
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 15
Information Integration

© Prof. Dr.-Ing. Stefan Deßloch

Outline
n Information Integration Tasks
n Schema Matching

n Classification of Approaches
n Example: Cupid

n Schema Merging
n Example: Rondo

n Integration Planning
n Example: Clio

n Deployment
n Example: Orchid
n Incremental loading of DW

n Data Integration
n Data Quality Problems
n Causes and Consequences
n Data Cleaning Approaches

Middleware for Heterogeneous &
Distributed Information Systems2

© Prof. Dr.-Ing. Stefan Deßloch

Bridging/Resolving Heterogeneity
n Real-world integration scenarios suffer from all kinds of heterogeneity
n Techniques and concepts already discussed in previous chapters and the

primary issues they address:
n Wrappers (data model heterogeneity, technical heterogeneity, syntactic heterogeneity)
n Garlic (technical heterogeneity, structural heterogeneity, distribution)
n Multi-database languages (schematic heterogeneity, technical heterogeneity, distribution)
n DB Gateways (technical heterogeneity)
n ETL tools (structural heterogeneity, technical heterogeneity, syntactic heterogeneity)
ð focus on data access/transformation infrastructure (i.e., as a runtime platform)

n Further techniques discussed in this chapter
n Schema Matching and Integration (semantic heterogeneity, structural heterogeneity)
n Data Cleaning/Fusion (syntactic heterogeneity, semantic heterogeneity (in data))
ð focus on integration planning

Middleware for Heterogeneous &
Distributed Information Systems3

© Prof. Dr.-Ing. Stefan Deßloch

Information Integration Tasks
n Information integration subsumes numerous tasks (and has numerous names

for most of them...):
1. Schema Merging/Schema Integration
2. Design of the integrated target schema
3. Schema Matching/Schema Mapping
4. Integration Planning/Schema Mapping/Schema Integration/Mapping Generation/Mapping

Interpretation
5. Data Cleaning
6. Data Fusion/Record Matching/Entity Resolution/Instance Disambiguation
7. Wrapping/Data model transformation
8. Deployment/Integration Plan Implementation

Middleware for Heterogeneous &
Distributed Information Systems4

© Prof. Dr.-Ing. Stefan Deßloch

Information Integration Phases [Gö05b]
n Analysis – Determine the requirements on the integrated schema:

n Desired data model, integration strategy (virtual or materialized)
n Relevant data (which application concepts should be present)

n Discovery – Find/identify relevant data sources
n In classical scenarios sources are often known implicitly
n Challenging aspect of èDynamic information integration

n Planning – Resolve heterogeneity
n Technical heterogeneity (enable access to sources)
n Semantic heterogeneity è Schema Matching
n Data model, structural and schematic heterogeneity

è develop data transformation specification (integration plan)
n Deployment

n Set up integration plan in a runtime environment that provides the integrated data
n e.g., federated DBMS, data warehouse, stylesheets, scripts

n Runtime
n React to changes in the data sources/requirements

Middleware for Heterogeneous &
Distributed Information Systems5

© Prof. Dr.-Ing. Stefan Deßloch

Information Integration Approaches
n Bottom-up design

n Used to completely integrate a well-known set of data sources
n Assumes that changes of the number and properties of the data sources are rare
n Integrated schema is created based on the data sources (è Schema Merging)
n No distinguished discovery and analysis phases
n Common in enterprise integration scenarios

n Top-down design
n Used when the available data sources are not known a priori
n The number and properties of candidate data sources for integration are changing

constantly
n Integrated schema is designed independently from the sources, based only on the

application requirements
n Analysis phase precedes discovery phase
è Dynamic Information Integration

n Hybrid design
n Selection of data sources based on requirements
n Design of integrated schema influenced by requirements and data source schemas
n Analysis and discovery are intertwined

Middleware for Heterogeneous &
Distributed Information Systems6

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Schema Matching

© Prof. Dr.-Ing. Stefan Deßloch

Schema Matching
n Goal: Identify semantically related elements across different schemas
n Schema element: table, column, element, attribute, class, etc.
n Result: set of matches or (value) correspondences (a mapping)
n Essential preparation step for most subsequent integration tasks
n Different expressiveness of correspondences

n Match Degree (also: local cardinality)
n 1:1 semantic relationship of one element of schema A with one element of schema B
n 1:n semantic relationship of one element of schema A with a set of elements of schema B
n n:m semantic relationship between sets of elements from schemas A and B

n Match Semantics
n Basic matches do not carry additional semantics, they only indicate “some relationship”
n Advanced matches can indicate abstraction concepts (inheritance, composition, etc.) or

functions (e.g., “A is equivalent to the sum of B1 and B2”)
n “Higher order” correspondences

n Connect different types of schema elements (e.g. a department table corresponding to a
department attribute)

n Connect metadata with data (e.g., categorical attributes)
n Does not refer to the relationship between the instances of the matched

concepts (e.g. instances are identical/subsumed/disjoint/overlap)

Middleware for Heterogeneous &
Distributed Information Systems8

© Prof. Dr.-Ing. Stefan Deßloch

Schema Matching – Terminology Disambiguation

n Mapping
n A set of correspondences between two schemas
n The process of creating a set of correspondences (è schema matching, see below)
n But also

n A function or transformation describing how data is transformed (è Integration plan)
n The process to create a function/transformation (è Integration planning)

n Schema Matching
n The process of obtaining a mapping
n An automatic process to obtain a mapping

Middleware for Heterogeneous &
Distributed Information Systems9

© Prof. Dr.-Ing. Stefan Deßloch

Schema Matching – Challenges
n Identification of matches difficult

n Very large schemas (102-103 relations, 103-104 attributes)
n Complex schemas
n Initially unknown and undocumented schemas
n Ambiguities (Synonyms, Hypernyms, Abbreviations, …)
n Foreign languages
n Cryptic identifiers

n Time-consuming and expensive
n Element-wise “comparing” a schema A with n elements with a schema B with m

elements requires n·m comparisons
n For n » m: O(n2)
n Even higher complexity if sets of elements are compared (O(22n)), e.g. to obtain 1:n/n:m

matches è practical approaches limit sets to a maximum size k
è Numerous approaches to automate schema matching

n Error-prone (false-positives and false-negatives)
n At best semi-automatic (for good results, domain experts must review, amend and revise

matches)
è Used as a preparation step for a human domain expert to reduce search space

Middleware for Heterogeneous &
Distributed Information Systems10

© Prof. Dr.-Ing. Stefan Deßloch

Schema Matching – Classification of Approaches

Schema Matching Approaches

Individual Matchers Combining Matchers

Schema-only based Instance-based

Element-level Structure-level

Linguistic Constraint-
based

Schema-only based

Element-level

Linguistic Constraint-
based

Hybrid matchers Composite matchers

based on [RaBe01]

Middleware for Heterogeneous &
Distributed Information Systems11

© Prof. Dr.-Ing. Stefan Deßloch

Individual vs. Combining Matchers
n Individual matchers exploit only one kind of information for identifying

matches
n Combining matchers use several:

n Hybrid:
n Different approaches “hard-wired” into one (parameterizable) component to create a

single mapping between the schemas
n Reuse of individual elements in combination with other matchers or extension with new concepts

and approaches to matching is difficult
n Composite

n Retroactively combine mappings from different (individual and combining) matchers
n Common methods: (weighted) average, max, min

Schema Matching Approaches

Individual Matchers Combining Matchers

Schema-only based Instance-based

Element-level Structure-level

Linguistic Constraint-
based

Schema-only based

Element-level

LinguisticConstraint-
based

Hybrid
matchers

Composite
matchers

Middleware for Heterogeneous &
Distributed Information Systems12

© Prof. Dr.-Ing. Stefan Deßloch

Schema-only vs. instance-based matching
n Schema-only techniques operate solely on metadata:

n table/column/element/attribute/… identifiers and comments or annotations
n data types
n constraints
n element structuring

n Instance-based techniques also consider properties of the data
n Can only be used among data sources
n In order to use with target schema, sample data can be provided
n Uses statistical information on data values

n Actual value ranges of attribute values (e.g., ints in the interval [0,120])
n Enumeration of values actually present in the data
n Histograms (Number of occurrences of individual attribute values)
n Regular expressions describing value patterns (e.g. [0..9]{5} for German zip codes)

Schema Matching Approaches

Individual Matchers Combining Matchers

Instance-based

Element-level Structure-level

Linguistic Constraint-
based

Schema-only based

Element-level

LinguisticConstraint-
based

Hybrid
matchers

Composite
matchers

Middleware for Heterogeneous &
Distributed Information Systems13

© Prof. Dr.-Ing. Stefan Deßloch

Linguistic Matching – String Similarity
n String distance or similarity measures [CRF03]
n Based on the lexical similarity of schema element identifiers
n Often used after applying string preprocessing techniques

n Tokenization: split identifiers based on case, punctuation, etc.
n Stemming: reduce identifiers to word stem (e.g. “computer” è “comput”)

Note: Stemming algorithms are language-dependent (for English: Porter’s algorithm)
n Stopword elimination

n Edit-distance-like functions, e.g.
n Levenshtein distance:

n Count the number of edit operations (insert, modify, delete) to turn string a into string b
n Example:

kitten
sitting
è 2 replacements, 1 insertion LevenshteinDist(“kitten”,“sitting”) = 3

n Weighting of operations possible (e.g. replace more expensive than delete)
n Normalization to interval [0,1] by dividing result through max(length(String A), length(string B))

n Other measures: Monge-Elkan, Jaro-Winkler, ...

Middleware for Heterogeneous &
Distributed Information Systems14

© Prof. Dr.-Ing. Stefan Deßloch

Linguistic Matching – String Similarity (cont.)
n Token-based functions, e.g.

n Applied on sets of tokens of identifiers
n Tokenization based on word separators (white space, punctuation, special characters, case)

n e.g. “Web-of-trust” è {“Web”, “of”, “trust”}, “CamelCaseIdentifier” è {“Camel”, “Case”,”Identifier”}
n Tokenization based on n-grams

n Tokens created by sliding a window of size n over the string
n e.g. 3-grams for “Information” è {“Inf”, “nfo”, “for”, “orm”, “rma”, “mat”, “ati”, “tio”, “ion”}

n Jaccard similarity – describes the similarity of two sets

n Example:
ProductPrice è A= {Product, Price}, PriceOfProduct è B = {Price, Product, Of}
JaccardSimilarity(A,B) = 2/3

n TFIDF (Term frequency/inverse document frequency) methods
n Measure originally developed for information retrieval
n Here: document = (tokenized) identifier, term = token
n Determines a weight ws(t) for each token t of a string S based on its frequency in the identifier

(term frequency, tfS(t)) and the inverse of its frequency in all identifiers (inverse document
frequency, idf(t))

n Idea: Tokens occurring frequently in the string S have a high weight, while tokens occurring in
almost every string receive a low weight

n Basic weight formula: ws(t) = tfs(t) ∙ idf(t)

()
BA
BA

BA
È
Ç

= ,ilarityJaccardSim

Middleware for Heterogeneous &
Distributed Information Systems15

© Prof. Dr.-Ing. Stefan Deßloch

Linguistic Matching – String Similarity (cont.)
n TFIDF (continued)

n Many different approaches to calculate tfS(t) and idf(t)
n e.g., with nS,x being the number of occurrences of term x in document S, T being the set of all

terms in S, N being the total number of documents, and Nt being the number of documents that
contain term t (at least once):

n Identifiers can be interpreted as vectors in n-dimensional space (with n being the number of
different tokens), with the term weights ws(t) as vector components/elements

n The similarity between the identifiers is the similarity of the direction (ignoring length) of their
respective vectors, i.e., the greater the angle between their vectors, the smaller the similarity

n Applying the cosine on the angle, we normalize the difference in angle to [0,1]: for an angle of
0°, the cosine is 1 (maximum similarity), for an angle of 90° the cosine is 0

n Then the similarity function between two identifiers S1 and S2 is defined using the cosine measure

n Hybrid approaches
n use a secondary similarity function to determine similarity between tokens

n Problem of all approaches based on lexical similarity:
n Lexical similarity does not necessarily indicate semantic similarity! (and v.v.)

)(max

)(
,

,

iSTi

tS
s n

n
ttf

Î

= log)(÷÷
ø

ö
çç
è

æ
=

t
es N
Ntidf

åå

å

==

=

×

×
=

n

t
S

n

t
S

n

t
SS

twtw

twtw
SS

1

2
2

1

2
1

1
21

21

)()(

)()(
),(cosine

Middleware for Heterogeneous &
Distributed Information Systems16

© Prof. Dr.-Ing. Stefan Deßloch

Linguistic Matching – Ontology-based approaches

n Use a Dictionary/Thesaurus/Ontology to store knowledge about application
domain terms and concepts and their relationships, e.g.

n Synonymy
n Hypo/hypernymy, sub/superclasses
n Aggregation
n Opposite terms/concepts

n Can contain alternative forms for terms (word stem, abbreviations)
n Distance of two terms within the thesaurus is translated to similarity value
n Can be extended to handle different languages
n Ontologies can be domain-specific or generic and vary in the level of detail

n Design of a good ontology is a daunting task
n Depending on their specific point of view and their level of detail, ontologies will often

disagree on terms and their relationships, e.g.:
Is “car” a special type of “vehicle” (hyponym), or are the terms synonyms?

Middleware for Heterogeneous &
Distributed Information Systems17

© Prof. Dr.-Ing. Stefan Deßloch

Structural Schema Matching
n Exploit the relationships (structure) among schema elements to improve the

quality of matches
n Usually require an initial set of correspondences provided by (non-structural)

schema matchers
è Practical implementations are usually hybrid matchers (although they could

be built as combining matchers)
n Examples:

n Cupid [MBR01]
n Similarity Flooding [MGR02]

Middleware for Heterogeneous &
Distributed Information Systems18

© Prof. Dr.-Ing. Stefan Deßloch

Cupid
n Developed by Microsoft Research [MBR01]
n Hybrid approach:

n Element-based: linguistic and data type similarity
n Structure-based: TreeMatch algorithm

n Three phases
n Linguistic matching

n Determine initial matches based on schema element identifiers
n Structure matching

n Modify initial values based on element structure
n Creation of mappings/matches

n Choose the matches to return as result
n Method depends on the intended use for the matches, e.g.

n Prune matches below a given threshold
n Return only leaf-level matches

Middleware for Heterogeneous &
Distributed Information Systems19

© Prof. Dr.-Ing. Stefan Deßloch

Cupid Linguistic Matching
1. Normalization

n Tokenization: split identifiers into tokens based on punctuation, case, etc.
e.g. POBillTo è {PO, Bill, To}

n Expansion: expand acronyms with the help of a thesaurus/dictionary
e.g. Qty è Quantity

n Elimination: tag prepositions, articles, etc. to be ignored during comparison
e.g. {PO, Bill, To} è {PO, Bill}

n Tagging: identifiers related to a known application concept are tagged with the concept
e.g. identifiers Price, Cost and Value are tagged with the concept Money

n Tokens have a token type: number, special symbol, common word, concept, content
2. Categorization

n Clusters elements into categories (= a group of elements identified by a set of keywords)
n Goal: reduce comparisons to only those elements within compatible categories
n One category for each:

n Concept tag (e.g., Money)
n Data type (coarse grained, e.g., number, string, date, ...)
n Container (e.g., address contains city, state, and street)

n Elements can belong to multiple categories
n Categories are compatible, if their respective sets of keywords are “name similar”

Middleware for Heterogeneous &
Distributed Information Systems20

© Prof. Dr.-Ing. Stefan Deßloch

Cupid Linguistic Matching (cont.)
n Name similarity:

n The name similarity of two token sets T1 and T2 is the average of the best similarity of each
token in set T1 with a token in set T2

n To determine the similarity of two tokens t1 and t2, a thesaurus lookup is performed
n If no thesaurus entry is present for a pair of tokens, substring matching is used to identify

common pre- and suffixes

3. Comparison
n Determines the linguistic similarity coefficient lsim(s,t) s Î S, t Î T, for pairs of elements

of the two schemas S and T
n For each pair of elements s, t from compatible categories

1. Calculate the name similarity of the element tokens per token type
2. Calculate the weighted mean of the per-token-type name similarity (concept and content tokens

are assigned a higher weight)
3. Calculate lsim for the pair by scaling the result of 2. with the maximum name similarity of the

categories of s and t

n Result: a table of linguistic similarity coefficients lsim(s,t) in the range [0,1]

Middleware for Heterogeneous &
Distributed Information Systems21

© Prof. Dr.-Ing. Stefan Deßloch

Cupid Linguistic Matching – Problems
n Linguistic matching does not consider context:

e.g., false positive: Emp/Name is as similar to
Employee/Name as it is to Department/Name

n Linguistically dissimilar, but semantically related
elements are underrated (caused by missing or
incomplete thesaurus)
e.g. Dept/City – Department/Location

HR

Emp

JobName CityName

Dept

Dept DeptNoEmpNo

Personnel

Employee

OccupationName LocationName

Department

ID

0.5

Hours

0.9

1.0

1.0

0.9

1.0

1.0 0.1

(not all matches shown)

0.0

Middleware for Heterogeneous &
Distributed Information Systems22

© Prof. Dr.-Ing. Stefan Deßloch

Cupid Structural Matching
n Based on a tree representation of the structure of the schema
n TreeMatch algorithm
n Basic intuitions

1. A pair of leaves from two trees is similar, if
a) they are individually similar (linguistic, data type, …)
b) their neighbors (ancestors and siblings) are similar

2. A pair of non-leaves is similar, if
a) they are linguistically similar
b) their subtrees are similar

3. A pair of non-leaves is structurally similar, if their respective leaves are highly similar (not
necessarily their direct children)

n Initialize ssim for all leaves using a data type compatibility matrix (range
[0,0.5])

n Stronglink: similarity between two leaves is above threshold thaccept
n based on weighted similarity (see next chart)

Middleware for Heterogeneous &
Distributed Information Systems23

© Prof. Dr.-Ing. Stefan Deßloch

Cupid Structural Matching (cont.)
n Iterate over the tree nodes in post-order (bottom-up calculation)
n For each pair s,t:

n Calculate ssim(s,t) as the fraction of leaves in the two subtrees below s and t that have
at least one stronglink to a leaf in the other subtree

n Calculate a weighted similarity measure wsim(s,t):
wsim(s,t) = wstruct∙ssim(s,t) + (1-wstruct)∙lsim(s,t)

n If wsim(s,t) is above threshold thhigh, increase the structural similarity of each pair of
leaves in the subtrees of s and t by a factor cinc (not exceeding 1)

n If wsim(s,t) is below threshold thlow, decrease the structural similarity of each pair of
leaves in the subtrees of s and t by a factor cdec (but never below 0)

n Afterwards, a second post-order traversal is needed to recompute the
similarity of the non-leaf nodes

Middleware for Heterogeneous &
Distributed Information Systems24

© Prof. Dr.-Ing. Stefan Deßloch

HR

Emp

JobName CityName

Dept

Schema A

Cupid Structural Matching – Example
n Initialization:

n ssim set to 0.0 for all non-leaf nodes
n ssim set to data type similarity for leaves

n Parameters:
n thaccept = 0.5
n wstruct = 0.7
n thhigh= 0.7, cinc = 1.2
n thlow = 0.3, cdec = 0.8

lsim
ssim
wsim

Dept DeptNoEmpNo

Personnel

Employee

OccupationName LocationName

Department

ID

1.0
0.5
0.7

1.0
0.5
0.7

1.0
0.5
0.7

(not all matches shown)

Schema B

0.5
0.5
0.5

0.9
0.5
0.6

0.1
0.5
0.4

0.9
0.0
0.3

0.0
0.0
0.0

1.0
0.5
0.7

Hours

Middleware for Heterogeneous &
Distributed Information Systems25

© Prof. Dr.-Ing. Stefan Deßloch

Personnel

Cupid Structural Matching – Example (cont.)
n Iteration for

s = Emp, t = Employee:
n Calculate ssim:

3 out of 4 leaves of Emp have stronglinks to
leaves of Employee, 3 out of 3 leaves of Employee
have stronglinks to Emp
ssim(s,t) = 6/7 » 0.9

n Calculate wsim:
wsim(s,t) = wstruct∙ssim(s,t) + (1-wstruct)∙lsim(s,t)

= 0.7 ∙ 0.9 + 0.3 ∙ 0.9 = 0.9
n Modify structural similarity for leaves of s and t:

wsim(s,t) = 0.9 > thhigh= 0.7
à increase ssim for each pair (ls,lt),
ls Î leaves(s) and lt Î leaves(t):
ssimnew(ls,lt) = ssimold(ls,lt) ∙ cinc = 0.5 ∙ 1.2 =0.6
(wsim for leaf-pairs is left unchanged)

n Result:
n Similarity between s and t increased, because

children are similar (intuitions 2b and 3)
n Similarity between the child nodes increased,

because their neighbors (here: ancestors) are
similar (intuition 1b)

lsim
ssim
wsim

HR

Emp

JobName CityName

Dept

DeptNoEmpNo

Employee

OccupationNameID

1.0
0.6
0.7

0.5
0.6
0.5

0.9
0.6
0.6

Schema A

0.9
0.9
0.9

Dept

Department

LocationName

1.0
0.5
0.7

Schema B

s

t

Hours

Middleware for Heterogeneous &
Distributed Information Systems26

© Prof. Dr.-Ing. Stefan Deßloch

Cupid Structural Matching – Example (cont.)
n Iteration for

s = Emp, t = Department:
n Calculate ssim:

ssim(s,t) = 2/7 » 0.3
(1 out of 4 leaves of Emp have stronglinks to
leaves of Department, 1 out of 3 leaves of
Department have stronglinks to leaves of Emp)

n Calculate wsim:
wsim(s,t) = wstruct∙ssim(s,t) + (1-wstruct)∙lsim(s,t)

= 0.7 ∙ 0.3 + 0.3 ∙ 0.0 = 0.21 » 0.2
n Modify structural similarity for leaves of s and t:

wsim(s,t) = 0.2 < thlow= 0.3
à decrease ssim for each pair (ls,lt),
ls Î leaves(s) and lt Î leaves(t):
ssimnew(ls,lt) = ssimold(ls,lt) ∙ cdec
(wsim for leaf-pairs is left unchanged)

n Result:
n Similarity between Emp/Name and

Department/Name decreased, because their
ancestors are not similar

lsim
ssim
wsim

HR

Emp

JobName CityName

Dept

DeptNoEmpNo

Employee

OccupationNameID

Schema A

Dept

0.0
0.9
0.6

Personnel

Department

0.0
0.3
0.2

LocationName

1.0
0.4
0.7

Schema B

s

t

Hours

Middleware for Heterogeneous &
Distributed Information Systems27

© Prof. Dr.-Ing. Stefan Deßloch

Cupid – Summary
n TreeMatch exploits a schema element‘s context to modify similarity values
n Helps to discern between pairs that were rated identical by linguistic

matching:
n Confidence of false positives reduced:

n Match confidence between leaves with dissimilar ancestors decreases
n Match confidence of linguistically similar non-leaves with different children decreases

n Confidence of false negatives or uncertain matches increased
n Match confidence of leaf-pairs with similar ancestor increases
n Match confidence of linguistically dissimilar non-leaves with similar children increases

Middleware for Heterogeneous &
Distributed Information Systems28

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Schema Integration

© Prof. Dr.-Ing. Stefan Deßloch

Schema Integration
n Goal: Create an integrated schema T from a set S of schemas that is:

n complete (contains all concepts of S)
n minimal (contains semantically equivalent concepts only once)
n correct (each concept must correspond to a concept of at least one source)
n intelligible (humans can understand the schema, e.g., names of concepts and their

attributes should be preserved where possible)
n Schema Integration is not about transforming data from one schema to

another (è Information integration, data fusion)
n Also known as schema (or ontology) merging
n Can be separated into four phases [BLN86]:

n Preintegration
n Choose schemas to integrate
n Collect additional information (e.g., documentation of data sources)

n Comparing the schemas
n Schema Matching
n Identify conflicts

Middleware for Heterogeneous &
Distributed Information Systems30

© Prof. Dr.-Ing. Stefan Deßloch

Schema Integration (cont.)
n "Conforming" the schemas

n Resolve conflicts, e.g., by renaming attributes, restructuring (e.g., (de-)normalization))
n At the end of the phase, identical concepts are represented identically in all schemas

n Schema Merging and Restructuring
n Superimpose schemas
n Restructure to meet the four goals

n Two main categories:
n Binary approaches integrate exactly two schemas
n n-ary approaches integrate an arbitrary number of schemas in one step

n For binary approaches, the sequence in which they are applied to the n input
schemas can make a difference

n Most approaches are not algorithms, but guidelines
n Even algorithms require manual conflict resolution
➨ At best semi-automatic

n Examples:
n Rondo Merge Operator [PoBe03]
n Generic Integration Model (GIM) [ScSa05]

Middleware for Heterogeneous &
Distributed Information Systems31

© Prof. Dr.-Ing. Stefan Deßloch

Rondo Merge Operator – Schema Representation

n A model L is a triple (E, Root, Re), with E being a set of elements, Root Î E
being the root element of the model, and Re being the set of relationships of
the model

n Elements with required properties name and an internal ID
n Binary, directed relationships R(x,y) with cardinality constraints and five

different kinds:
n Associates A(x,y) – elements x and y are associated in a (not further specified) manner
n Contains C(x,y) – element x (container) contains element y (containee) (Containment)

n Containees cannot exist on their own (i.e., delete on the container cascades to the containees)
n transitive and acyclic

n Has-a H(x,y) – element x has a subelement y (Aggregation)
n weaker than contains: no cascading of deletes, cycles allowed

n Is-a I(x,y) – x is a specialization of y (Specialization/Generalization)
n transitive and acyclic

n Type-of T(x,y) – x is of type y
n an element can be of at most one type (one-type restriction)

Middleware for Heterogeneous &
Distributed Information Systems32

© Prof. Dr.-Ing. Stefan Deßloch

Rondo Merge Operator (cont.)
n Metamodel-specific relationship implication rules to infer implicit relations

based on explicit relations, e.g.
n If T(q,r) and I(r,s), then T(q,s) – an element q of type r is implicitly also an instance of

any of r’s superclasses s
n If I(p,q) and H(q,r), then H(p,r) and If I(p,q) and C(q,r), then C(p,r) – an element

inherits aggregates and components from its superclasses
n Mappings (=sets of correspondences) are themselves models

n Contain mapping elements (two kinds: equality and similarity)
n Contain mapping relationships M(x,y), indicating that mapping element x represents

element y
n All model elements y represented by a single mapping element via M(x,y) are said to

correspond to one another

Middleware for Heterogeneous &
Distributed Information Systems33

© Prof. Dr.-Ing. Stefan Deßloch

Rondo Merge Operator Requirements
n Inputs:

n Two models A and B
n A mapping MapAB (=set of correspondences) between A and B
n Optional: an indication which model is the preferred one

n Output: a merged model G
n Merge semantics based on Generic Merge Requirements

1. Each element e with e Î A È B È MapAB corresponds to exactly one element e’ in G
(Element preservation)

2. Two input elements are only mapped to the same element in G if the mapping indicates
that they are equal (Equality preservation)

3. Each input relationship is represented directly in G or implied by G (according to the rules
of the metamodel) (Relationship preservation)

4. Elements which are similar (but not equal) according to MapAB, remain separate in G and
are related by a relationship (Similarity preservation)

5. No other elements besides those specified in rules 1-4 exist (Extraneous item prohibition)
6. An element e in G has a property p if it has a corresponding element e’ in A or B that has

property p (Property Preservation)

Middleware for Heterogeneous &
Distributed Information Systems34

© Prof. Dr.-Ing. Stefan Deßloch

Rondo Merge Algorithm
n Form groups of elements for which an equality mapping exists (directly or

transitively)
n Groups include the mapping elements themselves

n For each group I, create an element e in G:
n ID(e) is set to an unused ID value
n For other properties p of e, p‘s value v is in order of precedence:

1. the value of property p of a mapping element in I for which property p is defined, otherwise
2. the value of property p of an element in I of the preferred model for which p is defined,

otherwise
3. the value of property p of any element of I for which p is defined.
n If more than one value is possible in 1-3, one is chosen arbitrarily
➨ Values of mappings take precedence over those of the preferred model over those of the other

model
n For each pair of elements e’ and f’ in G that correspond to different groups E

and F
n if for any two e Î E and f Î F a relationship R(e,f) of kind t exists in A resp. B
n create a relationship R(e’,f’) of kind t in G
n Relationships between elements of the same group are ignored
n Remove implied relationships until a mincover remains

n Resolve conflicts

Middleware for Heterogeneous &
Distributed Information Systems35

© Prof. Dr.-Ing. Stefan Deßloch

Merging Example

Firstname LastnameRole

#m1
(=)

Movie

ID Title Genre

Role

Name Desc ID Name Bio

Film

ID Title Actor

Associates
Contains
Matches

Schema A

Schema B

MID
(=)

ActorName
(=)

#m5
(=)

#m4
(=)

Rolename
(=)

#m7
(=)

#m8
(=)

MapAB

Groups:
G0 {MovieDB}
G1 {A.Movie,B.Film, MapAB.#m8}
G2 {A.Movie.ID, B.Film.ID,

MapAB.MID}
G3 {A.Movie.Title, B.Film.Title,

MapAB.#m1}
G4 {A.Movie.Genre}
G5 {A.Role}
G6 {A.Role.Name, B.Film.Actor.Role,

MapAB.Rolename}
G7 {A.Role.Desc}
G8 {A.Actor, B.Film.Actor, MapAB.#m7}
G9 {A.Actor.Name, MapAB.ActorName}
G10 {A.Actor.ID}
G11 {A.Actor.Bio}
G12 {B.Film.Actor.Firstname,

MapAB.#m4}
G13 {B.Film.Actor.Lastname,

MapAB.#m5}
<Name> Schema Element

<ID>|<Name>
(<Type>)

Mapping Element

MovieDB

Actor

Middleware for Heterogeneous &
Distributed Information Systems36

© Prof. Dr.-Ing. Stefan Deßloch

Merging Example (cont.)
n Merge(A,B, MapAB) with A as the preferred schema

n One element for each group
n replicate all associations between members of the groups as associations between the

new elements

n Remove implied relationships to obtain minimum coverage of associations

G8:ActorG1:Movie

G3:Title G4:Genre

G5:Role

G9:ActorName

G11:Bio

G12:Firstname

G6:Rolename

G10:ID

G13:Lastname

G0:MovieDB

G7:Desc

G2:MID

Middleware for Heterogeneous &
Distributed Information Systems37

© Prof. Dr.-Ing. Stefan Deßloch

n Fundamental conflicts (shared across all metamodels)
n e.g. One-type restriction violated

n Resolve e.g. by introducing a new type that inherits from both Integer and String

n Metamodel conflicts
n Metamodel-dependent resolution rules
n e.g., in most data models, an element can be containee

in at most one container
n e.g. Rolename in the example
n remove one containment relationship

n SQL92 does not have the concept of subcolumn
(as needed for name(firstname, lastname))

Conflict resolution

Model A Model GMAPAB
ZIP

String

ZipCode

Integer

=
Merge

ZIP

IntegerString

Model G‘
ZIPString Integer

NewType

Model B
Type-of

Is-a

G8:ActorG5:Role

G6:Rolename

Middleware for Heterogeneous &
Distributed Information Systems38

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Integration Planning

© Prof. Dr.-Ing. Stefan Deßloch

Integration Planning – Goals
n Creation of an “executable mapping”, i.e., a data transformation from source

to target schemas
n Inputs

n Source schemas (and data)
n Target schema (and sample data)
n (Correspondences)

n Output
n An “executable mapping”, i.e., a specification for data transformation from the sources to

the target schema
n e.g. SQL(/XML) queries/views, ETL scripts, XQuery statements etc.
n Usually created manually with tool support

n Many different approaches to partially automate the process
n Clio Query Discovery [MHH00]
n Tupelo [FlWy06]
n Integration Patterns [Gö05a]

Middleware for Heterogeneous &
Distributed Information Systems40

© Prof. Dr.-Ing. Stefan Deßloch

Clio Query Discovery – Overview
n Clio is a combined tool for schema matching and mapping
n Creates executable mappings as SQL/XQuery statements for use in FDBMS
n Uses value correspondences (VCs):

n Essentially complex 1:n matches
n A value correspondence vi is a tuple (fi,pi) with

n a function fi describing how to derive a certain target attribute B from a set of source attributes Ak
(and possibly from source metadata):
fi: dom(A1) x dom(A2) x … dom(Aq) ® dom(B)

n a filter pi indicating which source values should be used:
pi: dom(A1) x dom(A2) x … dom(Ar) ® boolean

n Note: function and filter of a correspondence can be defined on different sets of
attributes

n Idea: Divide the set of value correspondences V into subsets each of which
determines one way to compute a given target relation Tk

Middleware for Heterogeneous &
Distributed Information Systems41

© Prof. Dr.-Ing. Stefan Deßloch

Clio Query Discovery – Algorithm
n Consists of four distinct phases
n For each target relation Tk

1. Partition V into potential candidate sets {c1, … , cp} that contain at most one VC per
attribute of Tk:

n The ci need not be disjoint
n A ci is called complete if it includes a VC for every attribute in Tk
n Prefer complete potential candidate sets, and further prefer those that use the smallest set of

source relations
n Prune potential candidate sets that are subsets of another
n Incomplete candidate sets are considered, as not every target attribute might have a VC

2. Prune those potential candidate sets that cannot be mapped to a “good” query
n To create a query, a way of joining the source relations of the potential candidate set is needed
n Search for join paths (i.e. foreign keys) between the relations
n If several join paths exist, use the one for which the estimated difference in size of an outer and

an inner join is smallest, resulting in a minimum number of dangling tuples
n If no join paths exist, request the user to specify them
n All potential candidate sets without a join path are removed
n Result: Candidate sets for every target relation, representing different ways to obtain the values

of the target relation
n Each candidate set can be mapped to a Select-Project-Join(-Group-by-Aggregate) query

Middleware for Heterogeneous &
Distributed Information Systems42

© Prof. Dr.-Ing. Stefan Deßloch

Clio Query Discovery – Algorithm (cont.)
3. Find sets of the candidate sets (covers) that contain every VC at least once

n Determine a minimum cover, i.e., eliminate all covers from which candidate sets can be removed
while still containing all VCs

n Rank the remaining covers according to the inverse number of candidate sets they contain (less
candidate sets means less queries)

n For those with an equal number of candidate sets, choose those that have the largest number of
target attributes in all candidate sets (i.e., minimize null values)

n Present ranked covers as alternative mappings to the user
4. Create the query q for target relation Tk from the selected cover

n For each candidate set ci in the cover, create a candidate query qi such that
n All correspondence functions fk mentioned in ci appear in the SELECT clause
n All source relations of the VCs in ci appear in the FROM clause
n All predicates pi of the VCs in ci appear in the WHERE clause
n All source relations needed for join paths appear in the FROM clause and the join predicates appear in the

WHERE clause
n If ci contains aggregate functions, all attributes not in the aggregate function are selected as grouping

attributes. If the aggregate is in the correspondence function fk, it is placed in the SELECT clause. If it is in a
predicate, it is placed in a HAVING clause.

n Combine all candidate queries qi into q by the use of UNION ALL

Middleware for Heterogeneous &
Distributed Information Systems43

© Prof. Dr.-Ing. Stefan Deßloch

Clio Query Discovery – Example

S1.Movie MovieID Title Year Director

S1.Actor ActorID Name Role Pay MovieID

T.Movie Title Year Director Budget

S2.Film FID Title Year Budget Genre

v1

v2

v3

default for fi is id, default for pi is true

v4(SUM(Pay), SUM(Pay)>10M)

v5(id, genre<>“Documentary”)

v6
v7

n Phase 1: Potential candidate sets
c1 = {v1, v2, v3, v4}
c2 = {v5, v6, v7}
c3 = {v1, v6, v3, v7}
c4 = {v5, v2, v3, v7}
...

Middleware for Heterogeneous &
Distributed Information Systems44

© Prof. Dr.-Ing. Stefan Deßloch

Clio Query Discovery – Example (cont.)
n Phase 2: Eliminate potential candidate sets that have no good query

n e.g. c3 and c4 have no join paths, others are subsets
n Only c1 and c2 remain

n Phase 3: Find all minimum covers (sets of candidate sets that contain all VCs)
➨ {{c1,c2}}

n Phase 4: Create candidate querys and combined query:
SELECT Title, Year, Director, SUM(Pay)
FROM S1.Movie m, S1.Actor a
WHERE m.MovieID = a.MovieID
GROUP BY Title, Year, Director
HAVING SUM(Pay) >10M

UNION ALL
SELECT Title, Year, null, Budget
FROM S2.Film
WHERE genre <> “Documentary”

q1

q2

Middleware for Heterogeneous &
Distributed Information Systems45

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Deployment

© Prof. Dr.-Ing. Stefan Deßloch

Information Integration Middleware

n Multitude of middleware systems and architectures
n Major approaches:

n logical (virtual) integration
n federated DBMS, multi-database systems
n data processing specified using SQL, XQuery, …

n physical (materialized) integration
n data replication, data warehousing, ETL (extract-transform-load), XML transformations, message brokering
n utilizes ETL "scripts" based on (product-specific) dataset processing operators

n Technologies
n differ in terms of

n functional properties (data processing specification, expressive power)
n non-functional properties (target response times, data currency)

n are often used in combination, involving several product platforms

n Complex development /deployment tasks!
No common language for platform-independent integration plan!

Middleware for Heterogeneous &
Distributed Information Systems47

© Prof. Dr.-Ing. Stefan Deßloch

An Abstract Data Set Processing Model

n Idea: provide a generic model for describing data set processing
n abstract data set model

n structural properties (schema): flat & nested relations, XML
n data access properties: associative vs. sequential, persistent vs. transient, sorting/grouping

properties, update properties …
n should also cover data streams, XML feeds

n abstract processing model
n platform-independent data processing operators
n starting point: extended relational algebra
n should also cover XML processing, data cleansing operations, propagation of source updates
n used to specify an integration plan in a platform-independent manner

Middleware for Heterogeneous &
Distributed Information Systems48

© Prof. Dr.-Ing. Stefan Deßloch

Major Advantages

n Modeling, visualizing, and reasoning about data processing
independent of a deployment platform

n Top-down development
n choice of platform often based on non-functional requirements

n suggested by system, or determined by user
n automatic generation of target platform artifacts during deployment

n ETL scripts, queries and view definitions, replication setup, …
n initial load vs. incremental load (considering updates, insertions, deletions on data sources)

n Optimization opportunities
n logical (algebraic) optimization
n choice of deployment platform(s) for operator subgraphs

n e.g., push part of processing into the DBMS at the source or target
n platform-dependent optimization

n e.g., chose the most suitable ETL operator

n Active area of research

Middleware for Heterogeneous &
Distributed Information Systems49

© Prof. Dr.-Ing. Stefan Deßloch

Orchid

n Research project at IBM Almaden [HDWRZ08]
n Links different phases, levels of abstraction in information integration

n Mappings, mapping interpretations (à Clio)
n Abstract data set processing model (OHM – Operator Hub Model)
n Deployment platforms

n main focus initially on ETL

n In parts already reflected in IBM products
n IBM Information Server v8.0.1

Middleware for Heterogeneous &
Distributed Information Systems50

© Prof. Dr.-Ing. Stefan Deßloch

Orchid Architecture

ETL Product Level

.dsx DataStageX

ETL Representation Level

Operator
Hub
Model (OHM)

r1 r2 r2 r3
Stage 1 Stage 2

r3 r1

Stage 1 Stage 2L12 L23

Flow Mappings

AàB , BàC , …

Mapping Product
Level (e.g., Clio, RDA)

AàC , …

Primitives
Layer
(Layer 3)

Intermediate
Layer
(Layer 2)

External
Layer
(Layer 1)

Operators
Graph

Stages
Graph
Model

ETL System Mapping System

MSL

Middleware for Heterogeneous &
Distributed Information Systems51

© Prof. Dr.-Ing. Stefan Deßloch

OHM Operators

n Based on Relational Algebra operators
n Initial focus was relational data transformation
n Simple and well-known semantics (30+ years of history)
n Plenty of well-known query graph representations, query optimizations, query rewrite

techniques.

n Main OHM operators:

FILTER JOIN UNION SPLIT

PROJECT UNNEST GROUP

BASIC PROJECT KEYGEN

COLUMN SPLIT COLUMN MERGE

NEST

Middleware for Heterogeneous &
Distributed Information Systems52

© Prof. Dr.-Ing. Stefan Deßloch

Orchid
Source:

Dept*
did
dname

Emp*
ename
did

Target:
TDept*

did
dname

TEmp*
ename
did

User Mapping (Clio)
Source:

Dept*
did
dname

Emp*
ename
did

Target:
TDept*

did
dname

TEmp*
ename
did

User Mapping (Clio)

logical
mapping

abstract ETL
operator graph

platform-specific
ETL script

TDeptL27

TEmpI3 L44

L43

π L6 I1

join

I2

Split

Transform_56

Transform_58

KeyGen Copy

JoinOnDID

Dept

Emp

π

π

∏

∏π

Middleware for Heterogeneous &
Distributed Information Systems53

© Prof. Dr.-Ing. Stefan Deßloch

Deployment: Multiple-runtime deployment

n OHM plan can be deployed into multiple runtimes
n Optimization is an issue

Push-down into DB2
engine

Run on DataStage Engine

Customers PROJECT

Accounts
BASIC

PROJECTFILTER

JOIN BASIC
PROJECT GROUP SPLIT

Big
Customers

FILTER BASIC
PROJECT

Other
Customers

FILTER BASIC
PROJECT

Middleware for Heterogeneous &
Distributed Information Systems54

© Prof. Dr.-Ing. Stefan Deßloch

Supporting Incremental Loading [JoDe08]

n OHM instance as starting point
n Replace basic OHM operators with incremental variants
n Incremental operators are composed of basic OHM operators
n Leverage Orchid‘s optimization and deployment facilities

PROJECTFILTER JOIN

Packaging

Product P

Packaging Q

Product
Dimension

PROJECTFILTER JOINincremental
FILTER

incremental
PROJECT

incremental
JOIN

Middleware for Heterogeneous &
Distributed Information Systems55

© Prof. Dr.-Ing. Stefan Deßloch

Change Data Propagation
n Interface between Change Data Capture and Change Data Application
n Given CDC limitations, what CDA requirements are satisfiable?
n Given CDA requirements, what CDC limitations are acceptable?
n What data transformations are to be performed for change data propagation?

Change Data
Capture

Change Data Propagation

?
Change Data
Application

change data change data

Middleware for Heterogeneous &
Distributed Information Systems56

© Prof. Dr.-Ing. Stefan Deßloch

Change Data Model

n Given dataset D
change data is

n denotes insertions
n denotes deletions
n denotes updates (current state)
n denotes updates (initial state)

n CDC limitations
n Partial change data results from CDC limitations
n Missing change data
n Indistinguishable changes

n Audit columns: or
n Snapshot differentials:
n Log-based CDC:

Middleware for Heterogeneous &
Distributed Information Systems57

© Prof. Dr.-Ing. Stefan Deßloch

PROJECT FILTER

SPLIT

UNION

SPLIT

PROJECT FILTER

JOIN

JOIN

JOIN
MINUS

Incremental OHM Instance

Incremental
PROJECT

Incremental JOINIncremental
FILTER

FILTER PROJECT

SPLIT

UNION

SPLIT

FILTER PROJECT

JOIN

JOIN

JOIN
MINUS

Middleware for Heterogeneous &
Distributed Information Systems58

© Prof. Dr.-Ing. Stefan Deßloch

Summary - Deployment

n Challenge: complexity of implementing an integration solution
n approaches: virtual vs. materialized – or combinations thereof
n different middleware platforms
n complex to use
n no common language for platform-independent integration plans

n Goal: support an abstract data and transformation model
n platform-independent, top-down development
n (cross-platform) optimization

n Orchid
n Links mapping tools and transformation (ETL) platforms using operator hub model, OHM
n Generates ETL scripts from mapping specifications (and vice versa)
n Can deploy to combination of multiple platforms (e.g., DBMS pushdown + ETL)

n Incremental operators
n Model for (partial) change data
n Generation of incremental load processes based on

n CDC limitations , CDA requirements, Source properties and schema constraints
n Leverage Orchid‘s deployment facility

Middleware for Heterogeneous &
Distributed Information Systems59

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Data Integration

n Data Quality Problems
n Causes and Consequences
n Data Cleaning

© Prof. Dr.-Ing. Stefan Deßloch

Data Quality
n All approaches discussed so far only resolve heterogeneity regarding the

schemas/metadata of the data sources
n Problems in the data itself remain to be resolved:

n Erroneous data (values outside domain, violated constraints)
n Data inconsistencies (Contradictions across and within a data source)
n Duplicates (Are two tuples from different sources refering to the same real world object?)
n Completeness (Does a data source deliver all data for a concept?)
n Credibility (Is the source reliable, can the data be trusted?)
n Timeliness (Is the data up-to-date?)

n Many problems are similar to those for schema integration
n Synonyms, homonyms ~ semantic heterogeneity

n Do the tables “Person” and “Pers” refer to the same concept? »
n Do “Gottlieb-Daimler-Straße” and “Gottl.-Daiml.-Str” refer to the same object?

n Considerable degree of uncertainty
n Scale of the problem several orders of magnitude larger:

n ~102-103 schema elements, but 102-109++ instances
n Resolving data quality (“Data Cleaning”) problems is extremely expensive
n Today usually only done in replicating/materialized integration systems

Middleware for Heterogeneous &
Distributed Information Systems61

© Prof. Dr.-Ing. Stefan Deßloch

Classification of Data Quality Problems
n based on [RaDo00, LeNa07]

n Allocation of problems to categories is not always unambiguous
n Instance level multi-source problems were previously subsumed as syntactic

heterogeneity
n Schema level multi-source problems were discussed in previous sections

(forms of heterogeneity)

Data Quality Problems

Single-source Problems Multi-source Problems

Schema Level Instance Level (Schema Level) Instance Level

Middleware for Heterogeneous &
Distributed Information Systems62

© Prof. Dr.-Ing. Stefan Deßloch

Single-source schema level problems
n Lack of integrity constraints: data source cannot enforce application

constraints that are not made explicit using the facilities of the data model
n No unique constraints èDuplicate values
n No enforced referential integrity è inconsistent references
n Inadequate typing (e.g. String to represent dates) è invalid values
n Unspecified dependencies è dependency violations

n e.g. age = $today – birthdate
n NOT NULL constraint omitted èmissing values

n Bad Schema Design
n e.g., redundancies in schema caused by denormalization
è Inconsistencies due to insert/delete/update anomalies

Middleware for Heterogeneous &
Distributed Information Systems63

© Prof. Dr.-Ing. Stefan Deßloch

Single-source data level problems (I)
n Typos (e.g. “Gremany”)

n can be resolved by spellcheckers or domain experts
n Dummy values to “outwit” constraints

n e.g. ZIP code 99999 used for “unknown value”
n “John Doe” for an unidentified person
n often resolvable for domain experts, but dummy values often not used consistently

n Wrong values – value does not properly represent the real world
n e.g. Movie(Title=“Lord of the Rings”, Year=“1928”)

n Deprecated values
n e.g. Germany(Founded=“1949”, Chancelor=“Gerhard Schröder”)

n Cryptic values
n encoded or abbreviated data values

n Embedded values
n values embedded in other fields to compensate for missing fields
n e.g. Movie(Title=“Fight Club, 1999”)

n Wrong allocation
n correct value entered into wrong field/swapped values
n e.g. Actor(Name=“Tyler Durden”, Role=“Brad Pitt”)

Middleware for Heterogeneous &
Distributed Information Systems64

© Prof. Dr.-Ing. Stefan Deßloch

Single-source data level problems (II)
n Wrong reference

n reference to an existing, but the wrong object
n Contradictory values

n Address(City=“Kaiserslautern”, ZIP=“12345”)
n Student(Name=“Christian Meier”, Gender=“f”)

n Transpositions
n different sequences used for data items within a field
n Person(“Hans Meier”), Person (“Müller, Karl”)

n Duplicates
n two or more data records representing the same real world object
n techniques for duplicate detection and resolution
n a problem with many names: record matching, entity resolution, instance disambiguation
n Data Conflicts

n Duplicates contradict each other
n Movie(Title=“Lord of the Rings”, Year=“1978”) vs. Movie(Title=“Lord of the Rings”, Year=“2001”)
n How to separate two duplicates with a conflict from two correct entries?

Middleware for Heterogeneous &
Distributed Information Systems65

© Prof. Dr.-Ing. Stefan Deßloch

Multi-source data level problems
n Differentiation is difficult – therefore, multi-source data level problems

n are new kinds of problems that typically occur during integration of several source (but can also be
present in a single source)

n include many of the single-source data level problems, e.g. Transpositions, Duplicates when they occur
after integration

n Contradictory values
n data from different sources contradict each other (¹Conflict!)
n e.g. Source1.Person(ID=“1234”, Age=“47”) vs.

Source2.Person(ID=“1234”, DoB=“1983-06-03”)
n Differing representations

n e.g. Source1.Emp(ID=“1234”, Job=“Sales Mgr.”) vs.
Source2.Emp(ID=“1234”, Job=“S24”)

n Different physical units
n e.g. Source1.Person(Name=“Herbert Meier”, height=“183”) [cm] vs.

Source2.Person(Name=“Herbert Meier”, height=“72”) [inches]
n Different precision

n e.g. Source1.Movie(Title=“Fight Club”, runtime=“2h19min”) vs.
Source2.Movie(Title=“Fight Club”, runtime=“2h19min12sec”)

n Different levels of details
n e.g. “all actors” vs. “only main cast”

Middleware for Heterogeneous &
Distributed Information Systems66

© Prof. Dr.-Ing. Stefan Deßloch

Handling Data Quality Problems
n Phase 1: Data Scrubbing (individual records)

n Resolve errors within individual tuples/data items
n Normalise data

n unify case, stemming, stopword removal, acronym expansion
n Formating: unify date formats, person names (“H. Schmidt” vs. “Schmidt, H.”), addresses

n Conversions: convert numerical values to a single unit
n simple for physical values (e.g.: length measures: conversion between m, cm, inch etc. is

constant)
n difficult for currencies! (which exchange rate to use? Today‘s? The rate at the (maybe unknown)

insertion date?)
n Remove outliers

n test if data conforms to expectations (expressed as constraints, „sanity checks“)
n perform lookup in reference data (e.g., telephone directories)

n Violated constraints
n test referential integrity

Middleware for Heterogeneous &
Distributed Information Systems67

© Prof. Dr.-Ing. Stefan Deßloch

Handling Data Quality Problems (II)
n Phase 2: Entity Resolution

n Resolve problems involving multiple records
n Detect duplicate entries

n Pairwise comparison of tuples, calculation of a similarity value
n If similarity above threshold -> duplicate detected
n False positives and negatives
n Determine quality of duplicate detection using

n precision (percentage of identified duplicates that are really duplicates)
n recall (percentage of actual duplicates found)

n Very expensive: O(n2) (possibly very complex) comparisons
n Partition data and only compare tuples within a partion

n Data Fusion
n Combine detected duplicates into one consistent tuple

n Equality – tuples agree on all attributes
n Subsumption – a tuple t1 subsumes tuple t2, if it has less null values than t2 and agrees with t2 on all non-

null values
n Complementation – two tuples complement each other, if none subsumes the other and if for each non-null

value of one tuple, the other tuple either has a null value or the tuples agree on the value
n Conflict – all other situations represent a conflict, i.e., if two duplicate tuples do not agree on at least one

attribute value
n Subtlety of null value semantics (unknown, inapplicable, withheld …)

Middleware for Heterogeneous &
Distributed Information Systems68

© Prof. Dr.-Ing. Stefan Deßloch

Data Cleaning – Summary
n Creation of data cleaning mappings requires human interaction

n Tools can suggest reasonable mappings
n Many errors can not be resolved “in batch”

n Either we decide for one source, possibly introducing errors and losing correct data
n Or we do not make a decision and leave conflicting duplicates in the result

n Duplicate detection and resolution introduces uncertainties
n Actual validity of individual tuples cannot reasonably be checked for all kinds

of data
n Only limited availability of reference data for specific application concepts (e.g.

addresses)

Middleware for Heterogeneous &
Distributed Information Systems69

© Prof. Dr.-Ing. Stefan Deßloch

References
[BLN86] Batini, C.; Lenzerini, M. & Navathe, S.B.: A comparative analysis of methodologies for database schema integration

ACM Comput. Surv., ACM Press, 1986, 18, 323-364
[CRF03] Cohen, W.W.; Ravikumar, P. & Fienberg, S.E.: A Comparison of String Distance Metrics for Name-Matching Tasks.

IIWeb, 2003, 73-78
[FlWy06] Fletcher, G.H.L. & Wyss, C.M.: Data Mapping as Search. EDBT, 2006, 95-111
[Goe05b] Göres, J.: Towards Dynamic Information Integration, 1st VLDB WS on Data Management in Grids (DMG05),

Trondheim, 2005, 16-29
[Goe05a] Göres, J.: Pattern-based Information Integration in Dynamic Environments, 9th International Database Engineering

Applications Symposium (IDEAS 2005), 125-134
[HDWRZ08] Hernandez, M.; Dessloch, S.; Wisnesky, R.; Radwan, A.; Zhou, J.: Orchid: Integrating Schema Mapping and ETL.

Proc. 24th International Conference on Data Engineering, April 7-12, 2008, Cancún, México
[JoDe08] Jörg, T; Deßloch, S.: Towards Generating ETL Processes for Incremental Loading. 12th Int.

Database Engineering & Applications Symposium (IDEAS 2008), 2008
[LeNa07] Leser, U. & Naumann, F.: Informationsintegration. dpunkt Verlag, 2007
[RaBe01] Rahm, E. & Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal, 2001, 10, 334-350
[RaDo00] Rahm, E. & Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE Data Eng. Bull., 2000, 23, 3-13
[PoBe03] Pottinger, R. & Bernstein, P.A.: Merging Models Based on Given Correspondences. VLDB, 2003, 826-873
[MBR01] Madhavan, J.; Bernstein, P.A. & Rahm, E.: Generic Schema Matching with Cupid. The VLDB Journal, 2001, 49-58
[MGR02] Melnik, S.; Garcia-Molina, H. & Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to

Schema Matching. ICDE 2002, 117-128
[MHH00] Miller, R.J.; Haas, L.M. & Hernández, M.: Schema Mapping as Query Discovery. VLDB 2000,

Morgan Kaufmann, 2000, 77-88
[ScSa05] Schmitt, I. & Saake, G.: A comprehensive database schema integration method based on the theory of formal concepts.

Acta Inf., 2005, 41, 475-524

Middleware for Heterogeneous &
Distributed Information Systems70

