
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 5
Application Server Middleware

© Prof.Dr.-Ing. Stefan Deßloch

Outline

n  Types of application server middleware
n  tasks

n  TP monitors
n  CORBA
n  Server-side components and EJB
n  Summary

Middleware for Information Systems
2

© Prof.Dr.-Ing. Stefan Deßloch

Types of Application Server Middleware

n  RPC/RMI middleware infrastructure
n  basic development and execution support
n  additional services

n  TP monitor
n  transaction management, TRPC
n  process management
n  broad set of capabilities

n  Object broker (e.g., CORBA)
n  distributed object computing, RMI
n  additional services

n  Object transaction monitor
n  … = TP monitor + object broker
n  most often: TP monitor extended with object-oriented (object broker) interfaces

n  Component Transaction Monitor
n  … = TP monitor + distributed objects + server-side component model

Middleware for Information Systems
3

© Prof.Dr.-Ing. Stefan Deßloch

Middleware Tasks

n  Distributed computing infrastructure (RPC, RMI)
n  Transactional capabilities

n  programming abstractions (demarcation)
n  distributed transaction management

n  Security services
n  authentication, authorization, secure transmission, …

n  Unified access to heterogeneous information sources and application systems
n  Scalable and efficient application processing

n  large number of client applications or end users

n  Reliability, high availability

 Programming model abstractions that allow the developer to focus on
application logic (i.e., ignore infrastructure as much as possible)

Middleware for Information Systems
4

© Prof.Dr.-Ing. Stefan Deßloch

Java RMI

n  Location-transparency
n  Platform-independence
n  Java only
n  Additional drawbacks

n  no standardized RMI format/protocol
n  missing support for important information systems services

n  transactions, security, ...

n  no support for remaining middleware tasks

Middleware for Information Systems
5

© Prof.Dr.-Ing. Stefan Deßloch

TP Monitor

n  Provides functionality to develop, run, manage, and maintain transactional
distributed IS

n  transaction management
n  process management

n  Additional capabilities (beyond TRPC)
n  high number of connected clients/terminals (102 - 104)
n  concurrent execution of functions
n  access shared data

n  most current, consistent, secure
n  high availability

n  short response times
n  fault tolerance

n  flexible load balancing
n  administrative functions

n  installation, management, performance monitoring and tuning

n  One of the oldest form of middleware
n  proven, mature technology

Middleware for Information Systems
6

© Prof.Dr.-Ing. Stefan Deßloch

Scalable and Efficient Application Processing

n  Managing large workloads
n  one process per client is not feasible
n  TP monitor manages server pools

n  groups of processes or threads, pre-
started, waiting for work

n  client requests are dynamically
directed to servers

n  extends to pooling of resource
connections

n  Load balancing
n  distribute work evenly among

members of pool
n  TP monitor can dynamically extend/

shrink size of server pools based on
actual workload

n  management of priorities for
incoming requests

TP-Monitor

…

scheduler

server class

server server server

server class

server server server

…

DBMS

Middleware for Information Systems
7

© Prof.Dr.-Ing. Stefan Deßloch

Basic Components of a TP Monitor

n  Interface
n  programs and terminals

n  Program flow
n  store, load, execute procedures

n  Router
n  maps logical resource operations

to physical resources (e.g.,
DBMS)

n  Communication manager
n  infrastructure for communicating

with resources
n  Transaction manager
n  Wrappers

n  hide heterogeneity of resources
n  Services

n  security, performance
management, high availability,
robustness to failures, …

resource resource

TP services

transaction m
anagem

ent

interface

program flow

router

communication

programs

resources

wrapper wrapper

client application end user

Middleware for Information Systems
8

© Prof.Dr.-Ing. Stefan Deßloch

Transactional Services

n  Need to strictly distinguish TP monitor and TA manager functionality
n  many users/applications don't need a TP monitor: batch applications, ad-hoc query

processing
n  special application systems (e.g., CAD) have their own (terminal) environment
n  but all need transactional support

n  Separation of components for
n  transactional control (TA manager)
n  transaction-oriented scheduling and management of resources (TP monitor)

Middleware for Information Systems
9

© Prof.Dr.-Ing. Stefan Deßloch

CORBA - Introduction

n  CORBA: Common Object Request Broker Architecture
n  Object-oriented, universal middleware platform

n  object bus architecture based on RMI concept
n  language-independent
n  platform-independent

n  OMG
n  industry consortium (founded in 1989, 11 members)
n  today over 1000 members
n  creates specifications (no standard/reference implementations)

n  First CORBA products appeared in the 90's
n  e.g., IONA's Orbix in 1993 (for C and C++)

Middleware for Information Systems
10

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – Reference Model

n  Object Management Architecture (OMA)
n  Interfaces in different categories

n  Application Interfaces
n  Object Services (horizontal)
n  Domain Interfaces (vertical)

n  Telecommunication, Finance, E-Commerce, Medicine, ...

Object Request Broker

Application
Interfaces Domain

Interfaces

Object
Services

Middleware for Information Systems
11

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – Interface Definition Language

n  IDL defines:
n  Types
n  Constants
n  Object-Interfaces (Attributes, Methods and Exceptions)

n  Independent of programming language
n  language-specific IDL bindings and compilers

Client Server

Stub Skeleton

ORB

Java C++ Cobol

IDL

Java C++ Cobol

IDL

Middleware for Information Systems
12

© Prof.Dr.-Ing. Stefan Deßloch

CORBA IDL - Example

Module PizzaService {
interface OrderService {

 void newOrder (in long custNo, out long orderNo);
 void addItem (in long orderNo,
 in long pizzaNo,
 in long count);
 };

interface DeliveryService {
 long delivery(in long custNo);
 };
 };

interface Order {
 readonly attribute long id; // only get-method
 attribute Date deliveryDate; // Date is an IDL interface
 void addItem(in long pizzaId, in long pizzaCount);
 };

Middleware for Information Systems
13

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – Core Components

n  Object References (Interoperable Object References, IOR)
n  Object Request Broker (ORB)
n  Object Adapter
n  Stubs and Skeletons
n  Dynamic Invocation/Skeleton Interface (DII/DSI)

n  Service-specific: Stub, Skeleton
n  Identical for all applications: ORB Interface, DII, DSI

Stub DII DSI ORB
Inter-
face

Object
Adapter

Client ORB Core Server ORB Core

Skeleton ORB
Inter-
face

network

Middleware for Information Systems
14

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – ORB and Object Adapter

n  ORB
n  provides network communication and connection management
n  manages stubs (client-side)
n  maps RMI to object adapter (server side)
n  provides helper functions (e.g., converting object references)

n  Object adapter: Portable Object Adapter (POA)
n  generates object references
n  maps RMI to server objects
n  activates/deactivates/registers server objects
n  may perform multi-threading, …

n  ORB + object adapter = request broker

Middleware for Information Systems
15

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – Static and Dynamic Invocation

n  Static invocation
n  stub and skeleton generated by IDL compiler
n  IDL interface is mapped to specific programming language

n  static type checking (at compile time)

n  Dynamic invocation
n  object interfaces (meta data) can be discovered/selected at run-time using

interface repository
n  generic DII (dynamic invocation interface) operations are used to construct and

perform a request
n  dynamic type checking (at run-time)
n  more flexible, but less efficient than static invocation

Middleware for Information Systems
16

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – “On the wire”

n  Data format:
n  defines encoding of data types
n  defines responsibilities for required conversions
n  Common Data Representation (CDR)

n  Communication protocol
n  defines client/server interactions

n  message format
n  message sequence

n  CORBA 2.0: General Inter-ORB Protocol (GIOP)
n  Internet-Inter-ORB-Protocol (IIOP)

n  maps GIOP to TCP/IP
n  internet as “Backbone-ORB”

n  optional: Environment-Specific Inter-ORB Protocols (ESIOP)
n  example: DCE Common Inter-ORB Protocol (DCE-CIOP)

Middleware for Information Systems
17

© Prof.Dr.-Ing. Stefan Deßloch

CORBA Object Services

n  Goal: extend basic ORB capabilities to provide additional OTM system services
n  Naming, Life Cycle, Events, Persistence, Concurrency Control, Transaction,

Relationship, Externalization, Query, Licensing, Properties, Time, Security, Trading,
Collections

n  Service usage
n  functionality defined using CORBA-IDL
n  CORBA object invokes method of service object

n  Example: NameService

n  CORBA object implements interface provided as part of a service (may not need to
provide any code)

n  Example: TransactionalObject

Middleware for Information Systems
18

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – Object Transaction Service

n  Based on X/OPEN DTP model and capabilities
n  (flat) ACID transactions

n  optional: nested transactions

n  TAs may span across ORBs
n  X/OPEN DTP

n  interoperability with "procedural" TA-Managers

n  Roles and interfaces
n  transactional client

n  demarcation (begin, commit, rollback)
n  uses OTS Interface Current

n  transactional server
n  participates in TA, does not manage any recoverable resources
n  "implements" OTS Interface TransactionalObject

n  only serves as a "flag" to have the ORB propagate the transaction context

n  optionally uses OTS Interface Current

n  recoverable server
n  participates in TA, manages recoverable resources
n  implements OTS Interface TransactionalObject and Resource, uses Current and Coordinator

n  participates in 2PC

Middleware for Information Systems
19

© Prof.Dr.-Ing. Stefan Deßloch

OTS – Elements and Interaction

Transactional
Client

Transactional
Server

Recoverable
Server

 ORB

Transaction Service
(OTS)

transactional
object

recoverable
object resource

begin, commit,
rollback

may force rollback register resources for
commit, rollback

2PC

RMI RMI

transaction
context

Middleware for Information Systems
20

© Prof.Dr.-Ing. Stefan Deßloch

Server-side Component Models

n  Problems with CORBA (up to 2.0)
n  complex, non-standard programming of server objects

n  service usage (transactions, security, ...)
n  behavior fixed at development time

n  resource management, load balancing
n  proprietary programming model and interfaces, is supported by object adapter

n  Standardized Server-side component model
n  defines a set of "contracts" between component and component server for

developing and packaging the component
n  developer focuses on application logic

n  service use can be defined at deployment time by configuring the application component
n  code generation as part of deployment step

n  resource management, load balancing realized by application server
n  component only has to fulfill certain implementation restrictions

n  server components are portable

Middleware for Information Systems
21

© Prof.Dr.-Ing. Stefan Deßloch

Enterprise JavaBeans (EJBs)

n  Standard server-side components in Java
n  encapsulates application logic

n  business object components
n  can be combined with presentation logic component models

n  servlets, JSPs

n  EJB container
n  run-time environment for EJB

n  provides services and execution context

n  Bean-container-contract
n  EJB implements call-back methods

n  Interoperability with CORBA
n  invocation: RMI/IIOP
n  services

EJB-Server

EJB-Container

EJB

EJB

EJB

Client
file
system

(legacy)
application

DB

Middleware for Information Systems
22

© Prof.Dr.-Ing. Stefan Deßloch

EJB – Types Of Objects

n  Session Object
n  realizes business activity or process
n  often remotely accessible, “course-grained”
n  relatively short-lived (transient)

n  Entity Object (see next chapter)
n  represent persistent, transactional business object
n  usually locally accessible, “fine-grained”
n  can be long-lived

n  Message-driven Object
n  asynchronous, message-oriented invocation (see subsequent chapter)
n  facilitates integration with existing applications

Middleware for Information Systems
23

© Prof.Dr.-Ing. Stefan Deßloch

EJB - Concepts

n  Enterprise Bean (EB) consists of (ejb-jar file):
n  class implementing business logic (Bean, e.g., CartBean)
n  bean business interface, defining methods (e.g., Cart)

n  remote and/or local access

n  deployment descriptor/meta-data

n  Client interacts with bean using business interface object
n  generated at deployment time
n  contains infrastructure code (transaction & security support, ...)
n  client obtains reference to interface object using JNDI (or dependency injection)

EJB Container

Client Cart CartBean

Middleware for Information Systems
24

© Prof.Dr.-Ing. Stefan Deßloch

Session Beans

n  Realization of session-oriented activities and processes
n  isolates client from entity details
n  reduces communication between client and server components

n  Session beans are transient
n  bean instance exists (logically) only for duration of a "session”

n  stateless session bean
n  state available only for single method invocation

n  stateful session bean
n  state is preserved across method invocation

n  session context

n  association of bean instance with client necessary

n  singleton session bean
n  a single bean instance is shared across applications with concurrent access support

n  not persistent, but can manipulate persistent data
n  example: use JDBC, SQLJ to access RDBMS

Middleware for Information Systems
25

© Prof.Dr.-Ing. Stefan Deßloch

Example

n  look up Cart interface
@Resource SessionContext ctx; //use dependency injection to obtain JNDI context
Cart cart = (Cart) ctx.lookup(“cart”); //perform lookup, autom. creates EB object

n  call method to initialize bean
cart.startShopping(“John”, “7506”);

n  invoke bean methods
cart.addItem(66);
cart.addItem(22);
...

n  remove session bean
cart.close() // the “close” method was annotated/declared as a “RemoveMethod”

Middleware for Information Systems
26

© Prof.Dr.-Ing. Stefan Deßloch

Deployment

n  EB is portable, server-independent
n  Component properties

n  mapping of bean attributes to DB structures
n  configuration regarding transactional behavior
n  configuration of security aspects

n  Specified using
n  source code annotations (specified at development time)
n  an XML deployment descriptor (customization at deployment time)

n  What happens during deployment
n  generation of glue-code based on component properties
n  make classes and interfaces known
n  setting environment/context variables

Middleware for Information Systems
27

© Prof.Dr.-Ing. Stefan Deßloch

Demarcation of Transactions

RM

obj obj

"RM"

obj

RM RM

obj

obj obj

method invocation

transactional object

transaction

obj

obj

Middleware for Information Systems
28

© Prof.Dr.-Ing. Stefan Deßloch

Transactional Object Behavior

obj

RM RM RM

obj

obj obj

obj obj obj obj

"RM"

begin … commit

no current TA-context:
begin … commit

no current TA-context:
error! current. TA: suspend

new TA: begin … commit
old TA: resume

propagate existing
TA-context

don't propagate
existing TA-context

Middleware for Information Systems
29

© Prof.Dr.-Ing. Stefan Deßloch

Transaction Management Approaches

n  Explicit (programmatic) management
n  method interacts with TA manager using demarcation API

n  begin, commit, rollback
n  suspend, resume

n  management of transaction context
n  direct: passed along as explicit method parameter
n  indirect (preferred!): a "current" TA context is propagated automatically

n  Implicit (declarative) management
n  separate specification of transactional properties

n  can be realized/modified independent of application logic
n  may be deferred to deployment phase

n  supported through container services

n  Combination of both approaches in distributed IS

Middleware for Information Systems
30

© Prof.Dr.-Ing. Stefan Deßloch

Explicit Demarcation with JTA

n  Can be used by EJB Session Beans and EJB client, web components
n  EJB: in descriptor transaction-type = Bean
n  not supported for EntityBeans

n  Demarcation uses JTA UserTransaction
n  begin() – creates new TA, associated with current thread
n  commit() – ends TA, current thread no longer associated with a TA
n  rollback() – aborts TA
n  setRollbackOnly() – marks TA for later rollback

n  beans with implict TA-mgmnt can use method on EJBContext

n  setTransactionTimeout(int seconds) – sets timeout limit for TA
n  getStatus() – returns TA status information

n  active, marked rollback, no transaction, ...

n  Stateless SessionBeans
n  begin() and commit() have to be issued in the same method

n  Stateful SessionBeans
n  commit() and begin() can be issued in different methods
n  TA can remain active across method invocations of the same bean

Middleware for Information Systems
31

© Prof.Dr.-Ing. Stefan Deßloch

Implicit (Declarative) Demarcation in EJB

obj

RM RM RM

obj

obj obj

obj obj obj obj

"RM"

begin … commit

Descriptor:
Required

Descriptor:
Mandatory Descriptor:

RequiresNew

Descriptor:
Supports

Descriptor:
NotSupported

Middleware for Information Systems
32

© Prof.Dr.-Ing. Stefan Deßloch

EJBs – Transactional Properties

n  Transaction attributes for methods specified in deployment descriptor:

TA-Attribute Client-TA TA in method

Not Supported none
T1

none
none

Supports none
T1

none
T1

Required none
T1

T2
T1

RequiresNew none
T1

T2
T2

Mandatory none
T1

error!
T1

Never none
T1

none
error

recommended
for
CMP
entity beans

Middleware for Information Systems
33

© Prof.Dr.-Ing. Stefan Deßloch

Transactions in Java EE

n  Application component may use Java Transaction APIs (JTA)
n  UserTransaction object provided via JNDI (or EJB-context)

RM RM TM RM

Java application
or application server

DBk

DBi

MQ Server

javax.transaction.
xa.XAResource

JDBC
JMS

javax.transaction.
TransactionManager

Middleware for Information Systems
34

© Prof.Dr.-Ing. Stefan Deßloch

JDBC - Distributed Transaction Support

n  Requires interaction with a transaction manager
n  X/Open DTP, Java Transaction Service (JTS)

n  Demarcation of transaction boundaries
n  Java Transaction API (JTA)

n  UserTransaction Object

n  NOT using methods of Connection interface

n  JDBC defines additional interfaces to be supported by a driver implementation
to interact with transaction manager

n  XADataSource, XAConnection, ...

n  DataSource interface helps to make distributed transaction processing
transparent to the application

Middleware for Information Systems
35

© Prof.Dr.-Ing. Stefan Deßloch

Connection Pooling

n  Improves performance, scalability
n  establishing a connection is expensive

n  communication/storage resources
n  authentication, creation of security context

n  Server-side application components
n  DB access often in the context of few (shared)

user ids
n  connection is often held only for short duration

(i.e., short processing step)

n  Reuse of physical DB connection desirable
n  open -> "get connection from pool"
n  close -> "return connection to pool"

n  Connection pooling can be "hidden" by
DataSource, Connection interfaces

n  transparent to the application

source: JDBC 3.0

Middleware for Information Systems
36

© Prof.Dr.-Ing. Stefan Deßloch

Distributed Transaction Processing with JDBC

source: JDBC 3.0

Middleware for Information Systems
37

© Prof.Dr.-Ing. Stefan Deßloch

JTS Architecture

(EJB-)
application

server

resource
adapter

resource
manager

JTS TM

JTS or OTS
transaction

manager (TM)
JTA

Java-
Mapping

of
CORBA

javax.transaction.
TransactionManager

javax.transaction.
xa.XAResource

Org.com.
CosTransactions

Middleware for Information Systems
38

© Prof.Dr.-Ing. Stefan Deßloch

EJB Resource Management

n  Traditional task of a (component) TP monitor
n  pooling of resources, load management and balancing

n  EJB specification
n  Instance Pooling and Instance Swapping

n  EJB server manages (small) number of Enterprise Beans
n  reuse, dynamic selection for processing incoming requests

n  made possible by 'indirect' bean access via EJB object
n  usually only applicable for stateless session beans and for entity beans

n  Passivation and Activation
n  bean state can be stored separately from bean (passivation)

n  allows freeing up resources (storage), if bean is not used for a while (e.g., end user think time)
n  if needed, bean can be reactivated (activation)
n  uses Java Serialization
n  can also be used for stateful session beans

n  "Disallowed" for EJB developers:
n  creating threads, using synchronization primitives
n  I/O, GUI operation
n  network communication
n  JNI

Middleware for Information Systems
39

© Prof.Dr.-Ing. Stefan Deßloch

CORBA Component Model

n  Motivated by success of EJB component model
n  New CORBA Component Model (CCM) as middle-tier infrastructure

n  adds successful EJB concepts
n  separates implementation from deployment
n  provides container capabilities (transactions, persistence, security, events)
n  interoperability with EJBs

n  Advantage: CORBA components can be implemented in various programming
languages

Middleware for Information Systems
40

© Prof.Dr.-Ing. Stefan Deßloch

Summary

n  Distributed computing infrastructure and transactional capabilities are core
application server middleware features

n  Different types of application server middleware
n  TP monitors, object brokers, object transaction monitors, component transaction

monitors

n  Additional tasks addressed by middleware
n  security, uniform access to heterogeneous resources, scalable and efficient

application processing, reliability, high availability, …
n  server-side component model

n  high-level abstractions
n  portability of server components
n  deployment phase

n  Broad variance of support for these tasks
n  Convergence of different types of middleware

Middleware for Information Systems
41

