Prof. Dr.-Ing. Stefan Deßloch AG Heterogene Informationssysteme Geb. 36, Raum 329 Tel. 0631/205 3275 dessloch@informatik.uni-kl.de

Chapter 14 - Data Replication and Materialized Integration

Motivation

- Replication: controlled redundancy of data to
 - increase availability
 - improve performance (query response time)
- Replication is a common concept in
 - (homogeneous) distributed DBMS
 - centralized DBMS in the form of materialized views
 - mobile DBMS environments
 - data/information integration middleware
- Materialized integration: data warehouses
 - replication of data from multiple sources into a central data warehouse
 - avoid performance problems of virtual integration solutions
 - diverts query load away from operational data sources
 - enables complex and powerful data analysis (business intelligence)
 - major problem
 - potential for stale (out-of-date) data

Challenges

- Integration of replication with transaction processing
- Enforcing consistency of replica in the presence of updates
 - goal: one-copy serializability Execution has the same effect as a serial execution on a one-copy database!
 - problem example:
 - $H = r_1[x_A]w_1[x_A]w_1[x_B]c_1 r_2[x_B]w_2[x_B]c_2 r_3[x_A]w_3[x_A]w_3[x_B]c_3$
 - here: T_2 does not write X_A before it is read by T_3 !
 - each transaction that updates X should update all copies of X
 - not always possible (replica may be unavailable)
 - each transaction that reads X should read a copy of X that was written by the most recent committed transaction that updated any copy of X
 - requires careful synchronization

Eager (Synchronous) Replication

- Transaction synchronizes with copies of replicated elements before commit
 - guarantees one-copy serializable execution
 - locking
 - avoids inconsistencies
- Potential problems
 - update overhead
 - reduced update performance (2PC)
 - increased transaction response time
 - deadlocks
 - lack of scalability
 - cannot be used if nodes are disconnected (e.g., mobile databases) or unavailable

Lazy (Asynchronous) Replication

- Changes introduced at one site are propagated (as separate transactions) to other sites only after commit
 - updates are applied in the same order at all replicas
- Advantages
 - minimal update overhead (i.e., improved response times over eager replication)
 - works also if sites are not connected (e.g., mobile environments) or temporarily unavailable
- Potential problems
 - stale (out-of-date) data
 - update of a completed transaction is "in-transit", i.e., has not been reflected in all replicas
 - new transaction operating on a replica sees an old version of the data
 - conflicting updates on different replicas can cause inconsistencies between the copies
 - ⇒ potential for "system delusion" (Gray, Reuter)
 - inconsistent database, with no obvious way to repair it
 - need to detect inconsistencies and reconcile conflicting transactions
 - rollback of (committed) transactions not possible

Single-Master Primary-Copy Replication

- Designate one replica as the primary copy
 - update transactions are only permitted on the primary copy
 - other nodes request the master node to perform an update (e.g., using RPC)
 - updates on the primary are propagated other replicas (i.e., secondaries) and applied in the order in which they executed at the primary
 - both eager and (most often) lazy replication can be used for that
 - avoids replication conflicts
- Applications
 - database mirroring (hot backup for high availability)
 - queryable copies of (parts of) a database (e.g., for decision support)
- Not suitable for mobile/disconnected environments
 - because update capability depending on connection to primary

Failures and Recovery

- Secondary fails
 - recovers and catches up processing stream of updates from the primary
 - may get a fresh DB copy, if downtime is too long
- Primary fails
 - Alternative 1: disallow updates until primary recovers
 - may be the only option, e.g. for queryable copies of DBs
 - Alternative 2 (for availability): a secondary must take over as primary
 - only one secondary: watchdog process may detect (type of) failure and direct the secondary to become the new primary, if needed
 - multiple secondaries: majority and quorum consensus algorithms for determining the (new) primary
- Does the new primary have the latest state?
 - cannot be guaranteed with lazy replication
 - tradeoff between performance and reliability

Multi-Master Replication

- Group Ownership
 - "update anywhere" model
 - any node/site with a replica can update it
 - may cause conflicts, need for reconciliation
- Two nodes may concurrently update replicas of the same object
 - "race" each other to propagate the update to all the other nodes
 - potential for lost updates
- Detecting conflicts
 - usually based on timestamps (or before-image data)
 - object carries timestamp of most recent update
 - replica update carries new value and old object timestamp
 - each node compares old object timestamp of incoming replica updates with its own object timestamp
 - if timestamps are the same, then the update is accepted
 - if not, then the incoming update transaction is rejected, submitted for reconciliation
 - rollback of transaction is not possible anymore, has been committed at the originating site
 - wait situations in eager replication \leftrightarrow reconciliation in lazy replication

Reconciliation

- Approaches
 - automatically, based on rules
 - site, time or value priority, merging of updates, ...
 - manually
 - conflict situations are reported in a conflicts table or queue
- Non-transactional replication schemes
 - abandon serializability for convergence
 - all nodes converge to the same replicated state, which may not correspond to a serial transaction execution
 - tolerate lost updates

Alternatives for Conflict Detection, Avoidance

- Semantic synchronization
 - permit commutative transactions
 - requires capturing update semantics at a logical level
 - performing the transaction update may yield different results, but still be semantically correct
 - example: processing checks at a bank
 - provide acceptance criteria for detecting conflicts
 - incoming replica transaction updates are tentatively accepted and performed, but need to pass the acceptance test
 - replaces/augments the generic conflict detection mechanisms
- Avoid conflicts by implementing update strategies in the application
 - fragmentation by key
 - a site can update only rows whose keys are in a fixed range
 - no range overlaps
 - fragmentation by time
 - disjoint "time windows" for each site to perform updates

Replication Middleware

- Source table data is replicated to a target table
- Scenarios and uses
 - data distribution
 - data from one source table is replicated to more than one (read-only) target table
 - data consolidation/integration
 - data from more than one source table is replicated to a single target table (union view)
 - bidirectional replication allows updates on target tables to be replicated back to the source table
 - master/slave replication: all updates flow back to a designated master, are then distributed to other targets
 - peer-to-peer replication: each location exchanges data with all other locations
 - combination of the above
- Multi-tier replication
 - introduction of staging area(s)
 - changes are copied to another system
 - then copied from staging area to multiple targets
 - minimizes impact on source systems
- Lazy replication techniques are widely used

Replication methods

- Target table refresh
 - at intervals, target table is replaced by a fresh copy of the source table
 - no requirement to capture individual changes
 - only makes sense if
 - uni-directional replication is used (i.e., updates only occur on the source table)
 - target table is small or replication occurs infrequently
- Change-capture replication
 - committed changes to source table are captured and replicated to the target table
 - replication activity
 - continuous (near-real-time)
 - interval-based
 - e.g., during off-peak hours
 - triggered by DB-events
 - one-time snapshot
 - need to compare snapshots of tables to determine the updates

Capturing Changes

- Source table registration to define
 - which parts of the table changes should be captured
 - when replication should occur
- Capture logic
 - responsible for detecting the changes to the source table
 - make committed change data available to the apply logic
 - realization approaches
 - capture program analyzes the database log files, or
 - use database triggers
- Committed Change Data
 - needs to (at least) include
 - type of change (insert, update, delete)
 - new values of updated data items, plus data item identifier (keys)
 - (optional) before-image information
 - can be provided using
 - (relational) staging table at the source location
 - each change is reflected as a row in the staging table
 - message-oriented middleware
 - changes are provided as message on a queue

Applying Changes

- Apply logic is responsible for
 - initializing target table from source table
 - applying captured changes to the target table
 - preserve order of dependent transactions
- Needs access to
 - the captured changes stored in staging tables or change message queues
 - the target table
 - (the source table)
- Enhanced capabilities
 - filtering, joins, aggregation, transformation of data for the target

Data Warehousing

- Main goal: materialized integration of data from numerous heterogeneous sources to enable powerful strategic data analysis
 - OLAP online analytical processing
 - data mining
 - often provided through (application-specific) data marts
 - data derived from a data warehouse through pre-aggregation
 - usually employ materialized views
- High-level architecture

Multidimensional View of OLAP Data

- Facts
 - central relation or collection of data in an OLAP application
 - represents events or objects of interest
 - e.g., a sales event, with information about the product sold, the store, the sales date and price
- Dimensions
 - objects can often be thought of as arranged in a multi-dimensional space, or **cube**
 - e.g., sales events have store, product, and time period dimensions
 - each point is a single sales event, dimensions represent properties of the sale
 - hierarchical nature of dimensions
 - time: year, quarter, month, week, day
 - store: country, state, region, city

(Relational) OLAP Schema

- Typically uses a Star structure
 - Dimension tables (linked to fact table) tend to be small
 - Fact table tends to be huge
 - Measures (dependent attributes)
- Snowflake schema
 - "normalized" dimensions
 - multiple tables to avoid redundancy
 - requires additional joins for OLAP queries
- OLAP queries usually
 - GROUP BY the dimensions
 - compute aggregate values of measures

Data Warehousing Architecture

data flow
◄---- ★ control flow

Data Warehouse Manager

- Central component of the architecture
- Responsible for controlling and supervising the overall process
 - initiate data preparation, loading
 - implement error recovery routines
 - manage ETL scripts or process descriptions
 - schedule and control analysis actions
- Directs data warehouse refresh
 - full load vs. incremental load
 - periodic (e.g., every night, weekend), driven by source updates (e.g., after n changes), or on request
- Utilizes metadata repository
- Monitors the overall DW environment

Data Preparation Components

- Data preparation steps (ETL) are conducted in a staging area
 - Monitor discovers and reports changes in data sources
 - e.g., replication-based (staging tables may be directly used by extractors)
 - Extractors select and transport data from data sources into the staging area
 - DBMS or file system for managing the staging area
 - Transformers perform standardization and integration of data
 - responsible for "implementing" an integrated schema
 - integrated data requires data quality! (see next chapter)
 - data migration, data cleaning
 - entity identification, duplicate elimination
 - may happen SQL-based or based on external data processing operators
 - Loaders insert the data from the staging area into the main warehouse
 - usually employ bulk load utilities of DBMS for performance reasons

Monitoring and Change Data Capture

- Approaches
 - log-based
 - DBMS writes information about updates into its transaction log
 - Logs as analyzed to extract the change data
 - trigger-based
 - DB triggers (user-defined or internal) are used to gather change data
 - using replication middleware
 - may again use the approaches above
 - audit columns (application-based)
 - application records information about changes in an additional audit column per table
 - timestamp-based
 - intermediate changes may be lost
 - snapshot differentials
 - requires a full snapshot taken at previous extraction step
 - compares current state of data source with the snapshot
 - expensive, but may be the only option for legacy data sources
- Some approaches have limitations
 - example: audit columns don't support deletion, don't distinguish update and insert

Transformation

- Typical transformation operations
 - transformation into (de-)normalized warehouse schema
 - generation of global identifiers (surrogate keys)
 - keys from original sources may carry semantic information, may not be globally unique
 - data type conversion
 - data encoding (adjustments)
 - e.g., California \rightarrow CA
 - standardization of character-based representations
 - e.g., <first name> <last name> (instead of <last name>, <first name>)
 - date/time, unit of measure standardization
 - combination/separation of attribute value(s)
 - derived values
 - aggregation
- Transformation Languages
 - (E)SQL
 - product-specific operators in data flow graphs

Sample ETL Processes (IBM DataStage)

Summary

- Replication middleware
 - usages
 - data distribution and consolidation
 - improve performance, availability
 - materialized information integration
 - architecture
 - capture and apply
 - committed change data
 - change propagation and ownership strategies
 - eager vs. lazy
 - group vs. master
 - conflict detection and reconciliation approaches are required for lazy group replication!

- Data Warehousing
 - materialized integration approach
 - avoids problems and restrictions of virtual integration architectures
 - integrated schema for mult-dimensional data analysis, OLAP
 - facts, dimensions, (hyper-)cubes
 - star and snowflake schema
 - architectures
 - central role of data warehouse manager
 - extract/transform/load (ETL) for data preparation
 - transformation implements schema and data integration logic
 - data quality requirements
 - potential problem: stale data
 - requires real-time data warehousing

