Prof. Dr.-Ing. Stefan DeBloch
AG Heterogene Informationssysteme ‘.
Geb. 36, Raum 329 I m TeCHNISCHE UNIVERSITAT

Tel. 0631/205 3275 m KAISERSLAUTERN

dessloch@informatik.uni-kl.de

Chapter 6 — Object Persistence Services

H§s>

Object/Relational Impedance Mismatch

= Object-oriented programming/design is increasingly used for building
information systems

= general approach: design a domain object model that represents the data,
structure and common behavior of the business objects

= domain object state has to be retrieved from and written to an underlying DBS
(usually a relational DBS)

= Problem: object-oriented and relational models have severe differences
= impedance mismatch

structure scomplex values, collections -flat tables
«class hierarchies (inheritance)
i i binary *binary
reIatlonshlps *1:1, 1:n, n:m (using collections) °1:1, 1:n
uni-/bi-directional references ~value-based, symmetric
behavior "methods
access pa rad ig m «object navigation (follow references) declarative, set-oriented (queries)

g M‘\lj 2 Middleware for Heterogeneous and

© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Data Access Layer

= The impedance mismatch needs to be addressed/resolved in the application
program
= requires detailed knowledge of the DB-schemas, DBMS capabilities
= involves coding SQL statements, awareness of transaction processing concepts

= Data access layer

= introduces a common infrastructure layer where all interactions with the DBMS are
performed

= common design approach to separate the business logic from the data access logic
of the transaction server programs

= helps increase program maintenance, programmer productivity
= building a data access layer is a complex undertaking

= Middleware to help with this task
= object/relational mappers (ORM), object persistence services/frameworks

= shield the application from existing data stores
= data model, query language, API, schema

= simplification of programming model for persistent data access and management
= ho explicit interaction with data source using SQL, JDBC, ...

g ns B 3 Middleware for Heterogeneous and

© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Object Persistence Services & Frameworks

= Persistent object: lifetime of the object exceeds the execution of individual
applications

= Basic approach (both in an application server and stand-alone appl. context)

= application interacts only with objects
= Create, delete
= access/modify object state variables
= method invocation
= persistence infrastructure maps interactions with objects to operations on data
sources
= e.g., INSERT, UPDATE, SELECT, DELETE

= May involve definition of a "mapping" from objects to data store schema

= mapping has to cover
= datatypes
= classes, class hierarchies
= identifiers
= relationships

Caution: inherent performance impact!

@ S B Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Object-Relational Mapping

= Object class
« to single table

« to multiple tables to support
= inheritance
= complex field values

= Object reference

= to foreign key constraint
= Instance object

= to one or more rows in a table
= Data types and values

= Mmapping needs to consider
variable length data (strings),

Accountclass

String accountID | Accountinstance
String ownerName

double balance

accountID = 123456
ownerName = Miller
balance = 1587.52

accountID ownerName balance

differences in the type models, 123456 Miller 1587.52
semantics
= Mapping tool support
« top-down, bottom-up, meet-in-
the-middle
@"S B 5 Middleware for Heterogeneous and

© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

g

The CRUD - Pattern

= Typical operation pattern provided by data access layer/persistence service

CREATE

Account instance

accountID = 123456
ownerName = Miller
balance = 1587.52

READ/RETRIEVE

Account instance

accountID = 123456
ownerName = Miller
balance = 1587.52

UPDATE

Account instance

accountID = 123456

Insert Select

\ 4

ownerName = Miller
balance = 1087.52

Update

DELETE

Account instance

accountID = 123456
ownerName = Miller
balance = 1587.52

Delete

123456 Miller

HisS2

© Prof.Dr.-Ing. Stefan DefSloch

1587.52 123456 Miller 1087.52

123 i .52

Middleware for Heterogeneous and
Distributed Information Systems

Object Persistence

= Aspects of persistence (Atkinson et.al, SIGMOD Record 1996)

= Orthogonal persistence

= persistence independent of data type, class

= instances of the same class may be transient or persistent
= Transitive persistence (aka persistence by reachability)

= Objects can be explicitly designated to become persistent (i.e., roots)

= Objects referenced by persistent objects automatically become persistent, too
= Persistence independence (aka transparent persistence)

= code operating on transient and persistent objects is (almost) the same

= "client object" side: no impact when interacting with persistent objects

application may have to explicitly "persist" an object, but continues to use the same interface for
interacting with the persistent object

interactions with a data store are not visible to/initiated by the client object, but happen
automatically (e.g., when object state is modified or at EOT)

= "persistent object" side: no special coding for "implementing" persistence
= Realizing the above aspects

= requires significant efforts in programming language infrastructure
= above goals are almost never fully achieved
= may be considered "dangerous" (transitive persistence)

g S B 7 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Persistence Programming Model Design Points

= Object-relational mapping

= explicit mapping meta-data (descriptor files, annotations, ...)

= hand-crafted implementation by developer (i.e., implementing CRUD-methods)
= Determining object persistence

= statically (compile-time) — all/no objects of a certain class/type/programming
model concept are persistent, or

= Ssemi-dynamic — objects of preselected classes (persistence-capable) may become
persistent dynamically at runtime, or

= dynamic (also: orthogonal persistence) — any object may be transient or persistent
= Identifying objects

= implicit OID, or explicit (visible) object key (primary key)

= Object/identity cache support
= Locating/referencing persistent objects

= by object key (lookup)

= by query

@ S B 8 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Persistence Programming Model Design Points (2)

= Accessing object state (from client, from server/persistent object)
= (public) member variables, or
= Object methods (getter/setter, ...)
= Updating persistent object state
= explicit (methods for store, load, ...), or
= automatic (immediate, deferred), or
= combination
= Handling dependencies/relationships
= Referential integrity
» Lazy vs. eager loading
= Pointer swizzling”

@ S B 9 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Java Persistence API (JPA)

= Java standard for persistence frameworks
= Result of a major 'overhaul' of EJB specification for persistence, relationships,
and query support
simplified programming model
standardized object-to-relational mapping
inheritance, polymorphism, "polymorphic queries”
enhanced query capabilities for static and dynamic queries
= API usage
=« from within an EJB environment/container
= outside EJB, e.g., within a standard Java SE application
= Support for pluggable, third-party persistence providers

= We use JPA throughout this chapter to illustrate concepts and design points

g ns B 10 Middleware for Heterogeneous and

© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Entities Iin JPA

"An entity is a lightweight persistent domain object”
« in EJB, entities are not remotely accessible (i.e., they are local objects)

= Simple programming model for EJB entities

= entity is a POJO (plain old Java object)
= no additional interfaces or implementation of generic (CRUD-support) methods required
= class has to be designated (e.g., annotated) as Entity class

= entity state (instance variables) is encapsulated, client access only through
accessor methods (getX (), setX()) or other methods

= Explicit mapping meta-data
= use of annotations for persistence and relationship aspects
= alternative: XML deployment descriptor

= Entities and inheritance

= abstract and concrete classes can be entities
= entities may extend both non-entity and entity classes, and vice versa

=» Does JPA provide orthogonal persistence?

@ S B 11 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Requirements on Entity Class

= Public, parameter-less constructor
= Top-level class, not final, methods and persistent instance variables must not be final
= Entity state is made accessible to the persistence provider runtime

= either via instance variables (protected or package visible)

= or via (bean) properties (getProperty/setProperty methods)

= consistently throughout the entity class hierarchy

= Collection-valued state variables have to be based on (generics of) specific classes in
java.util

=» Does JPA provide transparent persistence?

@ S B Middleware for Heterogeneous and

© Prof.Dr.-Ing. Stefan DeBloch 12 Distributed Information Systems

Mapping to RDBMS

= Entities must have primary keys

= defined at the root, exactly once per class G sk
hierarchy @Id String _accountD
= may be simple or composite String ownerName

= key class required for composite keys double balance

= must not be modified by the application
= Mmore strict than primary key in the RM

= Entity mapping
= default table/column names for entity
classes and persistent fields

= Ccan be customized using annotations,
deployment descriptor accountID ownerName balance

= mapping may define a primary table and
one or more secondary tables for an entity

Accounts table

AccountDetails table

= state of an entity/object may be distributed ™ accountiD
across multiple tables Jjoin
= heed to specify join columns for joining columns
tuples from primary and secondary tables
to “build” the entity state
gns B 13 Middleware for Heterogeneous and

© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Embeddable Classes

= Embeddable classes
= 'fine-grained" classes used by

an entity to represent state Person class
= instances are seen as embedded GIETe TR
objects, do not have a persistent Set<Address> addresses¢——+ Address class
Identlty) o String street
= mapped with the containing String city
entities String zipcode
= not sharable across persistent String country
entities
= Used as field variable type in
embgddlng class | Person table
= single-valued or collection-
valued hame
= Mapping to the same table as Adresses table
the containing entity, or to a name street city zipcode country
collection table
gus B 14 Middleware for Heterogeneous and

© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

= Single table with discriminator column (default) @
= has columns for all attributes of any class in the
hierarchy
= stores all instances of the class hierarchy

= has a special discriminator column identifying the class
within the hierarchy to which a specific instance

belongs
= Horizontal partitioning (single table per concrete
entity class)
= one table per entity class, with columns for all

Inheritance Mapping Strategies é

attributes (incl. inherited)
= table stores only the direct instances of the class _ -

= one table per entity class, with columns for newly

plus ID column

= Vertical partitioning (separate table per subclass)
= table stores partial information about all (i.e., -

defined attributes (i.e., attributes specific to the class), l

transitive) instances of the class
=» Advantages/disadvantages?

@ 'S B 15 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Relationships

= Persistence model needs to be complemented by relationship support
= represent relationships among data items (e.g., tuples) at the object level

= support persistence of native programming language concepts for "networks" of
objects

= references, pointers
= Possible alternatives

= Value-based relationships at the object level (see relational data model)

= requires to issue a query (over objects) to locate related object(s)
= No "navigational" access

=» relationships are part of persistent object interface(s) or implementation

= getter/setter methods or properties/fields to represent relationship roles of participating
entities
= relationships are always binary, collection support required for 1:n, n:m

= uni-directional or bi-directional representation
consistency?

<S>

16 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DefSloch

Distributed Information Systems

Relationships in Java Persistence API

= Relationships are represented in the same way as persistent attributes
= member variables, get/set method pairs are annotated as relationship attributes
= Vvariable refers to an instance of the referenced Entity class
= Relationship types: 1:1, 1:n, n:1, n:m
= 1:1, n:1 —variable type is the Entity class
= 1:n, n:m — variable type is a collection type with Entity class as member type

= Supports uni- and bi-directional binary relationships
= bi-directional
= has a designated owning side and inverse side
= for 1:n and n:1, the “many” side has to be the owning side
= does not provide automatic maintenance of inverse relationships!
= the designated owning side determines the state at the persistent data store

= uni-directional relationship only has an owning side

@ S B 17 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Relationship Mapping in JPA

= Standard relationship mapping
= represented using primary key/foreign key relationships

= table for the designated "owning" side has to contain the foreign key
= exception: for unidirectional 1:n-relationship, foreign key is on the table for the “n” side!

= N:M-relationships represented using a relationship table (“join table”)
= Additional mapping strategies can involve “join tables” for 1:1, 1:n, n:1

= Example

Customer class Order class LineItem class
1:n 1:n
Collection<Order> orders < » Customer customer Product p
Collection<Lineltem> items //
Customer table LineItem table
custid mEn M ordId mEn

Order table ordid custid

@ S B 18 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

g

Entity Life Cycle and Persistence

= Determining persistence

= instances of entity classes may be
transient or persistent

= persistence property controlled by
application/client (e.g., a

SessionBean)

no persistent
ID yet

refresh()

(e

persist()

Entity manager manages entity
state and lifecycle within
persistence context

remove()

A 4

managed

HisS2

© Prof.Dr.-Ing. Stefan DefSloch

merge()

persist()

persistence context

ends

detached

19

persist(obj) -> INSERT
merge(obj) -> UPDATE
remove(obj) -> DELETE
find(class, pKey) -> SELECT
refresh(obj) -> SELECT

entities are

: removed] associated with
a persistence

context

Middleware for Heterogeneous and
Distributed Information Systems

<Hi

Example — Client Perspective

@TransactionManagement(CONTAINER)
@TransactionAttribute(REQUIRED)
public class OrderEntryBean implements OrderEntry {

@PersistenceContext private EntityManager em; _——

Client is a stateless session bean with
@Stateless transaction attribute REQUIRED

Persistence context (entity
manager functions) is provided
and scoped within the transaction

public void enterOrder(int custID, Order newOrder) { | EM s used to find a customer

Customer cust = em.find(Customer.class, custID);

entity using primary key;
=» cust is a managed entity

newOrder (state is ,new") is connected to

cust.aetOrders().add(newOrder): cust via ,,orders" (inverse) relationship.
g 0 ()' ~——_ newOrder is still transient (stateis ,,new").

newOrder.setCustomer(cust); Now the owning side of the relationship is updated.
newOrder is still transient (stateis ,new").

em.persist(newOrder); \JI newOrder is made persistent (state is ,managed").

} Z Method ends = INSERT newOrder in the database; transaction commits, persistence

S B context ends, newOrder becomes , detached"!

© Prof.Dr.-Ing. Stefan DeBloch 20

Middleware for Heterogeneous and
Distributed Information Systems

Transactions and Persistence Contexts

= Access of persistent data resulting from persistent object manipulation always
occurs in the scope of a transaction
= What happens at transaction roll-back?

= state of entities in the application is not guaranteed to be rolled back, only the
persistent state

= What happens if a transaction terminates and objects become "detached"?
= Objects can still be modified "offline"

= What happens when objects are merged "re-attached" to a new transaction
context?

= Objects are NOT automatically refreshed
= potential for lost updates
= can be controlled by explicit refresh or using optimistic locking

@ ‘S B 21 Middleware for Heterogeneous and

© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

¢Hi

Transitive Persistence

Customer class

1:n

Order class

LineItem class

» Customer customer

Collection<Order> orders «

Collection<Lineltem> items —

1:n

Product p

= What happens in previous example, when em.persist(newOrder) is executed?
= newOrder becomes a managed entity
= What about referenced order items?
= goal: should be persisted as well
= What happens when we associate newOrder with the (managed) customer?
= cust.getOrders().add(newOrder),; should newOrder become persistent?
= newOrder.setCustomer(cust),; should newOrder become persistent now?
= goal: establishing a relationship with (persistent) customer should make the order

persistent as well

= and transitively persist the order items, too
=» Transitive persistence (persistence by reachability) would take care of that!

S

© Prof.Dr.-Ing. Stefan DefSloch

22

Middleware for Heterogeneous and
Distributed Information Systems

Relationships And Transitive Persistence

= Persistence by reachability: all objects reachable from persistent object
through standard Java references are made persistent, too!

= Benefits and
= powerful, easy to use from a development perspective
= takes care of “dependent” objects, allowing to “encapsulate” the referenced object
network
= Drawbacks: implicit definition of persistence
= IS this the correct semantics for all references?
= developer needs to understand what to expect in terms of number of resulting
insert operations
= What about the "reverse" semantics for object deletion: when should an
object that was implicitly made persistent be deleted?

= When the originally referencing object causing implicit persistence is deleted or
removes the reference?
= When the object is no longer referenced by other persistent objects (garbage
collection)?
= still could be retrieved using its primary key value

= Wwhen it is explicitly deleted?

g S B 23 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

CASCADE Semantics Of Relationships

= CASCADE rules/annotations are usually the only mechanism offered to
= specified as metadata on specific relationship attributes
= allow realize selective transitive persistence

= implement automatic selective transitive deletion
= relationship attribute can be flagged to cause deletion, if "parent” object is deleted
= often mapped to referential integrity constraints in the DB-mapping

=» what is the resulting object state in the application, if the deleted object is still
referenced?

= JPA supports CASCADE annotations
= possible values: PERSIST, MERGE, REMOVE, REFRESH, ALL

@ S B 24 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Realizing Automatic Persistence

= Strategies for "loading" objects from the persistent store during navigational
access
= "lazy" loading — object is retrieved only when accessed based on primary key or
reference (relationship)
= easy to implement

= May cause increased communication with data source, resulting in performance
drawbacks

= "eager" loading
= when an object is requested, transitively load all the objects reachable through references
= requires construction/generation of complex data store queries
= May cause a lot of unnecessary objects to be loaded

= Persistence frameworks usually offer a combination of the above strategies

= relationships can be explicitly designated as eager or lazy
= at deployment time? separate definitions depending on the application scenario?

= Can be generalized to arbitrary persistent attributes
= e.g., to pursue lazy loading of large objects

= in JPA: fetch type LAZY or EAGER

g S B 5 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Realizing Automatic Persistence (2)

= How to write object changes back to the data store
= there may be many fine-grained (i.e., attribute-level) updates on a persistent
object during a transaction
= immediate update: write changes to the DB after every attribute modification
= easy to implement/support, but many interactions with the DBMS

= deferred update: record changes and combine them into a single update per tuple
at the end of the transaction

= more complex to implement, unless one always updates the complete tuple
the latter will result in unnecessary processing overhead at the DBMS

= approach needs to be refined to account for consistent query results
write back changes also before any object query statements are executed

= Concurrency control strategy (determined in combination with the persistent
data store)
= pessimistic, using locking at the DBMS-level
= requires long read locks to avoid lost updates
= optimistic, by implementing "optimistic locking"

g S B 26 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Optimistic Locking and Concurrency

= Note: most DBMSs don't support optimistic concurrency control

= Example JPA: optimistic locking is assumed, with the following requirements
for application portability
= isolation level "read committed" or equivalent for data access
= No long read locks are held, DBMS does not prevent lost updates, inconsistent reads
= declaration of a version attribute for all entities to be enabled for optimistic locking

= persistence provider uses the attribute to detect and prevent lost updates
provider changes/increases the version during a successful update

compares original version with the current version stored in the DB, if the version is not the same,
a conflictis detected and the transaction is rolled back

= inconsistencies may arise if entities are not protected by a version attribute
= does not guarantee consistent reads
= conflicts can only be detected at the end of a (possibly long) transaction

@ S B 27 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Queries Over Persistent Objects

= Accessing persistent objects through primary key or navigation over
relationships
= is a useful basic mechanism that fits the OO programming model
= but is a severe restriction when accessing collections of persistent objects
= and can cause severe performance impact through tuple-by-tuple operations

= Object retrieval through a query language

= required to solve the above problems

= but should not force the developer to drop down to the data store query language
(and schema) again

= Object query language
= continues to shield the developer from data store (and mapping) details

= requires persistence framework to transform object queries into corresponding
data store queries based on the object-to-relational mapping

g B 8 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

EJB Query Language (EJB-QL)

= Introduced as a query language for CMP EntityBeans
= used in the definition of user-defined Finder methods of an EJB Home interface
= ho arbitrary (embedded or dynamic) object query capabilities!
= Uuses abstract persistence schema as its schema basis
= SQL-like
= Example:
SELECT DISTINCT OBJECT(0)
FROM Order o, IN(o.lineltems) 1 -
WHERE l.product.product_type \: -E)rdcr N P

= ‘office supplies’ m W L m
\

rd ~
1 '.,- \ . Product L

—_—— —

- Shlppmg ™~ < “Billing
__Address de ess

@ S B 29 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Java Persistence Query Language

= Extension of EJB-QL
»= named (static) and dynamic queries
= range across the class extensions including subclasses

= a persistence unit is a logical grouping of entity classes, all to be mapped to the same DB
= (ueries can not span across persistence units

= includes support for
= bulk updates and delete
= outer join
= projection
= Subqueries
= group-by/having
= Prefetching based on outer joins

= Example:
SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno =1

@ S B 30 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Historic Perspective

= Object persistence supported at various levels of abstraction

= CORBA
= standardized "low-level" APIs
= powerful, flexible, but no uniform model for component developer
various persistence protocols
= explicit vs. implicit (client-side transparent) persistence

= EJB/J2EE Entity Beans

= persistent components
CMP: container responsible for persistence, maintenance of relationships

= uniform programming model

= transparent persistence
= JDO

= persistent Java objects

= orthogonal, transparent, transitive persistence
= Java Persistence API

= successor of EJB entity beans
= standardized mapping of objects to relational data stores

= influenced partly by JDO, Hibernate
= Ccan be used outside the EIB context as well

@ ‘S B 31 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

Summary

= Object/relational mapping, object persistence service middleware
= provide abstraction capabilities for developing a object-oriented data access layer
= goal: increase programmer productivity
= potential performance impact
= complexity/learning curve

= Bridging the object/relational impedance mismatch is hard!
= mapping alternative/complexity for classes, relationships

= appropriate level of support for orthogonal, transparent and transitive persistence
= oObject lifecycle
= optimizations for loading/storing object state
= transaction and concurrency semantics

= Mandates appropriate object query support

= Example: Java Persistence Query Language
= based on EIB-QL (and therefore on SQL)
= humerous language extensions for query, bulk update
= static and dynamic queries

= Queries over multiple, distributed data sources are not mandated by the above
approaches!

g B 32 Middleware for Heterogeneous and
© Prof.Dr.-Ing. Stefan DeBloch Distributed Information Systems

