption that at the warehouse, initially, source
data and views are synchronized, or in other words: V(ssg) = V(wsp). Furthermore,
each level entails all prior levels.

— Convergence: True for all finite executions, that is: V(ss;) = V(wss). The
view is consistent with the source data after the last update and all activity is
complete

— Weak consistency: Convergence is true and for every state of the view, there
is a valid source state, and in a corresponding order. In other words: for all ws;
there exists an ss; such that V(ws;) = V(ss;)

— Strong comnsistency: Convergence holds and for every state of a view, there
exists a valid source start. Furthermore, for all executions and for every pair ws;
< ws;j, there exists ssi < ss; such that V(ws;) = V(ss) and V(ws;) = V(ss).
Meaning, every state of the view corresponds to a valid source state, and in a
corresponding order

— Completeness: Strong consistency holds, and it is also true that for each ss;
there exists a ws; such that V(ws;) = V(ss;). In other words, between the states
of the view and those of the states, there is a complete order-preserving mapping

In most practical warehouses, the completeness level is considered to be a re-
quirement that is too strong and unnecessary. The view will not always need to
know what exactly is happening to the base data. Sometimes, the convergence level
is enough, which yields a final valid state of the warehouse although in between
some states might be invalid. Most of the times, strong consistency is desirable,
since it guarantees that the warehouse will always be valid with respect to some
source state.

Several algorithms have been developed that support incremental view mainte-
nance and guarantee consistency when updates are being executed in a system. We
describe two of the them, below: the Strobe algorithms [ZGMW96], and the Eager
Compensating Algorithms (ECA) [ZGMHW95].

18

4.2 Eager Compensating Algorithms

The Eager Compensating Algorithms (ECA) are incremental view maintenance
algorithms that operate on a single data source. Traditional view maintenance al-
gorithms assume that the source has information regarding the view definitions and
view management. This information helps to make corresponding changes on the
view when the source changes. In a warehouse environment, though, such algorithms
fail because the view and the source are decoupled. The source might be a legacy
system that has no understanding of the view mechanism.

In a warehousing environment, when the sources are updated, they send an up-
date message to the warehouse. The warehouse determines which additional data
may be required from the sources to make necessary changes in the views and is-
sues queries to the sources. On receiving the queries, the sources evaluate them and
replies back with answers. This process is shown in Figure 3.

—cmmmmmmm————— = Warehouse

Fig. 3. Update processing in a single source model (Source:[ZGMHW95])

By the time the sources evaluate the query sent by the warehouse, it is however
possible that further updates have already occurred that had not yet been captured
by the warehouse before sending that query. This may result into incorrect views at
the warehouse. ECA algorithms applies extra compensating queries that are used to
eliminate such view maintenance anomalies. The view maintenance anomaly is illus-
trated using Example 7. For all examples in this section, the following assumptions
are made: (a) relational model is used for data (b) relational algebra select-project-
join queries are used for views (c¢) duplicates are retained in the materialized views.
However, the algorithms can be extended to other data models and view specifica-
tion languages.

Ezample 7 (View maintenance anomaly over a single source). Assume two relations
r1 and ro at the source with rs initially empty:
A B B C

Iy 31 and ro: -

The view definition is given by V = IT4(r; < r3) and there are two consecutive
updates happening at the source: Uy = insert(rs,[4,8]) and Uy = insert(r1,[5,4]).
The materialized view (MV) is initially empty MV = (). Steps below show the update
process by a conventional incremental algorithm.

Source executes U; and sends it to the warehouse

Warehouse receives U; and sends query Q; = IT4(r1 < [4, 8]) to the source
Source executes Us and sends it to the warehouse

Warehouse receives U and sends query Qg = ITA([5,4] &< r2) to the source
Source receives Q; and evaluates it basing on it’s current relations r; = ([3,4],[5,4])
and ro = ([4,8]). The answer to thisis A; = ([3],[5]) and is sent to the warehouse

CU W=

19

6. Warehouse receives Ay updates the view to MV U A; = ([3],[5])
7. Source receives Q2 and basing on current relations ri; and ro. The answer Ay =

([5]) and is also sent to the warehouse
8. Warehouse receives Ag and updates MV to MV U Ay = ([3],[5],[5])

The final view at the warehouse is incorrect. Note that if the source and ware-
house were not decoupled, a conventional algorithm at the source would have yielded
A; = ([3]) after Uy and Ay = ([3],[5]) after Us. The problem results from the fact
that when Q is issued by the warehouse to the source, it is based on update Uq
from the source, yet by the time it is evaluated at the source update Uy has already
occurred.

Compensating Queries as a Solution. Compensating queries are added to
queries that are sent to the source in order to offset the effect of concurrent updates.
Considering Example 7, when the warehouse receives Us in step 4, and knows that
the messages are supposed to be delivered in order, the warehouse infers that Q; will
be evaluated on incorrect data, since otherwise, it would have received an answer
to Q1 before the notification Uy. The warehouse, therefore, sends a compensation
query Qs to undo the effect of Uy on A;.

Q2 = Ia([5,4] ><ir2) - IT([5,4] >a [4,8])

We observe that the A; received in step 6 is still A; = ([3],[5]), however, the com-
pensation query leads to As in step 8 being empty. Consequently, the final view is in
a correct state. To achieve strong consistency, the ECA algorithm avoids updating
the view after each answer is received from the source. This might result in the view
temporarily assuming incorrect states. To implement this, the algorithm maintains
a set called unanswered query set (UQS) which contains those queries that have
been sent by the warehouse but remain unanswered when the warehouse receives
the next update. Such queries see a source state that already contains the latest
update. The warehouse therefore adds a compensating query to each one of the
queries in the UQS. The intermediate answers received from the source are stored
in a temporary relation called COLLECT and it is used to update the view when
UQS = (. The ECA algorithm is not complete.

Algorithms that improve the basic ECA algorithm have been suggested: In the
ECA-Key Algorithm (ECAX), the view must include keys from every base table.
Having this full key information, deletions can directly be performed at the ware-
house without sending queries to the source. Furthermore, although for insertions
queries to the source are still required, there is no need for compensating queries
anymore. On the other hand, the ECA-Local Algorithm (ECA”) combines both
the compensating queries of ECA with the local updates of ECA-Key Algorithm
(ECAX) and can therefore be applied to general views. The algorithm determines
which updates can be processed locally or where to apply compensating queries.

4.3 The Strobe Algorithms

While the ECA algorithms operate in single-source environments, the Strobe al-
gorithms are designed to maintain consistency as the warehouse is updated in a
multi-source environment. In multi-source environments updates arriving at the
warehouse may need to be integrated with updates from other sources before being
materialized in the view. As several updates are made and the processing is going
on, there is potential for the warehouse to become inconsistent.

An important factor to consider when processing updates at the warehouse is
whether and how sources run transactions. Updates that are made at sources that
run transactions, should be treated as atomic units. There are three main trans-
action scenarios that are considered depending on the scope of the transaction.

20

The three scenarios are: (a) single update transactions, in which each update com-
prises it’s own transaction, (b) source-local transactions, in which a sequence of
actions at the same source form one transaction, and finally (c) global transactions,
in which actions performed at multiple sources comprise global transactions. The
Strobe algorithms are designed to achieve a specific level of correctness for each
of the transaction scenarios. As a result there are three algorithms, namely: the
Strobe algorithm, which achieves strong consistency for the single update trans-
actions. The Transaction-Strobe algorithm, which achieves strong consistency for
the source-local transactions, and the Global-Strobe algorithm that achieves strong
consistency for global transactions. Before delving into the algorithms, the following
assumptions are made:

— We assume the projection list of the view contains key attributes for each re-
lation. This is a major difference to the ECA algorithms and allows Strobe
algorithms to be self-maintainable with respect to deletions

— Updates at one source could initiate a multi-source query Q at the ware-
house. The warehouse decides the order of the sources to be visited. Function
next_source(Q) returns the pair (z, Q') where z is the next source to visit, and
Q? the portion of Q to be evaluated there. A; is the answer from the source to
Qi. Query Q(A;) is the remaining query after answer A; has been incorporated
into query Q

— Function source_evaluate returns the final result answer A after looping to eval-
uate the next portion of query Q. function source_evaluate may, however, return
an incorrect answer when concurrent transactions exit at the sources. Strobe
algorithms use compensation mechanisms to overcome this anomaly

— For simplicity only deletions and insertions are considered by the algorithms

Strobe: In order to maintain a consistent materialized view MV at the ware-
house at all times, the Strobe algorithm does not perform each update directly on
the view, instead the updates, although processed immediately, are kept in an ac-
tions lists AL. The actions in the list are applied to MV only when a consistent
state can be guaranteed. At this time, there are no “pending” queries present and
all updates have been processed.

The list of actions consists of both insert and delete actions but how are these
actions generated? A delete action is straightforward, since it is generated when
a deletion is received at the warehouse. On the other hand, an insert action may
require issuing a source_evaluate procedure first. As stated earlier, when a query Q
is being answered, updates may change source data and lead to inconsistency. To
overcome this; a set called pending(Q) is kept that stores all those updates that
occur during query processing. After the compensation of Q has terminated, an
insert action for MV can now be generated and added to AL.

Ezample 8 (Strobe). Let UQS be the unanswered query set as applies to the ECA
algorithms. Operation key_delete(R, U;) deletes tuples from relation R whose key
attributes are the same as U;. V(U) is the view expression V with tuple U substi-
tuted for U’s relation. If we have relations ry, ro and rg residing on sources z, y and
z respectively, let view V be defined as V = ry 1 ry i r3. The initial relations are
given by:

AB BC CD
rllﬁI‘Q:_iand r3:374

Initially the materialized view is MV = (). Assume two update at the source: U; =
insert(ra,[2,3]) and Uy = delete(r1,[1,2]). The Strobe algorithm follows the steps:

1. AL = (). Warehouse receives Uy from source y. Query Q1 = r1 > [2,3] >4 73 is
generated. First, Q] = r > [2,3] is sent to source x

21

2. Warehouse receives Al = [1,2,3] from source z. Q? = [1,2,3] > 73 is sent to z
for evaluation

3. Warehouse receives Uy from source z. Us is added to pending(Q1) and key_delete(Mv,

Us) is added to AL. Therefore AL = (key_delete(MV,Us)).

4. Warehouse receives A? = [1,2,3,4] from source z but since pending(Q) is not
empty, the warehouse first applies key_delete(A2, Us). and as a result Ay = (.
Nothing, therefore, is to be added to AL and there are no pending queries. MV
is therefore updated by the warehouse by applying AL = (key_delete(MV, Us)).
The final view state is MV = () and it is correct and strongly consistent.

Strobe in this way, avoids the anomaly that a conventional algorithm would face.
A conventional algorithm fails to apply the deletion since when the delete update
arrives at warehouse, MV is empty and there is no mechanism of tracking pending
updates. The Strobe algorithm provides strong consistency in single-update trans-
action environments.
Transaction-Strobe: Transaction-Strobe (T-Strobe) provides strong consistency
for source-local transactions. All updates performed by one transaction are batched
into a single unit for processing. This also reduces the number of message inter-
change between sources and the warehouse. The following definitions are are true
for T-Strobe algorithms:

— The update list of transaction T is UL(T) and it contains both inserts and
deletions performed by T. The insertion list of T, which is a subset of the
update list is represented by IL(T). whereby IL(T) C UL(T)

— key(U;) represents key attributes of the inserted or deleted tuple U;. U; and U,
are equal when key(U;) = key(U;)

At the source, T-Strobe issues the same actions as Strobe algorithm, however,
the behavior is different at the warehouse. The following warehouse actions take
place in T-Strobe algorithm: An optimization step is carried out initially, where
pairs of insertions and deletions that are removed, in which the same tuple was first
inserted but later removed. Remaining deletions are added to AL. And finally, one
query is generated for all insertions by the warehouse. Compensation is carried out
as before, for those deletions that arrive after the query has been generated.

Ezample 9 (T-Strobe). This simple example shows how, for source-local transac-
tions, Strobe may only achieve convergence where T-Strobe ensures strong consis-
tency. The reason being that Strobe has no mechanism to handle transactions. This
means Strobe will eventually provide a correct view but after going through invalid

intermediate states.
AB

Assume a relation ry: = T If the view definition is V = r; and attribute A is
the key, initially MV = ([1, 2]). If there is one source transaction: T = (delete(ry,
[1,2]), insert(r1, [3, 4])). Strobe algorithm would first add the deletion to AL but
since there are no pending updates, AL will be applied to MV, resulting into MV
= (). This is an incorrect intermediate state, since it is not consistent with r; both
before or after T;. After that the insertion is processed and yields a correct view
MV = ([3, 4]).

For T-Strobe, since it understands local transactions, it will only update MV
when both updates in the transaction have been processed. MV therefore is directly
updated to the correct view MV = ([3, 4]).

Global-Strobe: For global transactions, T-Strobe only achieves weak consis-
tency, while GLobal-Strobe (G-Strobe) guarantees strong consistency. G-Strobe re-
sembles T-Strobe, however, it only updates MV when three conditions have all been
met. Of the three conditions, T-Strobe only requires condition one. Assume TT is
the set of all transaction identifiers after the last update of MV.

22

1. UQS =0
2. If transaction T; in TT depends on another transaction T, T; is also in TT
3. All updates in TT have been received and processed

5 Conclusion

In this paper, the importance of incremental recomputations in both traditional
databases systems and in distributed systems was discussed. In the absence of incre-
mental maintenance mechanisms, materialized views have to be fully re-computed
from scratch, which in most cases is inefficient. We saw different approaches to the
view maintenance problem in both environments, however it is evident that in the
problem space of the view maintenance problem, many gaps still remain that have
not yet been explored. Each of the four dimensions introduced still has unconsidered
points.

Production rules for incremental view maintenance were covered and it was
shown that it is possible to automatically derive production rules to incrementally
maintain a materialized view basing on a user’s view definition in SQL. The full
power of SQL queries can, nevertheless, not yet be exploited.

The concept of self-maintainable views was introduced. A guidance was provided
on how to define views such that they can be maintained without accessing any un-
derlying database. In practice, not all database modifications are self-maintainable.
Insertions in particular are impossible to self-maintain when joins are involved.
Deletions are self-maintainable when attribute keys are kept track of.

View maintenance policies were described. These policies tell us when and how
to maintain the materialized view when the underlying data changes. It was shown
that the decision to apply a certain policy is often a compromise between the speed
of the queries on the one hand, and the speed of the update transactions on the
other.

View maintenance policies also highlighted a fundamental difference between tra-
ditional databases and distributed database systems. In distributed systems, sources
may lack information about the materialized view and, therefore, can not modify
the update transactions so that they can refresh the materialized view immediately.

The fact that in distributed systems materialized views and sources are decou-
pled, means that view maintenance algorithms defined for traditional databases can
not be applied to distributed systems. Algorithms in a distributed system should be
able to handle the distributed view maintenance anomalies resulting from concur-
rent updates that were presented. Compensation approaches are used to overcome
such anomalies. The ECA and Strobe algorithms were described. Furthermore, a
definition for consistency as applied to materialized views in distributed systems
was given.

A newer and more challenging field of application for incremental recomputations
that was not handled in this paper is about supporting materialized data integra-
tion [JD09,Jor13,DHWT08], for example, within Extract-Transform-Load (ETL)
or MapReduce environments. Such environments are not relational based and differ
also in many other aspects from the relational environments we considered in this
paper. However, an initial approach has been made by [Jor13] to transfer incremen-
tal recomputational techniques into the ETL and MapReduce environments.

23

References

[AL80]

[BLLTS6]

[CGL*97]

[CKL*97]

[CWo1]

[DHW08]

[ECLO3]

[GJIMO6]

[GMO5]

[ID0Y]
[Jor13]

[RHIS0]

[WCL91]

Michel E. Adiba and Bruce G. Lindsay. Database snapshots. In Proceedings
of the Sizth International Conference on Very Large Data Bases - Volume 6,
VLDB ’80, pages 86-91. VLDB Endowment, 1980.

Jose A. Blakeley, Per ke Larson, Per-Ake Larson, and Frank Wm. Tompa.
Efficiently updating materialized views. pages 61-71, 1986.

Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal Singh Mumick, and
Howard Trickey. Algorithms for deferred view maintenance. In In SIGMOD,
pages 469-480, 1997.

Latha Colby, Akira Kawaguchi, Daniel F. Lieuwen, Inderpal Singh Mumick,
and Kenneth A. Ross. Supporting multiple view maintenance policies. In IN
THE ACM SIGMOD CONF, pages 405-416, 1997.

Stefano Ceri and Jennifer Widom. Deriving production rules for incremen-
tal view maintenance. In In Proceedings of the Seventeenth International
Conference on Very Large Data Bases, pages 577-589, 1991.

Stefan Dessloch, Mauricio A. Hernidndez, Ryan Wisnesky, Ahmed Radwan,
and Jindan Zhou. Orchid: Integrating schema mapping and etl. In ICDE,
pages 1307-1316, 2008.

H. Engstro, S. Chakravarthy, and B. Lings. Maintenance policy selection in
heterogeneous data warehouse environments: A heuristics-based approach. In
Proceedings of the 6th ACM International Workshop on Data Warehousing
and OLAP, DOLAP ’03, pages 71-78, New York, NY, USA, 2003. ACM.
Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumick. Data integration
using self-maintainable views. In EDBT, pages 140-144, 1996.

Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized
views: Problems, techniques, and applications. [IFEE Data Eng. Bull.,
18(2):3-18, 1995.

Thomas Joérg and Stefan Deflloch. Formalizing etl jobs for incremental load-
ing of data warehouses. In BTW, pages 327-346, 2009.

Thomas Jorg. Incremental Recomputations in Materialized Data Integration.
PhD thesis, 2013.

Daniel J. Rosenkrantz and Harry B. Hunt III. Processing conjunctive pred-
icates and queries. In Proceedings of the Sizth International Conference on
Very Large Data Bases - Volume 6, VLDB ’80, pages 64-72. VLDB Endow-
ment, 1980.

Jennifer Widom, Roberta Jo Cochrane, and Bruce G. Lindsay. Implementing
set-oriented production rules as an extension to starburst. In In Proceedings
of the Seventeenth International Conference on Very Large Data Bases, pages
275-285, 1991.

[ZGMHWO95] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer Widom.

View maintenance in a warehousing environment. In IN PROCEEDINGS
OF SIGMOD, pages 316-327, 1995.

[ZGmJW98] Yue Zhuge, Hector Garcia-molina, Janet, and Janet L. Wiener. Consistency

[ZGMW96]

algorithms for multi-source warehouse view maintenance. Distributed and
Parallel Databases, 6:7-40, 1998.

Yue Zhuge, Hector Garcia-Molina, and Janet L. Wiener. The strobe al-
gorithms for multi-source warehouse consistency. In PDIS, pages 146-157,
1996.

