
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 5
Application Server Middleware

© Prof.Dr.-Ing. Stefan Deßloch

Outline
n Transaction processing application structure & architecture
n Application server middleware

n tasks
n types of middleware

n Transaction support in application servers
n Shared state
n Managing processes and threads
n Scalability
n Summary

Middleware for Heterogeneous and
Distributed Information Systems2

© Prof.Dr.-Ing. Stefan Deßloch

Transaction Processing (TP) Application
n End user‘s point of view

n serial processor of requests
n server that repeatedly

n receives a request, does the requested work, optionally sends a reply
n all within an ACID transaction

n Actual control flow within a TP application
n the front-end program

n captures the user’s request
n translates the input into a request message
n sends the message to a server

n the server
n examines the request message
n determines what type of (business) transaction is requested and the program to process it
n starts a transaction and invokes the program
n the program executes the request, which typically involves invoking a DBS
n the server commits the transaction (or aborts it in case the program was successful)
n the server sends some output back to the source of the request

Middleware for Heterogeneous and
Distributed Information Systems3

© Prof.Dr.-Ing. Stefan Deßloch

TP Application Architecture
n Front-end program

n interacts with (possibly wide range of) display
devices

n gathers and validates input, displays output
n constructs and forward request (e.g., as a RPC

or asynchronous message)
è provides device-independence for server

n Request controller
n guides the request execution
n determines required steps, then executes them

by invoking transaction servers
n usually runs as part of an ACID transaction

n Transaction server
n process that runs application programs doing

the actual work of the request
n almost always runs within the scope of an

ACID transaction
n typically interacts with a DBMS
n simple applications can be composed into more

complex ones (using local proc. call, TRPC,
asynch. messaging, …)

n makes difference to req. controller fuzzy

front-end

server

DBMS

client

DB

Transaction
Server

Database
System

Request Controller

Front-end
Program

Middleware for Heterogeneous and
Distributed Information Systems4

Transaction
Server

Transaction
Server

Database
System

DB

...

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Heterogeneous and
Distributed Information Systems5

Object-Oriented Application Architecture

front-end

server

DBMS

client

DB

Transaction
Server

Database
System

Request Controller

Front-end
Program

Transaction
Server

Transaction
Server

Database
System

DB

...

menu item and form
to open account

Open an account

Customer
object

Account
object

business
rules

business
objects

© Prof.Dr.-Ing. Stefan Deßloch

Application Server Middleware Tasks
n Distributed computing infrastructure (RPC, RMI)
n Transactional capabilities

n transactional RPC/RMI
n programming abstractions (demarcation)
n distributed transaction management

n Scalable and efficient application processing
n large number of client applications or end users

n Unified access to heterogeneous information sources and application systems
n Security services

n authentication, authorization, secure transmission, …
n Reliability, high availability

Programming model abstractions that allow the developer to focus on
application logic (i.e., ignore infrastructure as much as possible)

Middleware for Heterogeneous and
Distributed Information Systems6

© Prof.Dr.-Ing. Stefan Deßloch

Types of Application Server Middleware
n TP monitor

n transaction management, TRPC
n process management
n broad set of capabilities

n Object broker (e.g., CORBA)
n distributed object computing, RMI
n additional services

n Object transaction monitor
n … = TP monitor + object broker
n most often: TP monitor extended with object-oriented (object broker) interfaces

n Component Transaction Monitor
n … = TP monitor + distributed objects + server-side component model

Middleware for Heterogeneous and
Distributed Information Systems7

© Prof.Dr.-Ing. Stefan Deßloch

TP Monitor
n Provides functionality to develop, run, manage, and maintain transactional

distributed IS
n transaction management
n (T)RPC

n Additional capabilities (beyond TRPC)
n process management
n high number of connected clients/terminals (102 - 104)
n concurrent execution of functions
n access shared data

n most current, consistent, secure
n high availability

n short response times
n fault tolerance

n flexible load balancing
n administrative functions

n installation, management, performance monitoring and tuning
n One of the oldest form of middleware

n proven, mature technology

Middleware for Heterogeneous and
Distributed Information Systems8

© Prof.Dr.-Ing. Stefan Deßloch

Basic Components of a TP Monitor
n Interface

n programs and terminals
n Program flow

n store, load, execute procedures
n Router

n maps logical resource operations
to physical resources (e.g.,
DBMS)

n Communication manager
n infrastructure for communicating

with resources
n Transaction manager
n Wrappers

n hide heterogeneity of resources
n Services

n security, performance
management, high availability,
robustness to failures, …

resource resource

TP services

transaction m
anagem

ent

interface

program flow

router

communication

programs

resources

wrapper wrapper

client applicationend user

Middleware for Heterogeneous and
Distributed Information Systems9

© Prof.Dr.-Ing. Stefan Deßloch

Transactional Services
n Need to strictly distinguish TP monitor and TA manager functionality

n many users/applications don't need a TP monitor: batch applications, ad-hoc query
processing

n special application systems (e.g., CAD) have their own (terminal) environment
n but all need transactional support

n Separation of components for
n transactional control (TA manager)
n transaction-oriented scheduling and management of resources (TP monitor)

Middleware for Heterogeneous and
Distributed Information Systems10

© Prof.Dr.-Ing. Stefan Deßloch

Standard Object Broker - CORBA
n CORBA: Common Object Request Broker Architecture
n Object-oriented, universal middleware platform

n object bus architecture based on RMI concept
n CORBA IDL for interface definitions

n language-independent and platform-independent
n Object Management Architecture (OMA)

n Interfaces in different categories
n Application Interfaces
n Object Services (horizontal)
n Domain Interfaces (vertical)

n Telecommunication, Finance, E-Commerce, Medicine, ...

n ORB provides network communication
n manages stubs (client-side)
n maps RMI to object adapter (server side)

n Object adapter: Portable Object Adapter (POA)
n generates object references
n maps RMI to server objects
n activates/deactivates/registers server objects

n ORB + object adapter = request broker

Middleware for Heterogeneous and
Distributed Information Systems11

Application
Interfaces

Domain
InterfacesDomain

InterfacesDomain
InterfacesDomain

Interfaces

Object Request Broker

Object
Services

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – Communication and Object Services
n Standardized data format and communication protocol(s)

n Common Data Representation (CDR)
n CORBA 2.0: General Inter-ORB Protocol (GIOP)
n Internet-Inter-ORB-Protocol (IIOP)

n maps GIOP to TCP/IP
n internet as “Backbone-ORB”

n optional: Environment-Specific Inter-ORB Protocols (ESIOP)
n example: DCE Common Inter-ORB Protocol (DCE-CIOP)

n Object services extend basic ORB capabilities to provide system services
n Naming, Life Cycle, Events, Persistence, Concurrency Control, Transaction,

Relationship, Externalization, Query, Licensing, Properties, Time, Security, Trading,
Collections

n Service usage
n functionality defined using CORBA-IDL
n CORBA object invokes method of service object (Example: NameService)
n CORBA object implements interface provided as part of a service, may not need to

provide any code (Example: TransactionalObject)

Middleware for Heterogeneous and
Distributed Information Systems12

© Prof.Dr.-Ing. Stefan Deßloch

Server-side Component Models
n Problems with CORBA (up to 2.0)

n complex, non-standard programming of server objects
n service usage (transactions, security, ...)

n behavior fixed at development time
n resource management, load balancing

n proprietary programming model and interfaces, is supported by object adapter

n Standardized Server-side component model
n defines a set of "contracts" between component and component server for

developing and packaging the component
n developer focuses on application logic

n service use can be defined at deployment time by configuring the application component
n code generation as part of deployment step

n resource management, load balancing realized by application server
n component only has to fulfill certain implementation restrictions

n server components are portable

Middleware for Heterogeneous and
Distributed Information Systems13

© Prof.Dr.-Ing. Stefan Deßloch

Enterprise JavaBeans (EJBs)
n Standard server-side components in Java

n encapsulates application logic
n business object components
n can be combined with presentation logic component models

n servlets, JSPs

n EJB container
n run-time environment for EJB

n provides services and execution context
n Bean-container-contract

n EJB implements call-back methods

n Interoperability with CORBA
n invocation: RMI/IIOP
n services

EJB-Server
EJB-Container

EJB

EJB

EJB

Client
file
system

(legacy)
application

DB

Middleware for Heterogeneous and
Distributed Information Systems14

© Prof.Dr.-Ing. Stefan Deßloch

Deployment
n EJB is portable, server-independent
n Component properties

n mapping of bean attributes to DB structures
n configuration regarding transactional behavior
n configuration of security aspects

n Specified using
n source code annotations (specified at development time)
n an XML deployment descriptor (customizationat deployment time)

n What happens during deployment
n generation of glue-code based on component properties
n make classes and interfaces known
n setting environment/context variables

Middleware for Heterogeneous and
Distributed Information Systems15

© Prof.Dr.-Ing. Stefan Deßloch

Transactional Capabilities in Application Servers

n Support for transactions affects
n the programming model
n the API available to the programmer
n system software components to support them

n Transaction demarcation (aka transaction bracketing)
n Start, Commit, Abort
n commands used by the programmer to define which operations (including RPCs)

execute within the scope of the transaction
n Chained transactions

n in this model, an application is assumed to be always executing within a TA
n no need for an explicit start of a new transaction
n application specifies the „boundary“ between transactions (aka syncpoint)

Middleware for Heterogeneous and
Distributed Information Systems16

© Prof.Dr.-Ing. Stefan Deßloch

Transaction Composability Problem
n Two procedures (DebitChecking, Credit Checking) designed a independent

transactions

n We want to call/reuse them in a new procedure (Transfer)
n needs to execute in a single ACID TA, too!
n but DebitChecking, Credit Checking

start their own, separate TAs and
commit independently

We cannot compose DebitChecking and
Credit Checking into a larger transaction!

Middleware for Heterogeneous and
Distributed Information Systems17

DebitChecking(acct, amt) {
start;
update DB:
acct:=acct-amt;

if success commit;
else abort;

}

CreditChecking(acct, amt) {
start;
update DB:
acct:=acct+amt;

if success commit;
else abort;

}

Transfer (acct1, acct2, amt) {
start;
DebitChecking(acct1, amt);
if no success {abort; return;}
CreditChecking(acct2, amt);
if no success {abort; return;}
commit;

}

© Prof.Dr.-Ing. Stefan Deßloch

Possible Solutions
1. System ignores start, if the program is already running within a TA

n System needs to keep a counter so that the corresponding commit is also ignored
(a start increments the counter, a commit decrements it)

n otherwise, Transfer starts the TA, and DebitChecking commits it too early
n How are abort calls handled in programs for which start was ignored?

n Example: DebitChecking aborts because of insufficient funds
n Option 1: permit abort - complete transaction needs to abort
n Option 2: disallow abort - treat as program error
n Option 3: ignore abort – the calling program needs to handle the problem

2. Separate request processing code from transaction demarcation code
n discipline:

n request controller program always does the demarcation
n transaction server program never does demarcation on its own

n alternative: introduce wrapper procedures for (e.g., CallDebitChecking)
3. Support extended explicit demarcation API

n additional calls for determining the transactional status, etc.
4. Implicit demarcation based on transaction attributes
5. Nested transaction programming model

Middleware for Heterogeneous and
Distributed Information Systems18

© Prof.Dr.-Ing. Stefan Deßloch

Demarcation of Transactions

RM

obj obj

"RM"

obj

RM RM

obj

objobj

method invocation

transactional object

transaction

obj

obj

Middleware for Heterogeneous and
Distributed Information Systems19

© Prof.Dr.-Ing. Stefan Deßloch

Transactional Behavior of Objects

obj

RM RM RM

obj

objobj

objobj objobj

"RM"

begin … commit

no current TA-context:
begin … commit

no current TA-context:
error! current. TA: suspend

new TA: begin … commit
old TA: resume

propagate existing
TA-context don't propagate

existing TA-context

Middleware for Heterogeneous and
Distributed Information Systems20

© Prof.Dr.-Ing. Stefan Deßloch

Transaction Demarcation Approaches
n Explicit (programmatic) demarcation

n method interacts with TA manager using demarcation API
n begin, commit, rollback
n suspend, resume

n management of transaction context (transaction ID)
n direct: passed along as explicit method parameter
n indirect (preferred!): a "current" TA context is propagated automatically

n Implicit (declarative) demarcation
n separate specification of transactional properties for methods

n can be realized/modified independent of application logic
n may be deferred to deployment phase

n application server (container) automatically performs TA demarcation before/after
method is invoked

n Combination of both approaches in distributed IS

Middleware for Heterogeneous and
Distributed Information Systems21

© Prof.Dr.-Ing. Stefan Deßloch

Explicit Demarcation (e.g., in Java)
n Java Transaction API (JTA) can be used by EJB Session Beans and EJB client, web

components
n in EJB this is called bean-managed transaction: in descriptor transaction-type = Bean

n Demarcation uses JTA UserTransaction
n begin() – creates new TA, associated with current thread
n commit() – ends TA, current thread no longer associated with a TA
n rollback() – aborts TA
n setRollbackOnly() – marks TA for later rollback

n beans with implict TA-mgmnt can use method on EJBContext
n setTransactionTimeout(int seconds) – sets timeout limit for TA
n getStatus() – returns TA status information

n active, marked rollback, no transaction, ...

Middleware for Heterogeneous and
Distributed Information Systems22

© Prof.Dr.-Ing. Stefan Deßloch

Implicit (Declarative) Demarcation in EJB

obj

RM RM RM

obj

objobj

objobj objobj

"RM"

begin … commit

Descriptor:
Required

Descriptor:
Mandatory Descriptor:

RequiresNew

Descriptor:
Supports

Descriptor:
NotSupported

Middleware for Heterogeneous and
Distributed Information Systems23

© Prof.Dr.-Ing. Stefan Deßloch

Transactional Properties
n Transaction attributes for methods:

n Example: EJB container-managed transactions
n attributes are specified in deployment descriptor

TA-Attribute Client-TA TA in method
Not Supported none

T1
none
none

Supports none
T1

none
T1

Required none
T1

T2
T1

RequiresNew none
T1

T2
T2

Mandatory none
T1

error!
T1

Never none
T1

none
error

Middleware for Heterogeneous and
Distributed Information Systems24

© Prof.Dr.-Ing. Stefan Deßloch

Implicit Demarcation – Commit/Abort
n Method invocation may result in starting a (new) transaction

n attribute = RequiresNew, or Required and caller is not executing in a transaction
n we call this a top-level method invocation

n Top-level method may call other methods (called submethod)
n execute in the same transaction, if attribute = Required, Mandatory, Supported

n Transaction
n commits, if top-level method and all submethods terminate without an error
n aborts, if top-level method or one of the submethods throws an exception

n alternatively, submethod may explicitly indicate unsuccessful outcome (e.g., by calling the
setRollbackOnly method)

Middleware for Heterogeneous and
Distributed Information Systems25

© Prof.Dr.-Ing. Stefan Deßloch

Nested Transactions
n (Top-level) transactions can subtransactions nested inside them

n same bracketing/demarcation operations are used to start a top-level/sub-TA
n Semantics

1. Top-level TA: is created when program is not executing within a TA already and
issues a start command

2. Sub-TA: is created when program is already running within a (parent) TA and
issues a start command

3. Commit and Abort of top-level TAs have the usual semantics
4. If subtransaction S aborts, then all operations of S (including subtransactions of S)

are undone. Note: the parent TA does not need to fail, it is only notified!
è subtransactions are atomic

5. While subtransaction S is executing, it is isolated from other transactions and
subtransactions

6. When subtransaction S commits, the effects of S become visible to other
subtransaction of its parent TA
è subtransactions are not durable

n Natural solution for transaction composition, but rarely supported in products!

Middleware for Heterogeneous and
Distributed Information Systems26

© Prof.Dr.-Ing. Stefan Deßloch

Transaction Processing Standards
n Goal: Interoperability and Integration in Distributed Transaction Processing

n multiple transactional middleware products can exchange data and control
information while executing within the same transaction

n components running in different middleware platforms can perform different
functions that work in combination

n Prominent standards
n X/Open DTP – covered extensively in the previous chapter
n CORBA Object Transaction service (OTS)

n incorporates X/Open XA protocol
n Java Transaction API (JTA) and Java Transaction Service (JTS)

n incorporates both XA and OTS

Middleware for Heterogeneous and
Distributed Information Systems27

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – Object Transaction Service
n Based on X/OPEN DTP model and capabilities

n (flat) ACID transactions
n optional: nested transactions

n TAs may span across ORBs
n X/OPEN DTP

n interoperability with "procedural" TA-Managers
n Roles and interfaces

n transactional client
n demarcation (begin, commit, rollback)
n uses OTS Interface Current

n transactional server
n participates in TA, does not manage any recoverable resources
n "implements" OTS Interface TransactionalObject

n only serves as a "flag" to have the ORB propagate the transaction context
n optionally uses OTS Interface Current

n recoverable server
n participates in TA, manages recoverable resources
n implements OTS Interface TransactionalObject and Resource, uses Current and Coordinator

n participates in 2PC

Middleware for Heterogeneous and
Distributed Information Systems28

© Prof.Dr.-Ing. Stefan Deßloch

OTS – Elements and Interaction

Transactional
Client

Transactional
Server

Recoverable
Server

ORB

Transaction Service
(OTS)

transactional
object

recoverable
object resource

begin, commit,
rollback

may force rollback register resources for
commit, rollback

2PC

RMI RMI

transaction
context

Middleware for Heterogeneous and
Distributed Information Systems29

© Prof.Dr.-Ing. Stefan Deßloch

Transactions in Java EE
n Application component may use Java Transaction APIs (JTA)
n UserTransaction object provided via JNDI (or EJB-context)

RMRMTM RM

Java application
or application server

DBk

DBi

MQ Server

javax.transaction.
xa.XAResource

JDBC
JMS

javax.transaction.
TransactionManager

Middleware for Heterogeneous and
Distributed Information Systems30

© Prof.Dr.-Ing. Stefan Deßloch

JTS Architecture

(EJB-)
application

server

resource
adapter

resource
manager

JTS TM JTS or OTS
transaction

manager (TM)
JTA

Java-
Mapping

of
CORBA

javax.transaction.
TransactionManager

javax.transaction.
xa.XAResource

Org.com.
CosTransactions

Middleware for Heterogeneous and
Distributed Information Systems31

© Prof.Dr.-Ing. Stefan Deßloch

JDBC - Distributed Transaction Support
n Requires interaction with a transaction manager

n X/Open DTP, Java Transaction Service (JTS)
n Demarcation of transaction boundaries

n Java Transaction API (JTA)
n UserTransaction Object

n NOT using methods of Connection interface
n JDBC defines additional interfaces to be supported by a driver implementation

to interact with transaction manager
n XADataSource, XAConnection, ...

n DataSource interface helps to make distributed transaction processing
transparent to the application

Middleware for Heterogeneous and
Distributed Information Systems32

© Prof.Dr.-Ing. Stefan Deßloch

Distributed Transaction Processing with JDBC

source: JDBC 3.0

Middleware for Heterogeneous and
Distributed Information Systems33

© Prof.Dr.-Ing. Stefan Deßloch

Shared State
n Components of a TP system may need to share state information

n Transactions – transaction ID/context information
n Users – authenticated identity, address of user‘s device
n Activities – identity/content of last message, temporary information shared

between client and server (e.g., shopping cart)
n Components – identity of TA-managers that need to participate in commit proc.

n Common characteristic: state is short-lived and “transient“
n state can be discarded after a while
n often information that describes an activity of limited duration
n shared mostly for convenience/performance
n can be reconstructed if it is lost (e.g., due to a failure)

n Differs significantly from long-lived, permanent state
n e.g., databases containing essential business data

Middleware for Heterogeneous and
Distributed Information Systems34

© Prof.Dr.-Ing. Stefan Deßloch

Sessions
n Communication session

n lasting connection between two system components (e.g., processes) to share
state

n avoids resending/reprocessing information in every message
n examples

n network address of both components
n access control information
n cryptographic keys
n transaction-ID (during TRPC)

n may be created/closed
n explicitly (e.g., using three-way handshake: request-accept-confirm)
n as a side-effect (e.g., with the first RPC request from a client to a server)

n shared session state
n is communicated when session is initiated
n requires allocation of storage/memory by each partner

n space may be significant if a large number of clients connect to a single server

n Common use in TP: database session, session involving client/server process

Middleware for Heterogeneous and
Distributed Information Systems35

© Prof.Dr.-Ing. Stefan Deßloch

Stateless Servers
n Potential problems with sessions that involve client and server processes

n session ties the client to a particular server process (restricts load balancing with
multiple processes running the same application)

n session is lost, if server process fails
n retaining shared state for a large number of clients costs a lot of memory for the

server
n Stateless servers can be used to avoid these problems

n there is no session with shared state between client and server processes
n server maintains no application state after a request has been process, starts in a

“clean“ state when the next request is processed
n Option for communication between (middle-tier) servers and front-end

programs
n does not apply for communication between server and resource managers

Middleware for Heterogeneous and
Distributed Information Systems36

© Prof.Dr.-Ing. Stefan Deßloch

Stateful Applications
n ... but keeping state in server applications is often required! Scenarios:

1. user request involves processing multiple transactions (e.g., business process)
2. server wants to use previous user interaction for customizing the current one
3. front-end has established a secure connection with user authentication
4. user accumulates data in multiple steps (e.g., shopping cart) to be used later in

the session
n How to manage state?

n state has to be labelled with identity of client and/or server
n options for storing the state

n in persistent shared storage (DBMS) as part of the transaction
n in persistent shared storage, but not within a transaction
n in volatile/persistent storage that is local to the server (makes the server stateful)
n don‘t store, but return to the caller, who has to resend the state with future requests

n which options are suitable for the above scenarios?

Middleware for Heterogeneous and
Distributed Information Systems37

© Prof.Dr.-Ing. Stefan Deßloch

EJB – Types Of Objects

n Session Object
n realizes business activity or process
n often remotely accessible, “course-grained”
n relatively short-lived (transient)

n Entity Object (see next chapter)
n represent persistent, transactional business object
n usually locally accessible, “fine-grained”
n can be long-lived

n Message-driven Object
n asynchronous, message-oriented invocation (see subsequent chapter)
n facilitates integration with existing applications

Middleware for Heterogeneous and
Distributed Information Systems38

© Prof.Dr.-Ing. Stefan Deßloch

EJB - Concepts
n Enterprise Bean (EB) consists of (ejb-jar file):

n class implementing business logic (Bean, e.g., CartBean)
n bean business interface, defining methods (e.g., Cart)

n remote and/or local access
n deployment descriptor/meta-data

n Client interacts with bean using business interface object
n generated at deployment time
n contains infrastructure code (transaction & security support, ...)
n client obtains reference to interface object using JNDI (or dependency injection)

EJB Container

Client Cart CartBean

Middleware for Heterogeneous and
Distributed Information Systems39

© Prof.Dr.-Ing. Stefan Deßloch

Session Beans
n Realization of session-oriented activities and processes

n isolates client from entity details
n reduces communication between client and server components

n Session beans are transient
n bean instance exists (logically) only for duration of a "session”

n stateless session bean
n state available only for single method invocation

n stateful session bean
n (conversational) state is preserved across method invocation

n session context, stored in the bean’s field variables
n association of bean instance with client necessary

n singleton session bean
n a single bean instance is shared across applications with concurrent access support

n not persistent, but can manipulate persistent data
n example: use JDBC, SQLJ to access RDBMS

Middleware for Heterogeneous and
Distributed Information Systems40

© Prof.Dr.-Ing. Stefan Deßloch

Example – Client of Stateful Session Bean
n look up Cart interface

@Resource SessionContext ctx; //use dependency injection to obtain JNDI context
Cart cart = (Cart) ctx.lookup(“cart”); //perform lookup, autom. creates EB object

n call method to initialize bean
cart.startShopping(“John”, “7506”);

n invoke bean methods
cart.addItem(66);
cart.addItem(22);
...

n remove session bean
cart.close() // the “close” method was annotated/declared as a “RemoveMethod”

Middleware for Heterogeneous and
Distributed Information Systems41

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Heterogeneous and
Distributed Information Systems42

(Partial) Life Cycle Of Stateful Session Bean

Bean Instance
does not exist

Ready

1. Class.newInstance(BeanClass)
2. dependency Injection (opt.)
3. PostConstruct (opt.)

PreDestroy (opt.)

Client obtained a
reference to the
business interface

Client calls business
methods on the
business interface

Client called the
remove method
or timed out

© Prof.Dr.-Ing. Stefan Deßloch

Processes and Threads
n Process = virtual processor running a program

n processor state (processor context) consists of
n control thread (content of processor registers, processor stack)
n address space

n processes provide
n ability to execute programs in parallel
n protection entity
n capability to structure computations into independent execution streams
n fault containment, if program fails

n Traditional time-sharing systems
n each display device has its own process
n each process has exactly one thread executing
n all programs running on behalf of a display device execute in the same process

Middleware for Heterogeneous and
Distributed Information Systems43

© Prof.Dr.-Ing. Stefan Deßloch

Processes and Threads (2)
n Use time-sharing model for TP-processing?

n combine front-end, request control, transaction server into one program
n each terminal (end-user) is connected to its own process running the program
n main disadvantage: too many processes!

n operating systems functionality doesn’t scale well enough
n lots of (expensive) context switching
n difficult to control the load on such a system
n data sharing between processes is expensive

n Use a single process (with one thread) for the TP system?
n would result in other, serious problems

n no concurrent/parallel processing
n a page fault will stop the TP processing environment

n no exploitation of multi-processor systems

Transactional middleware included support for multithreaded processes very
early!

Middleware for Heterogeneous and
Distributed Information Systems44

© Prof.Dr.-Ing. Stefan Deßloch

Multithreaded Processes
n Multithreading

n many control threads in a single process/address space
n each thread is an independent path of execution
n all threads execute the same program and use the same process memory
n each of them has a save area for register values and private data

n Advantages
n save memory (shared process memory)
n context switching is cheap
n helps reduce the number of processes

Middleware for Heterogeneous and
Distributed Information Systems45

Thread 1
save area
• registers
• stack

Thread 2
save area
• registers
• stack

Thread 3
save area
• registers
• stack

Thread n
save area
• registers
• stack

Memory shared
by all threads Process’ program area Process’ data area

…

© Prof.Dr.-Ing. Stefan Deßloch

Multithreaded Processes (2)
n Implementing threads

n by middleware (i.e., OS doesn’t know about the threads)
n scheduling of threads and processes may interfere
n middleware has to trap all synchronous I/O operations to avoid OS putting the process to

sleep
n by the operating system (has become ubiquitous in TP products)

n avoids unnecessary context switching
n can exploit thread parallelism in multiprocessor/multicore systems
n performance overhead (context switching involves system calls)

n Disadvantages of multi-threading for TP
n little/no memory protection between threads (no fault containment, potential

security leaks)
n partially addressed in OS threads by protected memory areas for special subsystems
n also reduced by use of strongly-typed programming languages

n imposes requirements of multithreading support for resource managers’ client
support

Middleware for Heterogeneous and
Distributed Information Systems46

© Prof.Dr.-Ing. Stefan Deßloch

Process Structure of Request Controller and
Transaction Server

n Request controller typically runs in a multithreaded process
n dedicated to request controller functions
n combined with front-end program functions (e.g., in a web server)
n combined with transaction server functions (using local procedure call/method

invocation)
n Transaction server uses multithreading to scale to high request rates

n needs to have enough threads to handle the maximum required load
n each active thread/transaction in a transaction server needs a database session

n implications on performance, security (to be discussed later)
n Application server provides for multithreading support

n thread management, dynamic or static allocation of threads to devices, sessions
n system management functions for load balancing, performance tuning and

monitoring, etc.
n TP program developer does not need to implement multithreading support,

but may have to adhere to certain restrictions/guidelines

Middleware for Heterogeneous and
Distributed Information Systems47

© Prof.Dr.-Ing. Stefan Deßloch

Server Classes
n A server class is a set of single-threaded processes, all running the same

program
n “emulate” a pool of threads
n good alternative, if multithreaded operating system processes are not available

n normal blocking behavior is fine, not need to trap synchronous I/O calls
n no potential scheduling conflicts, no possible memory corruption problems
n failure of individual process doesn’t bring down the complete server class
n each process can use single-threaded services

n disadvantages
n one process per thread (expensive) à need for pooling of servers
n additional scheduling for load balancing required (across servers of the same class)

n Popular approach in “classic” TP-monitors

Middleware for Heterogeneous and
Distributed Information Systems48

© Prof.Dr.-Ing. Stefan Deßloch

Application Processing – Server Classes
n Managing large workloads

n one process per client is not feasible
n TP monitor manages server pools

n groups of processes or threads, pre-
started, waiting for work

n client requests are dynamically
directed to servers

n extends to pooling of resource
connections

n Load balancing
n distribute work evenly among

members of pool
n TP monitor can dynamically

extend/shrink size of server pools
based on actual workload

n management of priorities for
incoming requests

TP-Monitor

…

scheduler

server class

serverserverserver

server class

serverserverserver
…

DBMS

Middleware for Heterogeneous and
Distributed Information Systems49

© Prof.Dr.-Ing. Stefan Deßloch

Scalability
n Building TP system to handle high load involves

n scaling up a server system
n choose appropriate hardware configuration
n caching
n resource pooling

n scaling out by adding more machines
n distribute the workload over multiple machines
n partitioning
n replication

Middleware for Heterogeneous and
Distributed Information Systems50

© Prof.Dr.-Ing. Stefan Deßloch

Caching
n Cache

n area of memory that contains data whose “permanent home” is somewhere else
n ideally, cached data is frequently accessed by applications using the cache

n avoids (expensive) frequent access of data at the home location
n TP use of caching

n web browser, web server, proxy server, 3rd party websites
n application server
n DB system (DB-cache, main-memory databases)

n Potential issues
n fast lookup, effective replacement strategies
n cached data may be out of date

n happens when data is updated in its permanent home
n cache is most useful for infrequently updated data
n requires cache invalidation strategies

n cache coherence – all caches should hold the same (recent) data values
n updatable caches

n propagation of updates to permanent home (write-through, write-back)

Middleware for Heterogeneous and
Distributed Information Systems51

© Prof.Dr.-Ing. Stefan Deßloch

Resource Pooling - Connection Pooling

Middleware for Heterogeneous and
Distributed Information Systems52

n “Caching” of resources that are costly to create
but relatively inexpensive to access
n database sessions/connections
n process threads
n processes in server classes

Connection Pooling
n Server-side application components

n DB access often in the context of few (shared) user
ids

n connection is often held only for short duration
(i.e., short processing step)

n Reuse of physical DB connection desirable
n open -> "get connection from pool"
n close -> "return connection to pool"

n Connection pooling can be "hidden" by
DataSource, Connection interfaces
n transparent to the application source: JDBC 3.0

© Prof.Dr.-Ing. Stefan Deßloch

EJB Resource Management
n Traditional task of a (component) TP monitor

n pooling of resources, load management and balancing
n EJB specification

n Instance Pooling and Instance Swapping
n EJB server manages (small) number of Enterprise Beans

n reuse, dynamic selection for processing incoming requests
n made possible by 'indirect' bean access via EJB business interface
n usually only applicable for stateless session beans

n Passivation and Activation
n bean state can be stored separately from bean (passivation)

n allows freeing up resources (storage), if bean is not used for a while (e.g., end user
think time)

n if needed, bean can be reactivated (activation)
n uses Java Serialization
n can be used for stateful session beans

Middleware for Heterogeneous and
Distributed Information Systems53

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Heterogeneous and
Distributed Information Systems54

Life Cycle Of Stateless Session Bean

Bean Instance
does not exist

Pool of equivalent,
method-ready
bean instances

1. Class.newInstance(BeanClass)
2. dependency Injection (opt.)
3. PostConstruct (opt.)

PreDestroy (opt.)

Container decides it
needs more instances
in the pool to service
requests

Any client calls business
method on any bean’s
business interface

Container decides it
does not need so many
instances in the pool
to service requests

© Prof.Dr.-Ing. Stefan Deßloch
Middleware for Heterogeneous and
Distributed Information Systems55

Complete Life Cycle Of Stateful Session Bean
Bean Instance
does not exist

Ready

1. Class.newInstance(BeanClass)
2. dependency Injection (opt.)
3. PostConstruct (opt.)

PreDestroy (opt.)

Client obtained a
reference to the
business interface

non-tx method

remove method
or timeout

Ready in TX

Passive

afterBegin (opt.)

transactional
method

transactional
method

1. beforeCompletion()
2. afterCompletion(true) (opt.)

commit

afterCompletion(false) (opt.)

rollback

PrePassivate (opt.)

PostActivate (opt.)

method call

Container’s limit of instantiated
beans is reached and bean
was chosen as victim

© Prof.Dr.-Ing. Stefan Deßloch

Partitioning
n Partition the application and its data

n separate according to type of work (e.g., credit cards, loan processing, accounts)
n assign each type to a different machine
n effective, but limited

n Range partitioning
n different copies of the server handle different ranges of an input parameter

n involves parameter-based routing of requests
n example: same debit-credit application running on multiple servers for different account

ranges
n directly supported by many high-function DBMS

n Hash partitioning
n use a hash function to map an input parameter to a server
n likely to achieve better load balancing

n Partitioning sessions
n insert a routing layer between clients and servers, partitioning the set of clients
n reduces the overall number of sessions, if each client needs to access each server

Middleware for Heterogeneous and
Distributed Information Systems56

© Prof.Dr.-Ing. Stefan Deßloch

Replication
n Distribute workload by replicating server processes

n assign replicas to different systems (can all process the same requests)
n works well with stateless servers
n server system may implement load balancing (spraying requests) across the

servers
n load balancing can be further improved by using shared request queues (see

chapter on message-oriented middleware)
n Replication interacts with caching

n sequence of “similar” requests
n cache affinity

n More discussion on data replication in a later chapter

Middleware for Heterogeneous and
Distributed Information Systems57

© Prof.Dr.-Ing. Stefan Deßloch

Summary
n Architecture of transaction processing applications

n front-end programs, request controller, transaction server
n Application servers are crucial for supporting development and execution of

TP application programs to build scalable TP systems
n Different types of application server middleware

n TP monitors, object brokers, object transaction monitors, component transaction
monitors

n Transactional capabilities in application servers
n address the transaction composability problem

n transaction demarcation/bracketing approaches (explicit vs. implicit demarcation)
n nested transactions

n transaction processing standards and interoperability
n Support for shared state

n sessions, stateless vs. stateful applications/servers
n Mapping application components to processes and threads

n multithreading, server classes, process structure of request controller, TA server
n Scalability (caching, pooling, partitioning and replication)

Middleware for Heterogeneous and
Distributed Information Systems58

