
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 2
Distributed Information Systems Architecture

© Prof.Dr.-Ing. Stefan Deßloch

Chapter Outline
n (Distributed) transactions (quick refresh)
n Layers of an information system

n presentation
n application logic
n resource management

n Design strategies
n top-down, bottom-up

n Architectures
n 1-tier, 2-tier, 3-tier, n-tier

n Distribution alternatives
n Communication

n synchronous, asynchronous

Middleware for Heterogeneous and
Distributed Information Systems2

© Prof.Dr.-Ing. Stefan Deßloch

Transaction Processing (TP)
n TP application

n collection of transaction programs
n provides functions to automate a given business activity
n typically interacts with an on-line user (on-line TP, OLTP)

n Transaction program
n executes a number of steps/operations to implement a business function

n accesses shared data (e.g., using a DBS)
n may communicate with other programs/components

n example: order processing on the internet
1. user submits order request using a web browser
2. web server routes the request to a transaction server
3. transaction program is executed on the server to process the order (involves accessing

catalog tables, inserting into an order table and billing a credit card)
n Transaction

n (effects of) executing a transaction program
n with expected properties/guarantees for its steps/operations: ACID

Middleware for Heterogeneous and
Distributed Information Systems3

© Prof.Dr.-Ing. Stefan Deßloch

"ACID" Transactions
n Atomicity

n TA is an atomic processing unit
n "all-or-nothing" guarantee

n Consistency
n completed TA results in consistent DB state
n intermediate states may be inconsistent
n final state has to satisfy DB integrity constraints

n Isolation
n concurrent TAs must not influence each other

n Durability
n DB changes of a successfully completed TA are guaranteed to "survive"
n system crash must not cause loss of changes
n changes of completed TA can only be undone by executing another TA

(compensating TA)

Middleware for Heterogeneous and
Distributed Information Systems4

© Prof.Dr.-Ing. Stefan Deßloch

Communication between TA Program and DBS

Transaction Program

BOT
.
.

Opi
.
.

EOT

DBS

Guarantee that changes can be rolled
back

Execute DML operation
(check immediate constraints)

(check deferred constraints)

Guarantee recoverability of all changes

Release resources (locks)

Acknowledge TA success

2PC
phase 1

phase 2

Middleware for Heterogeneous and
Distributed Information Systems5

© Prof.Dr.-Ing. Stefan Deßloch

Distributed Transactions
n Distributed Information System

n consists of (possibly autonomous)
subsystems jointly working in a
coordinated manner

n may involve multiple resource
managers (e.g., DBS)

n Require global (multi-phase)
commit protocol to guarantee
atomicity of global TA

n handled by a coordinator
n involving multiple agents

(participants)

n requirements for commit protocol
n minimal effort (#messages, #log

entries)
n minimal response delay

(parallelism)
n robustness against failure

n expected failure
n partial failure (connection loss, …)
n transaction failure
n system failure (crash)
n hardware failure

n failure detection (e.g., using time-
out)

C

A1 A2 An…

1 coordinator

n agents
(subtransactions)

Middleware for Heterogeneous and
Distributed Information Systems6

© Prof.Dr.-Ing. Stefan Deßloch

Two-phase Commit
n Prepare-Phase, Commit/Abort-Phase
n Requires sequence of state transitions, to be safely stored in the transaction

log
Coordinator View

INITIAL

BEGIN

TERMINATED

COMMITTINGABORTING

EOT
ð
Log Write: Begin
Send: PREPARE

FAILED received
or TIMEOUT
ð
Log Write: Abort
Send: ABORT

READY received
by all
ð
Log Write: Commit
Send: COMMIT

all ACK messages
received
ð
Log Write: End

all ACK
messages received
ð
Log Write: End

Agent View
WAIT

PREPARED

COMMITTEDABORTED

received PREPARE
ð
Log Write: Prepared
Send: READY

ABORT or TIMEOUT
ð
Log Write: Aborted

rec. COMMIT
ð

Log Write:
Comitted

Send: ACKrec. ABORT
ð

Log Write: Aborted
Send: ACK

received PREPARE
ð
Send: FAILED

Middleware for Heterogeneous and
Distributed Information Systems7

© Prof.Dr.-Ing. Stefan Deßloch

Hierarchical 2PC
n Execution of transaction may form a process tree

n initiator at the root
n edges represent process links for request/response

n Hierarchical 2PC, with each node acting as a
n agent/participant for its caller
n coordinator for its subtree

P1

P2 P5

P3 P4 P6 P7

PREPARE PREPARE

PREPARE PREPAREPREPARE PREPARE

READY

READY READY READY FAILED

FAILED

Preparation Phase

Middleware for Heterogeneous and
Distributed Information Systems8

© Prof.Dr.-Ing. Stefan Deßloch

Layers of an Information System
n Separation of functionality into three

conceptual layers
n presentation

n interacts with client
n present information
n accept requests

n graphical user interface, or module that
formats/transforms data, or …

n application logic
n programs that implement the services

offered by the IS
n often retrieves/modifies data

n resource management
n manages the data sources of the IS

n DBMSs
n file system
n any "external" system

n In an IS implementation, these layers
might not be clearly distinguishable

presentation layer

application logic layer

resource management
layer

client

inform
ation system

Middleware for Heterogeneous and
Distributed Information Systems9

© Prof.Dr.-Ing. Stefan Deßloch

Top-Down Information System Design
n Steps

1) define access channels and client platforms
2) define presentation formats and protocols
3) define functionality (application logic) necessary to deliver the content and formats
4) define the data sources and data organization needed

n Design involves specification of system distribution across different computing
nodes

n distribution possible at every layer
n Homogenous environment, tightly-coupled components
n Pro: focus on high-level goals, addresses both functional and non-functional

requirements
n Con: can only be applied if IS is developed from scratch

Middleware for Heterogeneous and
Distributed Information Systems10

© Prof.Dr.-Ing. Stefan Deßloch

Bottom-up Information System Design
n Steps

1) define access channels and client platforms
2) examine existing resources and their functionality (RM layer)
3) wrap existing resources, integrate them into consistent interface (AL layer)
4) adapt output of AL for client (P layer)

n Design focuses on integration/reuse of existing (legacy) systems/applications
n functionality of components is already (pre-)defined

n modification or re-implementation is often not a choice
n driven by characteristics of lower layers

n start with high-level goals, then determine how it can be achieved using existing
components

n often starts with thorough analysis of existing applications and systems to
determine which high-level objectives can be achieved

n results in loosely-coupled systems
n components can mostly be used stand-alone
n underlying systems often remain autonomous

n Not an advantage, but a necessity

Middleware for Heterogeneous and
Distributed Information Systems11

© Prof.Dr.-Ing. Stefan Deßloch

Information Systems Architecture
n Layers define a logical separation of functionality
n Implementing an IS

n decide how to combine/distribute the layers into so-called tiers
n Tier

n modularizes the IS architecture
n may implement a (part of a) single layer, or multiple layers
n provides well-defined interfaces for accessing its functionality
n tier ≠ node

n Going from N to N+1 tiers in general
n adds flexibility, functionality, distribution and scalability options
n introduces performance, complexity, management, tuning issues

Middleware for Heterogeneous and
Distributed Information Systems12

© Prof.Dr.-Ing. Stefan Deßloch

1-Tier Architecture
n All layers are combined in a single tier
n Predominant on mainframe-based computer architectures

n client is usually a "dumb terminal"
n focus on efficient utilization of CPU, system resources

n "Monolithic" system
n no entry points (APIs) from outside, other than the channel to the dumb terminals
n have to be treated as black boxes
n integration requires "screen scraping"

n program that simulates user, parses the "screens" produced by the system
n the prototype of a legacy system

n Advantages
n optimizes performance by merging the layers as necessary
n client development, deployment, maintenance is not an issue

n Disadvantages
n difficult and expensive to maintain

n further increased by lack of documentation and qualified programmers

Middleware for Heterogeneous and
Distributed Information Systems13

© Prof.Dr.-Ing. Stefan Deßloch

2-Tier Architecture
n Pushed by emergence of PC, workstations (replacing dumb terminals)

n presentation layer is moved to the PC
n exploit the processing power of PC

n free up resources for application logic/resource management layers
n possibility to tailor presentation layer for different purposes

n e.g., end-user presentation vs. administrator presentation modules
n typically realized as client/server system

n one (popular) approach: client corresponds to presentation layer, server includes the
application logic and resource management layers

n another approach (more traditional C/S): client includes presentation and application logic
layer, server provides resource management services

n where does the client end and the server begin?
n thin client/fat server vs. fat client/thin server

presentation resource
mgmnt.

application
logic

client server

fat serverfat client

Middleware for Heterogeneous and
Distributed Information Systems14

© Prof.Dr.-Ing. Stefan Deßloch

Properties of 2-Tier Architecture
n Pro

n emphasis on "services" provided by server, requested/consumed by client
n definition of application programming interfaces (APIs) as published server

interfaces
n portability, stability
n multiple types of clients can utilize the same server API

n server can support multiple clients at the same time
n sufficient scalability for departmental applications

n Con
n scalability is often limited (esp. for thin clients)

n requires to move to very powerful server machines
n especially fat clients require increased software maintenance/deployment on client

side
n client is often turned into an integration engine interacting with multiple types of

servers
n extra application layer appears in thin clients

Middleware for Heterogeneous and
Distributed Information Systems15

© Prof.Dr.-Ing. Stefan Deßloch

3-Tier Architecture
n Usually based on a clear separation

between the three layers
n client tier implements presentation

layer
n middle tier realizes application logic

n employs middleware
n resource management layer composed

of a (set of) servers (e.g., DBS)
n Addresses scalability

n application layer can be distributed
across nodes (in a cluster)

n Portability of application logic
n Supports integration of multiple

resource managers
n Disadvantages

n increased communication

middleware

client

presentation layer

application logic layer

resource management
layer

inform
ation system

Middleware for Heterogeneous and
Distributed Information Systems16

© Prof.Dr.-Ing. Stefan Deßloch

N-Tier Architecture
n Further generalizes 3-tier

architecture
n Resource layer may include 1-, 2-,

3-, N-tiered systems
n focus on linking, integration of

different systems
n Presentation layer may be realized

in separate tiers
n especially important for supporting

internet connectivity
n client using browser
n server-side presentation done by

web server, dynamic HTML
generation (HTML filter)

n usually results in 4-tier architecture

middleware

client

presentation
layer

application logic layer

resource management
layer

inform
ation system

web browser

web server

HTML filter

Middleware for Heterogeneous and
Distributed Information Systems17

© Prof.Dr.-Ing. Stefan Deßloch

Distributed IS
n Why distribution?

n economic reasons
n e.g., reduced hardware cost

n organizational reasons
n local support of org. structures
n integration of existing (legacy) data

sources or application systems
n local autonomy

n technical reasons
n increase performance (locality of

processing, exploit parallelism)
n high availability and reliability

(replication)
n scalability

n Client view
n distribution transparency
n single system image

n Different realization alternatives
n often used in combination

presentation

application
logic

resource
management

client

DB1 DB2 DB3

Distribution
?

distributed
data

sources

Middleware for Heterogeneous and
Distributed Information Systems18

© Prof.Dr.-Ing. Stefan Deßloch

Alternative 1
n Transaction as the unit of distribution

n transaction routing
n request is routed to the node

responsible for processing (XOR)
n only local transaction processing

(within a node)
n no cooperation among nodes/DBMS!

n Pros
n simple solution, easy to support
n works in heterogeneous

environments (e.g., with HTTP)
n Cons

n inflexible, limited scope
n transactions restricted to single node

(i.e., no distributed transactions)

presentation

application
logic

resource
management

client

DB1 DB2 DB3

T1

DBS1

T2

DBS2

T3

DBS3

T?

xor

Middleware for Heterogeneous and
Distributed Information Systems19

© Prof.Dr.-Ing. Stefan Deßloch

Alternative 2
n Application program/component as the unit

of distribution
n invocation of (remote) program components

through RPC/RMI-based mechanisms
n RPC, CORBA/EJB-RMI, Stored Procedures, …
n "programmed" distribution
n middleware can help to achieve location transparency

n each program (component) accesses local DB
only

n distributed transaction processing
n coordinated by TP-monitor/application server
n supported by (local) application server and DBMSs

n Pros
n locality of processing (low communication

overhead)
n supports application reuse, heterogeneous

data sources
n Cons

n inflexibility regarding data access operations
n potential programming model complexity

(distribution, error handling, …)
n DB access operation cannot reach across

multiple nodes

presentation

application
logic

resource
management

client

DB1 DB2 DB3

T1

DBS1

T2

DBS2

T3

DBS3

P

distributed TA

Middleware for Heterogeneous and
Distributed Information Systems20

© Prof.Dr.-Ing. Stefan Deßloch

Alternative 3
n DB operation as the unit of distribution

n Application can access remote data
sources

n function request shipping, data access
services

n (proprietary) DBMS client software
n DB-gateways

n Programmer aware of multiple
databases

n multiple schemas
n each DB operation restricted to a single

DB/schema
n Distributed transaction processing

n similar to alternative 2
n Pros

n high flexibility for data access
n Cons

n potentially increased communication
overhead

n programming model complexity
n multiple DBs, schemas
n heterogeneity of data sources, access

APis, …

presentation

application
logic

resource
management

client

DB1 DB2 DB3

DBS1

T

DBS2 DBS3

P

distributed TA

Middleware for Heterogeneous and
Distributed Information Systems21

© Prof.Dr.-Ing. Stefan Deßloch

Alternative 4
n Distribution controlled by DBMS/

middleware (e.g., federated DBMS)
n single logical DB and DB-schema for

application programmer
n distributed transaction processing

n see alternatives 2 and 3
n DB-operation may span across multiple

data sources
n Pros

n high flexibility for data access
n simple, powerful programming model

n query language, integrated schema
n Cons

n potentially increased communication
overhead

n schema integration required

presentation

application
logic

resource
management

client

DB1 DB2 DB3

DBS1

T

DBS2

DBS3

P

distributed TA

Middleware for Heterogeneous and
Distributed Information Systems22

© Prof.Dr.-Ing. Stefan Deßloch

Communication in an Information System
n Blocking and non-blocking interactions

n "synchronous" and "asynchronous" are accepted synonyms for “blocking”/”non-
blocking” in our context

n formal definition of synchronous involves additional aspects (transmission time), which we
are ignoring here

n interactions is
n synchronous/blocking, if the involved parties must wait for interaction to conclude before

doing anything else
n asynchronous/non-blocking, otherwise

Middleware for Heterogeneous and
Distributed Information Systems23

© Prof.Dr.-Ing. Stefan Deßloch

Synchronous or Blocking Calls
n Thread of execution at the requestor side must wait until response comes

back
n Advantage: Easier to understand for the programmer

n state of calling thread will not change before response comes back
n code for invoking a service and processing the response are next to each other

n Disadvantage: Calling thread must wait, even if a response is not needed
(right away) for further processing steps

n waste of time, resources
n blocking process may be swapped out of memory
n running out of available connections

n tight coupling of components/tiers
n fault tolerance: both parties must be online, work properly for the entire duration of call
n system maintenance: server maintenance forces client downtime

blocking period
request

response

invoking execution thread

invoked execution thread

Middleware for Heterogeneous and
Distributed Information Systems24

© Prof.Dr.-Ing. Stefan Deßloch

Asynchronous or Non-Blocking Calls
n Thread of execution at requestor side is not blocked

n can continue working to perform other tasks
n check for a response message at a later point, if needed

n Message queues
n intermediate storage for messages until receiver is ready to retrieve them
n more detail: chapters on message-oriented middleware

n Can be used in request-response interactions
n requester "actively waits"
n handle load peaks

n Supports other types of interaction
n information dissemination, publish/subscribe

putinvoking execution thread

invoked execution thread

fetch

putfetch

queue

thread remains active

queue

Middleware for Heterogeneous and
Distributed Information Systems25

© Prof.Dr.-Ing. Stefan Deßloch

Middleware
n Middleware

n supports the development, deployment, and execution of complex information
systems

n facilitates interaction between and integration of applications
across multiple distributed, heterogeneous platforms and data sources

n Wide range of middleware, at every IS layer
n integrating databases on a LAN
n integrating complete 3-tier systems within a company
n linking business partners across company boundaries
n …

Middleware for Heterogeneous and
Distributed Information Systems26

© Prof.Dr.-Ing. Stefan Deßloch

Two major aspects
n Middleware as a programming abstraction

n hide complexities of building IS
n distribution
n communication
n data access, persistence
n error/failure handling
n transaction support

n Middleware as infrastructure
n realizes complex software infrastructure that implements programming abstractions

n development
n deployment

n code generation, application "assembly"
n runtime execution

Middleware for Heterogeneous and
Distributed Information Systems27

© Prof.Dr.-Ing. Stefan Deßloch

Summary
n Distributed Transactions for achieving global atomicity

n 2PC, hierarchical 2PC
n fundamental concept in distributed IS

n Logical layers of an information system
n presentation, application logic, resource management

n Design strategies
n ideally top-down, but usually bottom-up (out of necessity)

n Architectures
n 1-tier, 2-tier, 3-tier, n-tier
n flexibility, distribution options vs. performance, complexity, manageability

n Distribution alternatives
n units of distribution, pros and cons

n Communication
n synchronous, asynchronous

Middleware for Heterogeneous and
Distributed Information Systems28

