
implementing a Generalized Access Path
Structure for a Relational Database
System

THEO HAERDER

Technische Hochschule Darmstadt, West Germany

A new kind of implementation technique for access paths connecting sets of tuples qualified by
attribute values is described. It combines the advantages of pointer chain and multilevel index
implementation techniques. Compared to these structures the generalized access path structure is at
least competitive in performing retrieval and update operations, while a considerable storage space
saving is gained. Some additional features of this structure support m-way joins and the evaluation of
multirelation queries, and allow efficient checks of integrity assertions and simple reorganization
schemes.

Key Words and Phrases: database, relational model, access path structures, index structures, B*-trees
CR Categories 3.50, 3.74, 4.33

1. INTRODUCTION

A relational database system accessible to nontechnical users provides an inter-
face which allows queries to be expressed with a number of powerful relational
operators using a simple conceptual framework. Since the complexities of the
access path organization are hidden from the user, the interface itself has to
translate queries into the actual sequence of storage and data references. There-
fore, the system should be capable of optimizing access and selection of data. For
this goal only a limited number of operators has to be supported at this level, e.g.
join, selection, and projection. Nevertheless, it is crucial for the efficiency of the
system which kinds of access aids are chosen to implement the set of relational
operators.

As opposed to conventional file systems where access to tuples is only provided
for a unique key (primary key) using key-to-address transformation (e.g. hashing
schemes) or key comparison techniques, e.g. binary, indexed, or sequential search,
there exists the additional requirement for fast associative and sequential access

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was performed while the author was visiting at IBM Research Laboratory, San Jose, CA
95193.
Author’s address: Technische Hochschule Darmstadt, Fachbereich 20 (Informatik), Hochschulstr. 1,
D-6100 Darmstadt, West Germany.

0 1978 ACM 0362.5915/78/0900-0285 $00.75

ACM Transactions on Database Systems. Vol. 3, No. 3, September 1978, Pages 285-298.

286 - Theo Haerder

to sets of tuples and also for fast navigation from one tuple to others which are
related in some way. Usually, these design goals are reflected by introducing two
different kinds of access path implementations, e.g. secondary indexes (inverted
lists) and pointer chains. Secondary indexes support sequential and fast associa-
tive access to single tuples and to sets of tuples qualified by their content, while
pointer chains are usually used for navigational access. Several alternatives to
pointer chains for navigation on access paths connecting sets of tuples are
described in [2].

At any rate, the provision of two different kinds of access path implementations
together with the appropriate operators on them increases the complexity of
system implementation. Therefore, it seems desirable to find a single implemen-
tation technique which supports both types of applications and which can
compete with indexes and pointer chains from a performance point of view.

In this paper we propose such an implementation technique, called a “gener-
alized access path structure,” which combines the advantages of index and pointer
chain access. We discuss this structure as an access aid for the relational model
of data [9], that is, as a totally redundant access path bearing only “inessential”
information [lo]. It will be shown that this structure can also be used for
implementing access paths providing essential information for the logical data
structures. Some additional features of this structure support m-way joins and
the evaluation of multirelation queries, and allow efficient checks of integrity
assertions and simple reorganization schemes.

2. THE RELATIONAL MODEL: FORMALISM AND TERMINOLOGY

We use the well-known terminology of the relational model of data [7, 91 which
can be viewed as a schema with a number of interpretation rules.

Let a database schema be a finite collection of relation schemata and a set of
domains. Each relation schema consists of a relation name RN, a finite set of
attribute names (Al, A2, . . . , An), which are all unique within a distinct relational
schema, and a functional mapping FRN of this set of attribute names into the set
of domains. If an attribute name A maps into a domain F(A), then all values for
that attribute must belong to that domain. More than one attribute name may
map into the same domain.

An nary mathematical relation over the sets Dl, 02, . . . , Dn is a subset of the
Cartesian product Dl X 02 X . . . x Dn. Let u be an element of such a relation;
then u is called an n-tuple or tuple (for short) u = (~1, ~2, . . ., un) with ui E Di.

An instance of a relation schema RN(A1, A2, . . . , An), or a relation R for short,
is a finite subset of F(A1) x F(A2) x . x F(An), where F is the domain
mapping of the schema.

Generally, the elements of a domain are homogeneous, that is, each domain
has a particular value associated with it, e.g. binary, numeric, character.

An attribute or minimal group of attributes which guarantees the uniqueness
of tuples within a relation R is called a candidate key. One of the candidate keys
of a relation is chosen to be the primary key. A foreign key is an attribute (or
group of attributes) of a relation that has to be defined on the same domain as a
candidate key of another relation.

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978

A Generalized Access Path Structure . 287

An important observation leading to our proposal of an implementation tech-
nique of a generalized access path structure is the following: The domains of the
relational names specified as part of the database schema definition carry impor-
tant interrelational information. One of the important issues of these domains is
to indicate comparability of attributes, within the same relation schema or across
schemata, which is needed to achieve various relational operations, e.g. join.

Since the relationship between different relations Ri is based on the matching
of domain values, this fact can be used in constructing an access path to the
related tuples of different relations.

3. ACCESS PATHS FOR RELATIONS

The relational data model differs from other models in that all information is
stored in terms of data values (domain values) within tuples, i.e. no essential
information is represented by connections between tuples or by ordering of tuples.
In order to increase the performance of the system in case of associative access
to the tuples or required value ordering of the tuples, specific access aids (access
paths) are introduced additionally.

An access path giving value ordering and associative access by one or more
attributes to one relation is called an “image” following the terminology intro-
duced in [l].

Definition. Let R be a relation with attributes Al, . . ., An. An image of the
attribute Ai of R, i E (1, . . ., n} , is a mapping from values in Ai to those tuples
in R which have that value for the ith attribute, i.e. a mapping Ii:F(Ai)+ZR.
Additionally, these sets of tuples qualified by values of Ai are ordered according
to the sorted sequence of values of Ai. The generalization of the term “image” to
compound attributes is straightforward.

Access paths relating tuples of one relation to tuples of another relation are
called binary links. In the paper we shall use special binary links according to the
following definition.

Definition. Let R be a relation with attributes Al, . . ., An, S be a relation
with attributes Bl, . . ., Bm; F(Ai) = F(Bk) for the domains F(Ai), F(Bk), i E (1,
. . .) n}, k E (1, . . ., m} ; Ai be a candidate key of R. The link between R and S
with regard to Ai, Bk is defined as the set L(R(Ai), S(Bk)) := ((r, s) Ir E R, s E
S, prai(r) = prek(s)} , where prAi(r) and prBgk(s) are the projections to the compo-
nents of r and s which correspond to attributes Ai and Bk, respectively. The term
“link” may be generalized for compound attributes similarly.

The reference from the access path structure to the actual tuple is usually done
by means of TID’s (Tuple Identifiers [l]) or physical pointers. An appropriate
implementation technique for TID’s being a concatenation of a page number
along with a byte offset from the bottom of that page combines the speed of a
byte address pointer with the flexibility of indirection. The page number allocated
in a logical address space allows an indirect reference to the actual physical
storage block. The offset denotes a special slot which contains the byte location
of the referenced tuple in the page. Hence, the TID concept offers two different
kinds of indirection-at the page level and within the page.

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

288 . Theo Haerder

All links and images should be “automatic” [8] to preserve the properties of
the relational model, that is, the placement of tuples in images and links is only
based on matching values and not on the decision of the user (“manual” [8]).

3.1 Implementation Technique for Images

An image is conveniently implemented and maintained through the use of a
multipage index structure which contains pointers to the tuples themselves. The
pages of a given index can be organized into a balanced hierarchic structure using
the concept of B*-trees [3,13]. For nonleaf nodes, an entry consists of a key value
and a pointer pair. The key itself can consist of values of single or compound
attributes and can be represented in encoded form [5] allowing a particular sort
order on each attribute value in case of compound attributes. The pointer
addresses another nonleaf page or a leaf page in the same structure.

For the leaf nodes an entry is a combination of key values, along with a variable
length ascending list of TID’s for tuples having exactly those key values. In order
to identify the length of the TID list an additional length information field is kept
with each stored key. In addition, the leaf pages are chained in a doubly linked
list, so that sequential access can be supported from leaf to leaf.

If the total storage space for the TID lists of a particular key exceeds one leaf
page, overflow pages can be introduced optionally which can keep the overflowing
part of the lists. These overflow pages are chained with the leaf pages only, and
they are not pointed to by the nonleaf pages to reduce the increase of the height
of the B*-tree.

If a mechanism is provided for enforcing the uniqueness of keys, e.g. for
specified candidate keys, this structure can also be used to implement an access
path for primary keys. The “image” of the relation is represented by the particular
value ordering when accessing the leaves of the B*-tree from left to right (in post
order). When a relation is created, one image of the relation may be designated
as the “clustering image,” with the result that tuples near each other according
to a chosen order relation will be stored physically near.

Figure 1 shows schematically an image on an attribute Ai of some relation R
with {Kl, K2, . . ., K99} E F(Ai). Let us assume that the relation EMP(EN0,
DNO, . . .) with the attributes employee number (ENO), department number
(DNO), etc., is given and inverted on DNO. The image on the attribute DNO is
denoted by I(EMP(DN0)).

3.2 Implementation Technique for Links

A binary link connects tuples in one or two relations on matching attribute values.
Usually, it is implemented by using chaining techniques with Tides or physical
pointers (storage addresses). The TID chaining gives one level of indirection
compared to physical chaining of addresses.

1 For example, links are maintained in the Relational Storage System by storing
the Tides of the NEXT, PRIOR, and OWNER tuples in the prefix of the child
tuples and by storing at least the TID of the first child tuple in the parent tuple
according to Figure 2. In this example one tuple of the OWNER relation
DEPT(DN0 , . . .) is linked to n tuples of the MEMBER relation EMP(EN0,
DNO , . . .). The binary link is denoted by L(DEPT(DNO), EMP(DN0)).

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

A Generalized Access Path Structure . 289

_---
/- ‘.

__--- ‘1
‘.

r
2~1D,1m~~55n TID1:TID21.'.I~~~,~61 ~TID~ITID,

PRIOR NEXT optional pointer

leaf page to overflow page

Fig. I. Image implementation for Z(EMP(DN0))

NEXT PRIOR OWNER

TI9, - - .**K55 '.*

TID2 TIDo TIDO ... Xl73 KS5 **.

TID3 TID, TIDO ... Y248K55 *'.

TIDk+l TIgk-1 TI3D . .' A333 K55 "*

- TID,-1 TIDD '.* COO7 K55 *..

owner tuole

fir&member tuple

second member tuple

k-th mombw tuple

lost member tuple

Fig. 2. Link implementation of Z,(DEPT(DNO),EMP(DNO)j; 1’ k m occurrence for domain value K55

3.3 Implementation Technique for a Combined Access Path Structure

A binary link provides a direct path from single tuples (parents) in one relation
to sequences of tuples (children) in another relation. Usually it is argued that the
main advantage of a link is the direct access to a tuple of either relation coupled
by a binary link, while use of an image may involve a complete traversal of a B*-
tree structure consisting of several page accesses in order to find the child or
parent tuple [11. The relative gain of a link over an image is even enhanced when
the child tuples have been clustered on the same page as the parent tuple. In this
case no additional page has to be touched using the link, while a couple of pages
may be accessed in a large index.

It should be pointed out that the relationships between tuples of one or
different relations are expressed explicitly by attribute values in the relational
model. This key property allows combined images on the same domain serving
also as link structures. Therefore, the advantages of image and link access can be
combined using a different kind of organization of the leaf nodes of the B*-tree.
The nonleaf nodes look exactly as in the single image implementation. In the leaf
nodes separate TID lists for both relations together with the related length
information fields are stored for each key. The lists for the parent relation contain

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

290 . Theo Haerder

leaf page
TID forR1 TIDTR3

. . . KS51 3 1 ZTI TIDTIDTID TIDTDTIDTID . . .
v--
length TIDs TIDs

PRIOR NEXT rnformotlon for R2 for R.4 c@onal pointer
leaf page fields to overf low page

Fig. 3. Combined implementation of link L(DEPT(DNO),EMP(DNO)), and the images
I(DEPT(DN0)) and I(EMP(DN0))

only one TID entry, while each variable length list for the child relation contains
the sequence of TID’s for the children related to a particular parent tuple. The
order in these lists can be exactly the same as in the binary link. In Figure 3 the
discussed examples for the EMP and DEPT relations are treated in a unified
way. The various attribute values for DNO in EMP and DEPT are the keys in
the images and the matching DNO’s also establish the link occurrences between
the two relations.

With this access path structure the striking disadvantage of separate images
can be avoided, that is, the traversal of an additional B*-tree structure, when the
child tuples are to be accessed after the parent tuple is located. In either case it
must be assumed that the owner tuple is found via an image access
I(DEPT(DN0)). If the leaf page containing the required key (candidate key) for
the tuple of the OWNER relation is fixed in core, then the subsequent navigational
accesses to the tuples of the MEMBER relation are at least as fast as the accesses
via the binary link. In case of clustering, even more tuples can be stored in a
particular page, because the storage space of three TID’s per tuple and link is
saved. On the other hand, the access to the linked tuples in determined sequence
enforced by the embedded TID chain is not necessary. Furthermore, having the
combined access path structure, there is no need to fetch the tuples of a binary
link sequentially, e.g. if it happens that the tuples are stored on different devices,
seeks and rotational delays may be overlapped.

Therefore, the proposed access path structure can be considered in this partic-
ular case as a combination of

-an image for DEPT, I(DEPT(DNO)),
-an image for EMP, I(EMP(DNO)),
-a binary link for DEPT - EMP, L(DEPT(DNO), EMP(DNO)), with direct

access from
-OWNER to each MEMBER,
-each MEMBER to each other MEMBER,
-each MEMBER to OWNER.

In all cases DNO is used to search the B*-tree so that only one B*-tree
structure is needed. Furthermore, the pointers NEXT, PRIOR, and OWNER are
not stored. They are expressed implicitly by their relative position in the variable
length TID list.

3.4 Generalization of the Combined Access Path Structure

3.4.1 Implementation Technique for the Generalized Access Path
Structure. The combined access path structure replaces different access path
types like image and binary link by joining the various characteristics of these
access paths in one unified structure. A considerable advantage is gained, there-
ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

A Generalized Access Path Structure . 291

fore, with regard to implementation complexity. Instead of supporting specialized
modules for each of the’access path types, only one unified set of modules working
on this combined structure is necessary. The proposed approach reduces the
extent of implementing various operations on access paths.

The proposed concept of the combined access path structure can be extended
in the following way leading to the “generalized access path structure”: All
variable length TID lists belonging to the various attributes in different relations
which are all defined on the same domain are stored with their related domain
value (key value). This concept is not restricted to a single domain with single
attributes defined on it. It can be applied to given sequences of attributes
(compound attributes) corresponding to one particular domain sequence.

The format of the nonleaf pages is the same as for the image and combined
access path. All kinds of optimizations, e.g. key compression, which are available
for single access path implementation can be applied to them. The leaf pages
contain for each key up to m variable length TID lists together with m length
information fields. If an actual domain value is not defined for attribute Ai, then
the corresponding TID list does not exist and the corresponding length informa-
tion field indicates this fact by having a zero entry. At least one TID list must
exist for a specified domain value; otherwise this domain value is currently not
used in any tuple of the related relations and doesn’t appear as a node in the
access path.

The implementation of the generalized access path structure is shown in Figure
4. The particular example is chosen for four relations related by domain DE-
PARTMENT NUMBER. Let us assume that the relation Rl is DEPT with DNO
being the primary key. R2 may be considered as the EMP relation with the
inverted attribute DNO. R3 and R4 are introduced as the MANAGER and
EQUIPMENT relations:

MGR(MN0, DNO, JCODE, . . .)
EQUIP(IN0, DNO, TYPE, . . .)
The attributes DNO of the relations MGR and EQUIP are also inverted. DNO

in relation MGR is specified as a candidate key, additionally. The graphical
representation of this example describing all existing binary links in it is shown
in Figure 5.

Here the same attribute name DNO is chosen for convenience. In principle
each relation can have a different attribute name defined on the same domain,
e.g. DEPARTMENT NUMBER. In the case of domains with numeric values
each attribute can carry a different unit of the same or different unit types. By
accessing the index the appropriate conversion rule must be applied to map the
particular attribute value to the corresponding domain value.

Each node in the leaf page, e.g. the particular node with domain value K55 in
Figure 4, contains up to four variable length lists with four length information

leaf page TID for
E

I
. . KS5 1 nTIDO TIDl iTID . ITID, . , .

v
TIDs forEMP

PRIOR NEXT OptIonal pomter
leaf page to overflow page

Fig. 4. Implementation of the generalized access path; example for four relations on domain DNO

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

292 . Theo Haerder

L5
L3

I
L6

LL
. 1 .

EMP EQUIP

Fig. 5. All existing binary links based on DNO

fields describing the tuples of the four different relations with DNO = K55. If a
particular attribute is specified as a candidate key, the corresponding list length
of the TID list is restricted to 1, shown in the example for domain value K55 for
Rl and R3. All other attributes are not restricted at all.

3.4.2 Determination of All Different Access Paths. In order to reduce the
complexity of the following analysis, we discuss the case of single attributes
defined on one domain. The generalization of that concept to compound attributes
is straightforward. The concatenation of the attributes Al, A2, AK in case of
compound attributes can be viewed as a new attribute A’ defined on a domain D.

Let us assume that m single attributes Al, A2, . . . , Am are defined on a domain
D. For convenience, we denote the corresponding relations by Rl, R2,. . ., Rm. (Ri
and Rj are the same if Ai and Aj belong to one relation.)

In order to evaluate the number of images and binary links which may be
represented by a generalized access path structure, we assume that the first n
attributes Al, A2, . . ., An, n 5 m, are candidate keys of their relations. The
attributes An+l, . . . , Am are dependent attributes.

In the general case OWNER and MEMBER of a binary link can be the same
relation, e.g. if a hierarchical structure is defined on the tuples of a relation using
two different attributes.

Note that there is always a functional dependency between the tuples of the
MEMBER and the OWNER relation. If there is a one-to-one correspondence
between two attributes a binary link can be defined in either direction: L(Ri(Ai),
Rj(Aj))and L(Rj(Aj), Ri(Ai)). Clearly, an image can be established for each
attribute:

WWU),
WWW),

f(Rm(Am)).

Additionally, the access via the following different binary links is conceivable:

L(Rl(Al), RWW),
URl(Al), RWW),

URl(Al), Rm(Am)),
LWWW, RUAU),
JWWA~), WA3)),

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

A Generalized Access Path Structure . 293

L(Rn(An), Rn - l(An - l)),
L(Rn(An), Rn + l(An + l)),

URntAn), Rm(Am)).

Therefore, the total number of images is m and the total number of binary links
isn.(m -

Note.
l), which the generalized access path structure may be used for.
Since each TID list per attribute value of each attribute is stored only

once, only one particular ordering can be represented in such a list. If a TID list
is used for a MEMBER relation in different binary links only one particular
ordering can be chosen.

4. EVALUATION OF THE GENERALIZED ACCESS PATH STRUCTURE

The presented proposal is based on the observation that the height of the B*-tree
describing the necessary page fetches to access a leaf page remains constant for
a wide variety of different leaf page numbers, e.g. for a page size of 4 K bytes the
height of a B*-tree is constant for 2 up to 400-500 leaf pages (h = 2). In most
cases the larger amount of access path data of the generalized access path
structure does not increase the height of the B*-tree. Therefore, access path data
such as twin and parent pointers can be factored out from the tuples and stored
more economically in variable length lists of the generalized access path structure
without increasing the path length to a leaf node of the B*-tree. Since these
pointers are clustered in single pages, the various kinds of conceivable pointers,
such as FIRST, NEXT, PRIOR, LAST, Nth, OWNER, etc., can be represented
implicitly by their relative position in the variable length TID list. As a result a
substantial overall saving of storage space is gained with this structure.

In order to evaluate the generalized access path structure a large number of
parameters of its actual implementation has to be considered. Additionally, a
detailed performance study for all important operation types using or modifying
this access structure is necessary. A sensitive parameter affecting the performance
of accesses to sets of tuples is the fact whether the requested tuples are clustered
or not; that is, whether they are stored together in a physical block (page) or not.
Therefore, a particular emphasis has to be put on this case.

The cost factors determining the utility of an access aid are the following:
-storage space of the access path data,
-selecting single tuples based on their content,
-selecting single tuples based on their relative position in an access path

(NEXT, PRIOR, FIRST, LAST, Nth),
-selecting sets of tuples based on their content,
-accessing all tuples of a relation sequentially in value-determined order,
-performing a join operation on matching values

-of single tuples in two relations,
-of two entire relations,

-maintaining the access path for

ACM Transactions on Database System, Vol. 3, No. 3, September 1978.

294 . Theo Haerder

-insertion,
-update,
-deletion of tuples.

A detailed study of the generalized access path structure considering all these
cost factors in terms of actual page accesses is described in [12].

The results comparing the access costs for retrieval operations on clustered
and unclustered tuples show that the generalized access path structure is at least
competitive for all types of the considered access primitives compared to other
access path types.

The sequential access costs for a relation in value-determined order are lower
for the link structure as far as the number of pages touched is concerned. The
reason for this behavior is the increased number of leaf pages which have to be
fetched for the generalized access path structure. On the other hand, this quantity
of access path pages is negligible with regard to the entire number of data pages
transferred. Furthermore, some storage space is saved in the data pages due to
elimination of chain pointers, so that more related tuples may be clustered in a
page.

The comparison of the maintenance costs for the various access path structures
show that the generalized access path structure is insensitive to the number of
MEMBER tuples per attribute value, while the costs are increasing linearly with
the chain length of a link occurrence in case of unclustered tuples.

5. ADDITIONAL FEATURES OF THE GENERALIZED ACCESS PATH
STRUCTURE

5.1 Support of Relational Operations

The generalized access path structure supports in a natural way the join of
relations, because the access information for tuples of different relations having
matching values is stored close together. Although binary link structures imple-
mented as embedded chains allow only one-to-many joins in a natural way, the
generalized access path structure also supports many-to-many joins (natural joins
[9]) easily. The algorithms for joining relations need not be restricted to two
relations at a time, if more than two relations are to be joined on matching values.
For the general case linking m different relations together on matching domain
values an m-way join may be defined. A simple approach for this type of join
would be to execute (m - 1) subsequent Z-way joins. However, with the gener-
alized access path structure, appropriate algorithms can easily be designed which
perform an m-way join at a time.

Having the generalized access path structure, some query types can be an-
swered without looking at the actual data. For example, there is no need to add
an attribute NEMP (number of employees) to the DEPT relation, because the
values of this attribute can be derived from a generalized access path without
additional costs. The number of employees belonging to a given department may
be counted using the access path on domain DEPARTMENT NUMBER (DNO)
for DEPT and EMP.

Let us assume that one wants to list all departments with DNO > 50 which
have less than 5 employees. The corresponding SEQUEL query [l] referring to
DEPT and EMP relations is stated as follows:
ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

A Generalized Access Path Structure . 295

SELECT DNO
FROM DEPT X
WHERE DNO > 50
AND

(SELECT COUNT (*)
FROM EMP
WHERE DNO = XDNO) < 5;

To evaluate this query no tuple has to be accessed because all information can
be extracted from the access path data.

A useful feature in a database system is the availability of mechanisms to check
existing integrity assertions [111 which describe properties of data objects such as
type, value range, unit, update rules, etc., and also their relationships to other
data objects. Such time-independent assertions about the relations in a database
are formulated to preserve the integrity of data. The system has to prevent
update operations which would violate an assertion or to trigger further mainte-
nance operations to preserve the integrity of the database.

Those actions should be achieved without degrading the performance of the
system. Hence, performance oriented aids such as access paths are required for
efficient checks of assertions in case of insertion, deletion, and update transac-
tions.

The generalized access path structure offers some powerful means to support
this goal. For example, the uniqueness of a defined primary key can be guaranteed
easily through the index mechanism. During the creation of such an access path,
checks for duplicates may be included without additional costs. Owing to the
centralized and clustered access path data, checks on the membership and
ownership of sets (functional dependencies) can be obtained without further page
accesses. For example, an OWNER tuple with existing MEMBER tuples can be
prevented from deletion, or alternatively can trigger propagated deletion of all
MEMBER tuples, by looking only at the particular node in the access path.

5.2 Implementation of Access Paths Bearing Essential Information

In hierarchical and network models of data often some information is represented
by suitable access path structures. For example, the DNO attribute in the EMP
relation indicating the membership of a particular employee to his department is
dropped from the EMP relation. Instead, a special access path relating each
OWNER to his MEMBER tuples is established. Now, this access aid is bearing
information relevant to the user [lo]. In this case access path data are used to
complete the logical data structure of the user. Assume, for example, the following
two relations connected by an appropriate path (e.g. pointer chain) with the
meaning that a referenced employee belongs to the connected department:

DEPT DNO, DNAME, LOC,
I

If we drop the access path in this example, the fact that an employee belongs
to a particular department is lost, because this kind of information is represented

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

296 . Theo Haerder

by the access path. If the connection is implemented through a generalized access
path structure all information is preserved when navigational access is from the
OWNER tuple. However, if an arbitrary member tuple is located, it is hard to
find the OWNER tuple. For this case the following addition may be considered.
Each MEMBER tuple keeps the OWNER pointer in its prefix such that the
OWNER tuple can be accessed directly. By using the generalized access path
structure, all MEMBER tuples can be found without touching the OWNER
tuple. In this respect the MEMBER relation can be treated independently. It can
be considered as a “complete” relation in which a particular attribute, e.g. DNO,
is factored out. Maintenance is only slightly more difficult in this case. A
MEMBER tuple can be inserted or deleted without fetching the OWNER tuple.
The OWNER pointer is found in the generalized access path structure.

The scheme discussed above can be applied to access paths representing
network relationships in the essential and inessential cases. Assume we have
three relations, SUPPLIER, PART, and SUPPLY, with the following OWNER-
MEMBER relationships:

Each MEMBER tuple in the SUPPLY relation has stored the OWNER pointers
to both OWNER relations. Assume that generalized access paths exist for the
domains SNO and PNO. Then the location of the OWNER tuples and naviga-
tional access from the OWNER tuples to the related MEMBER tuples is achieved
via the corresponding generalized access path structures. The access to the
different OWNERS of a particular MEMBER tuple is gained by following the
OWNER pointers stored in the prefix of the tuple. In our example the attributes
SNO and PNO in SUPPLY can be dropped resulting in a change from “inessen-
tial” to “essential” OWNER pointers.

Of course, the scheme of keeping two OWNER pointers in the prefix of a
MEMBER tuple can be generalized to the representation of all existing OWNER
relationships by OWNER pointers in the essential and inessential cases.

5.3 Simple Reorganization Algorithms

Link structures having distributed access path data are difficult to reorganize.
The various pointers pointing to a tuple to be moved have to be found and reset
properly. Instead of controlling and supplying three different types of pointers in
a link, only one TID has to be provided per tuple in a generalized access path.
The OWNER and MEMBER tuples can be removed independently without
affecting each other. Only one TID has to be maintained in a generalized access
path structure if a tuple is moved to another page.

Because of the centralized access path information, load, reload, and restruc-
turing of tuples should be achieved in a simpler and more efficient way. The
design of appropriate algorithms seems to be facilitated with the aid of generalized
access path structures. It will be studied in detail in a separate paper.
ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

A Generalized Access Path Structure . 297

5.4 Concurrency of Operations

In a multi-user envirohment concurrent operations on access paths should be
allowed without interfering with other operations being performed. Serializing
the access along some heavily used access paths can create an unacceptable
bottleneck of the entire database system.

It is shown in [4] that concurrent operations on B-trees can be carried out
using simple locking protocols. Thus, this solution is adequate for images using
B-tree structures. For generalized access path structures the solution presented
in [4] should be extended in order to support concurrency on different access
paths in one B*-tree. The author plans to describe this locking protocol in a
separate paper.

6. CONCLUSIONS

In summary we have described a new kind of implementation technique of access
paths leading to the generalized access path structure. It combines the advantages
of link and image structures in retrieval and update operations, and is competitive
from a performance point of view.

The presented proposal is based on the observation that the height of the B*-
tree describing the necessary page fetches to access a leaf page remains constant
for a wide variety of different leaf page numbers. Therefore, access path data
such as twin and parent pointers can be factored out from the tuples and stored
more economically in variable length lists of the generalized access path structure.
Since these pointers are clustered in single pages, the various kinds of conceivable
pointers such as FIRST, NEXT, PRIOR, OWNER, etc., can be represented
implicitly by their relative position in the variable length TID list. As a result a
substantial saving of storage space is gained with this structure.

Finally, this unified approach to access path implementation should reduce the
complexity of the system implementation.

ACKNOWLEDGMENT

I would like to thank Rudolf Bayer, Mario Schkolnick, and Irving Traiger for
their interest in my work and for helpful discussions of this paper. The comments
of the referees are gratefully acknowledged.

REFERENCES
(Note. Reference [6] is not cited in the text.)

1. ASTRAHAN, M.M., ET AL. System R: Relational approach to database management. ACM Trans.
Database Syst. Z, 2 (June 1976), 97-137.

2. BACHMAN, C.W. Implementation techniques for data structure sets. In Data Base Management
Systems, D.A. Jardine, Ed., North-Holland Pub. Co., Amsterdam, 1974, pp. 147-157.

3. BAYER, R., AND MCCREIGHT, E. Organization and maintenance of large ordered indexes. Acta
Informutica 2,3 (1972), 173-189.

4. BAYER, R., AND SCHKOLNICK, M. Concurrency of operations on B-Trees. IBM Res. Rep. RJ 1791,
IBM Res. Lab., San Jose, Calif., May 1976. To appear in Acta Znformatica.

5. BLASGEN, M.W., CASEY, R.G., AND ESWARAN, K.P. An encoding method for multi-field sorting
and indexing. IBM Res. Rep., RJ 1753, IBM Res. Lab., San Jose, Calif., March 1976.

6. BLASGEN, M.W., AND ESWARAN, K.P. On the evaluation of queries in a relational database

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

298 . Theo Haerder

system. IBM Res. Rep. RJ 1745, IBM Res. Lab., San Jose, Calif., 1976.
7. CADIOU, J.M. On semantic issues in the relational model of data. Proc. 5th Symp. on Math.

Foundations of Compt. Sci. 1976, Gdansk, Poland, Lecture Notes in Computer Science 45,
Springer-Verlag, pp. 23-38.

8. CODASYL DATA BASE TASK GROUP (DBTG) Report, April 1971 (available from ACM, New York).
9. CODD, E.F. A relational model of data for large shared data banks. Comm. ACM 13, 6 (June

1970), 377-387.
10. CODD, E.F., AND DATE, C.J. Interactive support for nonprogrammers: The relational and network

approaches. IBM Res. Rep. RJ 1400, IBM Res. Lab., San Jose, Calif., June 1974.
11. ESWARAN, K.P., AND CHAMBERLIN, D.D. Functional specifications of a subsystem for data base

integrity. Proc. Int. Conf. on Very Large Data Bases, Framingham, Mass., Sept. 1975, pp. 48-68
(available from ACM, New York).

12. HAERDER, T. An implementation technique for a generalized access path structure. IBM Res.
Rep. RJ 1837, IBM Res. Lab., San Jose, Cahf., Oct. 1976.

13. WEDEKIND, H. On the selection of access paths in a data base system. In Data Base Management,
J.W. Khrnbie and K.L. Koffeman, Eds., North-Holland Pub. Co., Amsterdam, 1974, pp. 385-397.

Received December 1976; revised October 1977

ACM Transactions on Database System, Vol. 3, No. 3, September 1978.

