
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 14 - Data Replication and 
Materialized Integration



© Prof.Dr.-Ing. Stefan Deßloch

Motivation
n Replication: controlled redundancy of data to

n increase availability
n improve performance (query response time)

n Replication is a common concept in
n (homogeneous) distributed DBMS
n centralized DBMS in the form of materialized views
n mobile DBMS environments
n data/information integration middleware

n Materialized integration: data warehouses
n replication of data from multiple sources into a central data warehouse

n avoid performance problems of virtual integration solutions
n diverts query load away from operational data sources
n enables complex and powerful data analysis (business intelligence)

n major problem
n potential for stale (out-of-date) data

Middleware for Heterogeneous & 
Distributed Information Systems2



© Prof.Dr.-Ing. Stefan Deßloch

Challenges
n Integration of replication with transaction processing
n Enforcing consistency of replica in the presence of updates

n goal: one-copy serializability
Execution has the same effect as a serial execution on a one-copy database!

n problem example:
H = r1[xA]w1[xA] w1[xB]c1 r2[xB]w2[xB]c2 r3[xA]w3[xA]w3[xB]c3

n here: T2 does not write XA before it is read by T3!
n each transaction that updates X should update all copies of X

n not always possible (replica may be unavailable)
n each transaction that reads X should read a copy of X that was written by the most 

recent committed transaction that updated any copy of X
n requires careful synchronization

Middleware for Heterogeneous & 
Distributed Information Systems3



© Prof.Dr.-Ing. Stefan Deßloch

Eager (Synchronous) Replication
n Transaction synchronizes with copies 

of replicated elements before commit
n guarantees one-copy serializable 

execution
n locking

n avoids inconsistencies
n Potential problems

n update overhead
n reduced update performance (2PC)
n increased transaction response time

n deadlocks
n lack of scalability
n cannot be used if nodes are 

disconnected (e.g., mobile databases) 
or unavailable

Middleware for Heterogeneous & 
Distributed Information Systems4

TA ER1 ER2

writeA
writeA

writeA
writeB

writeB
writeB

writeC
writeC

writeC

commit (commit) (commit)



© Prof.Dr.-Ing. Stefan Deßloch

Lazy (Asynchronous) Replication
n Changes introduced at one site are propagated 

(as separate transactions) to other sites only 
after commit
n updates are applied in the same order at all replicas

n Advantages
n minimal update overhead (i.e., improved 

response times over eager replication)
n works also if sites are not connected (e.g., mobile 

environments) or temporarily unavailable
n Potential problems

n stale (out-of-date) data
n update of a completed transaction is "in-transit", i.e., 

has not been reflected in all replicas
n new transaction operating on a replica sees an old version of the data

n conflicting updates on different replicas can cause inconsistencies between the 
copies

ð potential for "system delusion" (Gray, Reuter)
n inconsistent database, with no obvious way to repair it

n need to detect inconsistencies and reconcile conflicting transactions
n rollback of (committed) transactions not possible

TA LR1 LR2

writeA
writeB
writeC
commit

writeA
writeB
writeC
commit

writeA
writeB
writeC
commit

Middleware for Heterogeneous & 
Distributed Information Systems5



© Prof.Dr.-Ing. Stefan Deßloch

Single-Master Primary-Copy Replication
n Designate one replica as the primary copy

n update transactions are only permitted on the primary copy
n other nodes request the master node to perform an update (e.g., using RPC)

n updates on the primary are propagated other replicas (i.e., secondaries) and 
applied in the order in which they executed at the primary

n both eager and (most often) lazy replication can be used for that
n avoids replication conflicts

n Applications
n database mirroring (hot backup for high availability)
n queryable copies of (parts of) a database (e.g., for decision support)

n Not suitable for mobile/disconnected environments
n because update capability depending on connection to primary

Middleware for Heterogeneous & 
Distributed Information Systems6



© Prof.Dr.-Ing. Stefan Deßloch

Failures and Recovery
n Secondary fails

n recovers and catches up processing stream of updates from the primary
n may get a fresh DB copy, if downtime is too long

n Primary fails
n Alternative 1: disallow updates until primary recovers

n may be the only option, e.g. for queryable copies of DBs
n Alternative 2 (for availability): a secondary must take over as primary

n only one secondary: watchdog process may detect (type of) failure and direct the 
secondary to become the new primary, if needed

n multiple secondaries: majority and quorum consensus algorithms for determining the 
(new) primary

n Does the new primary have the latest state?
n cannot be guaranteed with lazy replication
n tradeoff between performance and reliability

Middleware for Heterogeneous & 
Distributed Information Systems7



© Prof.Dr.-Ing. Stefan Deßloch

Multi-Master Replication
n Group Ownership

n "update anywhere" model
n any node/site with a replica can update it

n may cause conflicts, need for reconciliation
n Two nodes may concurrently update replicas of the same object

n "race" each other to propagate the update to all the other nodes
n potential for lost updates

n Detecting conflicts
n usually based on timestamps (or before-image data)

n object carries timestamp of most recent update
n replica update carries new value and old object timestamp

n each node compares old object timestamp of incoming replica updates with its own 
object timestamp

n if timestamps are the same, then the update is accepted
n if not, then the incoming update transaction is rejected, submitted for reconciliation

n rollback of transaction is not possible anymore, has been committed at the originating site
n wait situations in eager replication ↔ reconciliation in lazy replication

Middleware for Heterogeneous & 
Distributed Information Systems8



© Prof.Dr.-Ing. Stefan Deßloch

Reconciliation
n Approaches

n automatically, based on rules
n site, time or value priority, merging of updates, …

n manually
n conflict situations are reported in a conflicts table or queue

n Non-transactional replication schemes
n abandon serializability for convergence

n all nodes converge to the same replicated state, which may not correspond to a serial 
transaction execution

n tolerate lost updates

Middleware for Heterogeneous & 
Distributed Information Systems9



© Prof.Dr.-Ing. Stefan Deßloch

Alternatives for Conflict Detection, Avoidance
n Semantic synchronization

n permit commutative transactions
n requires capturing update semantics at a logical level
n performing the transaction update may yield different results, but still be semantically 

correct
n example: processing checks at a bank

n provide acceptance criteria for detecting conflicts
n incoming replica transaction updates are tentatively accepted and performed, but need to 

pass the acceptance test
n replaces/augments the generic conflict detection mechanisms

n Avoid conflicts by implementing update strategies in the application
n fragmentation by key

n a site can update only rows whose keys are in a fixed range
n no range overlaps

n fragmentation by time
n disjoint "time windows" for each site to perform updates

Middleware for Heterogeneous & 
Distributed Information Systems10



© Prof.Dr.-Ing. Stefan Deßloch

Replication Middleware
n Source table data is replicated to a target table
n Scenarios and uses

n data distribution
n data from one source table is replicated to more than one (read-only) target table

n data consolidation/integration
n data from more than one source table is replicated to a single target table (union view)

n bidirectional replication allows updates on target tables to be replicated back to the 
source table

n master/slave replication: all updates flow back to a designated master, are then 
distributed to other targets

n peer-to-peer replication: each location exchanges data with all other locations
n combination of the above

n Multi-tier replication
n introduction of staging area(s)

n changes are copied to another system
n then copied from staging area to multiple targets

n minimizes impact on source systems
n Lazy replication techniques are widely used

Middleware for Heterogeneous & 
Distributed Information Systems11



© Prof.Dr.-Ing. Stefan Deßloch

Replication methods
n Target table refresh

n at intervals, target table is replaced by a fresh copy of the source table
n no requirement to capture individual changes
n only makes sense if 

n uni-directional replication is used (i.e., updates only occur on the source table)
n target table is small or replication occurs infrequently

n Change-capture replication
n committed changes to source table are captured and replicated to the target table
n replication activity

n continuous (near-real-time)
n interval-based 

n e.g., during off-peak hours
n triggered by DB-events
n one-time snapshot

n need to compare snapshots of 
tables to determine the updates

committed
change
datacapture

apply

update

Middleware for Heterogeneous & 
Distributed Information Systems12



© Prof.Dr.-Ing. Stefan Deßloch

Capturing Changes
n Source table registration to define

n which parts of the table changes should be captured
n when replication should occur

n Capture logic
n responsible for detecting the changes to the source table
n make committed change data available to the apply logic
n realization approaches

n capture program analyzes the database log files, or
n use database triggers

n Committed Change Data
n needs to (at least) include

n type of change (insert, update, delete)
n new values of updated data items, plus data item identifier (keys)
n (optional) before-image information

n can be provided using
n (relational) staging table at the source location

n each change is reflected as a row in the staging table
n message-oriented middleware

n changes are provided as message on a queue

Middleware for Heterogeneous & 
Distributed Information Systems13



© Prof.Dr.-Ing. Stefan Deßloch

Applying Changes
n Apply logic is responsible for

n initializing target table from source table
n applying captured changes to the target table

n preserve order of dependent transactions
n Needs access to

n the captured changes stored in staging tables or change message queues
n the target table
n (the source table)

n Enhanced capabilities
n filtering, joins, aggregation, transformation of data for the target

Middleware for Heterogeneous & 
Distributed Information Systems14



© Prof.Dr.-Ing. Stefan Deßloch

Data Warehousing
n Main goal: materialized integration of data from numerous heterogeneous 

sources to enable powerful strategic data analysis
n OLAP – online analytical processing
n data mining
n often provided through (application-specific) data marts

n data derived from a data warehouse through pre-aggregation 
n usually employ materialized views

n High-level architecture

data source 1

data source n

: Data
Warehouse

data mart 

data mart 

:

Middleware for Heterogeneous & 
Distributed Information Systems15



© Prof.Dr.-Ing. Stefan Deßloch

Multidimensional View of OLAP Data
n Facts

n central relation or collection of data in an OLAP application
n represents events or objects of interest

n e.g., a sales event, with information about the product sold, the store, the sales date and 
price

n Dimensions
n objects can often be thought of as arranged in a multi-dimensional space, or cube

n e.g., sales events have store, product, and time period dimensions
n each point is a single sales event, dimensions represent properties of the sale

n hierarchical nature of dimensions
n time: year, quarter, month, week, day
n store: country, state, region, city

product

store

period
Middleware for Heterogeneous & 
Distributed Information Systems16



© Prof.Dr.-Ing. Stefan Deßloch

(Relational) OLAP Schema
n Typically uses a Star structure

n Dimension tables (linked to fact table) tend to be small 
n Fact table tends to be huge
n Measures (dependent attributes)

n Snowflake schema
n "normalized" dimensions
n multiple tables to avoid

redundancy
n requires additional

joins for OLAP queries
n OLAP queries usually

n GROUP BY the
dimensions

n compute
aggregate values
of measures

period_desc
description
Per_year
Per_quarter
Per_month
Per_day

Period 
dimension table

dimensions

measures

store_id
product_id
period_desc
dollars
units
price
sales_date

Detailed_Sales
fact table

store_id
name
city
region
sales_mgr

Store 
dimension table

product_id
brand
size
producer
caselot

Product 
dimension table

Middleware for Heterogeneous & 
Distributed Information Systems17



© Prof.Dr.-Ing. Stefan Deßloch

Data Warehousing Architecture

data source 1

data source n

: main data
warehouse

data mart 

data mart 

:

Monitor

Extract Transform Load

staging area

Data Warehouse
Manager

metadata
repository

data flow
control flow

Analysis – Reporting - Mining
Tools

Middleware for Heterogeneous & 
Distributed Information Systems18



© Prof.Dr.-Ing. Stefan Deßloch

Data Warehouse Manager
n Central component of the architecture
n Responsible for controlling and supervising the overall process

n initiate data preparation, loading
n implement error recovery routines
n manage ETL scripts or process descriptions
n schedule and control analysis actions

n Directs data warehouse refresh
n full load vs. incremental load
n periodic (e.g., every night, weekend), driven by source updates (e.g., after n 

changes), or on request
n Utilizes metadata repository
n Monitors the overall DW environment

Middleware for Heterogeneous & 
Distributed Information Systems19



© Prof.Dr.-Ing. Stefan Deßloch

Data Preparation Components
n Data preparation steps (ETL) are conducted in a staging area

n Monitor discovers and reports changes in data sources
n e.g., replication-based (staging tables may be directly used by extractors)

n Extractors select and transport data from data sources into the staging area
n DBMS or file system for managing the staging area

n Transformers perform standardization and integration of data
n responsible for "implementing" an integrated schema
n integrated data requires data quality! (see next chapter)

n data migration, data cleaning
n entity identification, duplicate elimination

n may happen SQL-based or based on external data processing operators
n Loaders insert the data from the staging area into the main warehouse

n usually employ bulk load utilities of DBMS for performance reasons

Middleware for Heterogeneous & 
Distributed Information Systems20



© Prof.Dr.-Ing. Stefan Deßloch

Monitoring and Change Data Capture
n Approaches

n log-based
n DBMS writes information about updates into its transaction log
n Logs as analyzed to extract the change data

n trigger-based
n DB triggers (user-defined or internal) are used to gather change data

n using replication middleware
n may again use the approaches above

n audit columns (application-based)
n application records information about changes in an additional audit column per table
n timestamp-based

n intermediate changes may be lost
n snapshot differentials

n requires a full snapshot taken at previous extraction step
n compares current state of data source with the snapshot
n expensive, but may be the only option for legacy data sources

n Some approaches have limitations
n example: audit columns don’t support deletion, don’t distinguish update and insert

Middleware for Heterogeneous & 
Distributed Information Systems21



© Prof.Dr.-Ing. Stefan Deßloch

Transformation
n Typical transformation operations

n transformation into (de-)normalized warehouse schema
n generation of global identifiers (surrogate keys)

n keys from original sources may carry semantic information, may not be globally unique
n data type conversion
n data encoding (adjustments)

n e.g., California à CA
n standardization of character-based representations

n e.g., <first name> <last name> (instead of <last name>, <first name>)
n date/time, unit of measure standardization
n combination/separation of attribute value(s)
n derived values
n aggregation

n Transformation Languages
n (E)SQL
n product-specific operators in data flow graphs

Middleware for Heterogeneous & 
Distributed Information Systems22



© Prof.Dr.-Ing. Stefan Deßloch

Sample ETL Processes (IBM DataStage)

Middleware for Heterogeneous & 
Distributed Information Systems23



© Prof.Dr.-Ing. Stefan Deßloch

Summary
n Replication middleware 

n usages
n data distribution and consolidation
n improve performance, availability
n materialized information integration

n architecture
n capture and apply
n committed change data

n change propagation and ownership 
strategies

n eager vs. lazy
n group vs. master

n conflict detection and reconciliation 
approaches are required for lazy group 
replication!

n Data Warehousing
n materialized integration approach

n avoids problems and restrictions of 
virtual integration architectures

n integrated schema for mult-dimensional 
data analysis, OLAP

n facts, dimensions, (hyper-)cubes
n star and snowflake schema

n architectures
n central role of data warehouse manager
n extract/transform/load (ETL) for data 

preparation
n transformation implements schema and 

data integration logic
n data quality requirements

n potential problem: stale data
n requires real-time data warehousing

Middleware for Heterogeneous & 
Distributed Information Systems24


