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1. INTRODUCTION 

A relational database system accessible to nontechnical users provides an inter- 
face which allows queries to be expressed with a number of powerful relational 
operators using a simple conceptual framework. Since the complexities of the 
access path organization are hidden from the user, the interface itself has to 
translate queries into the actual sequence of storage and data references. There- 
fore, the system should be capable of optimizing access and selection of data. For 
this goal only a limited number of operators has to be supported at this level, e.g. 
join, selection, and projection. Nevertheless, it is crucial for the efficiency of the 
system which kinds of access aids are chosen to implement the set of relational 
operators. 

As opposed to conventional file systems where access to tuples is only provided 
for a unique key (primary key) using key-to-address transformation (e.g. hashing 
schemes) or key comparison techniques, e.g. binary, indexed, or sequential search, 
there exists the additional requirement for fast associative and sequential access 
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to sets of tuples and also for fast navigation from one tuple to others which are 
related in some way. Usually, these design goals are reflected by introducing two 
different kinds of access path implementations, e.g. secondary indexes (inverted 
lists) and pointer chains. Secondary indexes support sequential and fast associa- 
tive access to single tuples and to sets of tuples qualified by their content, while 
pointer chains are usually used for navigational access. Several alternatives to 
pointer chains for navigation on access paths connecting sets of tuples are 
described in [2]. 

At any rate, the provision of two different kinds of access path implementations 
together with the appropriate operators on them increases the complexity of 
system implementation. Therefore, it seems desirable to find a single implemen- 
tation technique which supports both types of applications and which can 
compete with indexes and pointer chains from a performance point of view. 

In this paper we propose such an implementation technique, called a “gener- 
alized access path structure,” which combines the advantages of index and pointer 
chain access. We discuss this structure as an access aid for the relational model 
of data [9], that is, as a totally redundant access path bearing only “inessential” 
information [lo]. It will be shown that this structure can also be used for 
implementing access paths providing essential information for the logical data 
structures. Some additional features of this structure support m-way joins and 
the evaluation of multirelation queries, and allow efficient checks of integrity 
assertions and simple reorganization schemes. 

2. THE RELATIONAL MODEL: FORMALISM AND TERMINOLOGY 

We use the well-known terminology of the relational model of data [7, 91 which 
can be viewed as a schema with a number of interpretation rules. 

Let a database schema be a finite collection of relation schemata and a set of 
domains. Each relation schema consists of a relation name RN, a finite set of 
attribute names (Al, A2, . . . , An), which are all unique within a distinct relational 
schema, and a functional mapping FRN of this set of attribute names into the set 
of domains. If an attribute name A maps into a domain F(A), then all values for 
that attribute must belong to that domain. More than one attribute name may 
map into the same domain. 

An nary mathematical relation over the sets Dl, 02, . . . , Dn is a subset of the 
Cartesian product Dl X 02 X . . . x Dn. Let u be an element of such a relation; 
then u is called an n-tuple or tuple (for short) u = (~1, ~2, . . ., un) with ui E Di. 

An instance of a relation schema RN(A1, A2, . . . , An), or a relation R for short, 
is a finite subset of F(A1) x F(A2) x . x F(An), where F is the domain 
mapping of the schema. 

Generally, the elements of a domain are homogeneous, that is, each domain 
has a particular value associated with it, e.g. binary, numeric, character. 

An attribute or minimal group of attributes which guarantees the uniqueness 
of tuples within a relation R is called a candidate key. One of the candidate keys 
of a relation is chosen to be the primary key. A foreign key is an attribute (or 
group of attributes) of a relation that has to be defined on the same domain as a 
candidate key of another relation. 
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An important observation leading to our proposal of an implementation tech- 
nique of a generalized access path structure is the following: The domains of the 
relational names specified as part of the database schema definition carry impor- 
tant interrelational information. One of the important issues of these domains is 
to indicate comparability of attributes, within the same relation schema or across 
schemata, which is needed to achieve various relational operations, e.g. join. 

Since the relationship between different relations Ri is based on the matching 
of domain values, this fact can be used in constructing an access path to the 
related tuples of different relations. 

3. ACCESS PATHS FOR RELATIONS 

The relational data model differs from other models in that all information is 
stored in terms of data values (domain values) within tuples, i.e. no essential 
information is represented by connections between tuples or by ordering of tuples. 
In order to increase the performance of the system in case of associative access 
to the tuples or required value ordering of the tuples, specific access aids (access 
paths) are introduced additionally. 

An access path giving value ordering and associative access by one or more 
attributes to one relation is called an “image” following the terminology intro- 
duced in [l]. 

Definition. Let R be a relation with attributes Al, . . ., An. An image of the 
attribute Ai of R, i E (1, . . ., n} , is a mapping from values in Ai to those tuples 
in R which have that value for the ith attribute, i.e. a mapping Ii:F(Ai)+ZR. 
Additionally, these sets of tuples qualified by values of Ai are ordered according 
to the sorted sequence of values of Ai. The generalization of the term “image” to 
compound attributes is straightforward. 

Access paths relating tuples of one relation to tuples of another relation are 
called binary links. In the paper we shall use special binary links according to the 
following definition. 

Definition. Let R be a relation with attributes Al, . . ., An, S be a relation 
with attributes Bl, . . ., Bm; F(Ai) = F(Bk) for the domains F(Ai), F(Bk), i E (1, 
. . .) n}, k E (1, . . ., m} ; Ai be a candidate key of R. The link between R and S 
with regard to Ai, Bk is defined as the set L(R(Ai), S(Bk)) := ((r, s) Ir E R, s E 
S, prai(r) = prek(s)} , where prAi(r) and prBgk(s) are the projections to the compo- 
nents of r and s which correspond to attributes Ai and Bk, respectively. The term 
“link” may be generalized for compound attributes similarly. 

The reference from the access path structure to the actual tuple is usually done 
by means of TID’s (Tuple Identifiers [l]) or physical pointers. An appropriate 
implementation technique for TID’s being a concatenation of a page number 
along with a byte offset from the bottom of that page combines the speed of a 
byte address pointer with the flexibility of indirection. The page number allocated 
in a logical address space allows an indirect reference to the actual physical 
storage block. The offset denotes a special slot which contains the byte location 
of the referenced tuple in the page. Hence, the TID concept offers two different 
kinds of indirection-at the page level and within the page. 
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All links and images should be “automatic” [8] to preserve the properties of 
the relational model, that is, the placement of tuples in images and links is only 
based on matching values and not on the decision of the user (“manual” [8]). 

3.1 Implementation Technique for Images 

An image is conveniently implemented and maintained through the use of a 
multipage index structure which contains pointers to the tuples themselves. The 
pages of a given index can be organized into a balanced hierarchic structure using 
the concept of B*-trees [3,13]. For nonleaf nodes, an entry consists of a key value 
and a pointer pair. The key itself can consist of values of single or compound 
attributes and can be represented in encoded form [5] allowing a particular sort 
order on each attribute value in case of compound attributes. The pointer 
addresses another nonleaf page or a leaf page in the same structure. 

For the leaf nodes an entry is a combination of key values, along with a variable 
length ascending list of TID’s for tuples having exactly those key values. In order 
to identify the length of the TID list an additional length information field is kept 
with each stored key. In addition, the leaf pages are chained in a doubly linked 
list, so that sequential access can be supported from leaf to leaf. 

If the total storage space for the TID lists of a particular key exceeds one leaf 
page, overflow pages can be introduced optionally which can keep the overflowing 
part of the lists. These overflow pages are chained with the leaf pages only, and 
they are not pointed to by the nonleaf pages to reduce the increase of the height 
of the B*-tree. 

If a mechanism is provided for enforcing the uniqueness of keys, e.g. for 
specified candidate keys, this structure can also be used to implement an access 
path for primary keys. The “image” of the relation is represented by the particular 
value ordering when accessing the leaves of the B*-tree from left to right (in post 
order). When a relation is created, one image of the relation may be designated 
as the “clustering image,” with the result that tuples near each other according 
to a chosen order relation will be stored physically near. 

Figure 1 shows schematically an image on an attribute Ai of some relation R 
with {Kl, K2, . . ., K99} E F(Ai). Let us assume that the relation EMP(EN0, 
DNO, . . .) with the attributes employee number (ENO), department number 
(DNO), etc., is given and inverted on DNO. The image on the attribute DNO is 
denoted by I(EMP(DN0)). 

3.2 Implementation Technique for Links 

A binary link connects tuples in one or two relations on matching attribute values. 
Usually, it is implemented by using chaining techniques with Tides or physical 
pointers (storage addresses). The TID chaining gives one level of indirection 
compared to physical chaining of addresses. 

1 For example, links are maintained in the Relational Storage System by storing 
the Tides of the NEXT, PRIOR, and OWNER tuples in the prefix of the child 
tuples and by storing at least the TID of the first child tuple in the parent tuple 
according to Figure 2. In this example one tuple of the OWNER relation 
DEPT(DN0 , . . .) is linked to n tuples of the MEMBER relation EMP(EN0, 
DNO , . . .). The binary link is denoted by L(DEPT(DNO), EMP(DN0)). 
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Fig. 2. Link implementation of Z,(DEPT(DNO),EMP(DNO)j; 1’ k m occurrence for domain value K55 

3.3 Implementation Technique for a Combined Access Path Structure 

A binary link provides a direct path from single tuples (parents) in one relation 
to sequences of tuples (children) in another relation. Usually it is argued that the 
main advantage of a link is the direct access to a tuple of either relation coupled 
by a binary link, while use of an image may involve a complete traversal of a B*- 
tree structure consisting of several page accesses in order to find the child or 
parent tuple [ 11. The relative gain of a link over an image is even enhanced when 
the child tuples have been clustered on the same page as the parent tuple. In this 
case no additional page has to be touched using the link, while a couple of pages 
may be accessed in a large index. 

It should be pointed out that the relationships between tuples of one or 
different relations are expressed explicitly by attribute values in the relational 
model. This key property allows combined images on the same domain serving 
also as link structures. Therefore, the advantages of image and link access can be 
combined using a different kind of organization of the leaf nodes of the B*-tree. 
The nonleaf nodes look exactly as in the single image implementation. In the leaf 
nodes separate TID lists for both relations together with the related length 
information fields are stored for each key. The lists for the parent relation contain 
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Fig. 3. Combined implementation of link L(DEPT(DNO),EMP(DNO)), and the images 
I(DEPT(DN0)) and I(EMP(DN0)) 

only one TID entry, while each variable length list for the child relation contains 
the sequence of TID’s for the children related to a particular parent tuple. The 
order in these lists can be exactly the same as in the binary link. In Figure 3 the 
discussed examples for the EMP and DEPT relations are treated in a unified 
way. The various attribute values for DNO in EMP and DEPT are the keys in 
the images and the matching DNO’s also establish the link occurrences between 
the two relations. 

With this access path structure the striking disadvantage of separate images 
can be avoided, that is, the traversal of an additional B*-tree structure, when the 
child tuples are to be accessed after the parent tuple is located. In either case it 
must be assumed that the owner tuple is found via an image access 
I(DEPT(DN0)). If the leaf page containing the required key (candidate key) for 
the tuple of the OWNER relation is fixed in core, then the subsequent navigational 
accesses to the tuples of the MEMBER relation are at least as fast as the accesses 
via the binary link. In case of clustering, even more tuples can be stored in a 
particular page, because the storage space of three TID’s per tuple and link is 
saved. On the other hand, the access to the linked tuples in determined sequence 
enforced by the embedded TID chain is not necessary. Furthermore, having the 
combined access path structure, there is no need to fetch the tuples of a binary 
link sequentially, e.g. if it happens that the tuples are stored on different devices, 
seeks and rotational delays may be overlapped. 

Therefore, the proposed access path structure can be considered in this partic- 
ular case as a combination of 

-an image for DEPT, I(DEPT(DNO)), 
-an image for EMP, I(EMP(DNO)), 
-a binary link for DEPT - EMP, L(DEPT(DNO), EMP(DNO)), with direct 

access from 
-OWNER to each MEMBER, 
-each MEMBER to each other MEMBER, 
-each MEMBER to OWNER. 

In all cases DNO is used to search the B*-tree so that only one B*-tree 
structure is needed. Furthermore, the pointers NEXT, PRIOR, and OWNER are 
not stored. They are expressed implicitly by their relative position in the variable 
length TID list. 

3.4 Generalization of the Combined Access Path Structure 

3.4.1 Implementation Technique for the Generalized Access Path 
Structure. The combined access path structure replaces different access path 
types like image and binary link by joining the various characteristics of these 
access paths in one unified structure. A considerable advantage is gained, there- 
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fore, with regard to implementation complexity. Instead of supporting specialized 
modules for each of the’access path types, only one unified set of modules working 
on this combined structure is necessary. The proposed approach reduces the 
extent of implementing various operations on access paths. 

The proposed concept of the combined access path structure can be extended 
in the following way leading to the “generalized access path structure”: All 
variable length TID lists belonging to the various attributes in different relations 
which are all defined on the same domain are stored with their related domain 
value (key value). This concept is not restricted to a single domain with single 
attributes defined on it. It can be applied to given sequences of attributes 
(compound attributes) corresponding to one particular domain sequence. 

The format of the nonleaf pages is the same as for the image and combined 
access path. All kinds of optimizations, e.g. key compression, which are available 
for single access path implementation can be applied to them. The leaf pages 
contain for each key up to m variable length TID lists together with m length 
information fields. If an actual domain value is not defined for attribute Ai, then 
the corresponding TID list does not exist and the corresponding length informa- 
tion field indicates this fact by having a zero entry. At least one TID list must 
exist for a specified domain value; otherwise this domain value is currently not 
used in any tuple of the related relations and doesn’t appear as a node in the 
access path. 

The implementation of the generalized access path structure is shown in Figure 
4. The particular example is chosen for four relations related by domain DE- 
PARTMENT NUMBER. Let us assume that the relation Rl is DEPT with DNO 
being the primary key. R2 may be considered as the EMP relation with the 
inverted attribute DNO. R3 and R4 are introduced as the MANAGER and 
EQUIPMENT relations: 

MGR(MN0, DNO, JCODE, . . .) 
EQUIP(IN0, DNO, TYPE, . . .) 
The attributes DNO of the relations MGR and EQUIP are also inverted. DNO 

in relation MGR is specified as a candidate key, additionally. The graphical 
representation of this example describing all existing binary links in it is shown 
in Figure 5. 

Here the same attribute name DNO is chosen for convenience. In principle 
each relation can have a different attribute name defined on the same domain, 
e.g. DEPARTMENT NUMBER. In the case of domains with numeric values 
each attribute can carry a different unit of the same or different unit types. By 
accessing the index the appropriate conversion rule must be applied to map the 
particular attribute value to the corresponding domain value. 

Each node in the leaf page, e.g. the particular node with domain value K55 in 
Figure 4, contains up to four variable length lists with four length information 

leaf page TID for 
E 

I 
. . KS5 1 nTIDO TIDl iTID . ITID, . , . 

v 
TIDs forEMP 

PRIOR NEXT OptIonal pomter 
leaf page to overflow page 

Fig. 4. Implementation of the generalized access path; example for four relations on domain DNO 
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L5 
L3 

I 
L6 

LL 
. 1 . 

EMP EQUIP 

Fig. 5. All existing binary links based on DNO 

fields describing the tuples of the four different relations with DNO = K55. If a 
particular attribute is specified as a candidate key, the corresponding list length 
of the TID list is restricted to 1, shown in the example for domain value K55 for 
Rl and R3. All other attributes are not restricted at all. 

3.4.2 Determination of All Different Access Paths. In order to reduce the 
complexity of the following analysis, we discuss the case of single attributes 
defined on one domain. The generalization of that concept to compound attributes 
is straightforward. The concatenation of the attributes Al, A2, . . . . AK in case of 
compound attributes can be viewed as a new attribute A’ defined on a domain D. 

Let us assume that m single attributes Al, A2, . . . , Am are defined on a domain 
D. For convenience, we denote the corresponding relations by Rl, R2,. . ., Rm. (Ri 
and Rj are the same if Ai and Aj belong to one relation.) 

In order to evaluate the number of images and binary links which may be 
represented by a generalized access path structure, we assume that the first n 
attributes Al, A2, . . ., An, n 5 m, are candidate keys of their relations. The 
attributes An+l, . . . , Am are dependent attributes. 

In the general case OWNER and MEMBER of a binary link can be the same 
relation, e.g. if a hierarchical structure is defined on the tuples of a relation using 
two different attributes. 

Note that there is always a functional dependency between the tuples of the 
MEMBER and the OWNER relation. If there is a one-to-one correspondence 
between two attributes a binary link can be defined in either direction: L(Ri(Ai), 
Rj(Aj))and L(Rj(Aj), Ri(Ai)). Clearly, an image can be established for each 
attribute: 

WWU), 
WWW), 

f(Rm(Am)). 

Additionally, the access via the following different binary links is conceivable: 

L(Rl(Al), RWW), 
URl(Al), RWW), 

URl(Al), Rm(Am)), 
LWWW, RUAU), 
JWWA~), WA3)), 
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L(Rn(An), Rn - l(An - l)), 
L(Rn(An), Rn + l(An + l)), 

URntAn), Rm(Am)). 

Therefore, the total number of images is m and the total number of binary links 
isn.(m - 

Note. 
l), which the generalized access path structure may be used for. 
Since each TID list per attribute value of each attribute is stored only 

once, only one particular ordering can be represented in such a list. If a TID list 
is used for a MEMBER relation in different binary links only one particular 
ordering can be chosen. 

4. EVALUATION OF THE GENERALIZED ACCESS PATH STRUCTURE 

The presented proposal is based on the observation that the height of the B*-tree 
describing the necessary page fetches to access a leaf page remains constant for 
a wide variety of different leaf page numbers, e.g. for a page size of 4 K bytes the 
height of a B*-tree is constant for 2 up to 400-500 leaf pages (h = 2). In most 
cases the larger amount of access path data of the generalized access path 
structure does not increase the height of the B*-tree. Therefore, access path data 
such as twin and parent pointers can be factored out from the tuples and stored 
more economically in variable length lists of the generalized access path structure 
without increasing the path length to a leaf node of the B*-tree. Since these 
pointers are clustered in single pages, the various kinds of conceivable pointers, 
such as FIRST, NEXT, PRIOR, LAST, Nth, OWNER, etc., can be represented 
implicitly by their relative position in the variable length TID list. As a result a 
substantial overall saving of storage space is gained with this structure. 

In order to evaluate the generalized access path structure a large number of 
parameters of its actual implementation has to be considered. Additionally, a 
detailed performance study for all important operation types using or modifying 
this access structure is necessary. A sensitive parameter affecting the performance 
of accesses to sets of tuples is the fact whether the requested tuples are clustered 
or not; that is, whether they are stored together in a physical block (page) or not. 
Therefore, a particular emphasis has to be put on this case. 

The cost factors determining the utility of an access aid are the following: 
-storage space of the access path data, 
-selecting single tuples based on their content, 
-selecting single tuples based on their relative position in an access path 

(NEXT, PRIOR, FIRST, LAST, Nth), 
-selecting sets of tuples based on their content, 
-accessing all tuples of a relation sequentially in value-determined order, 
-performing a join operation on matching values 

-of single tuples in two relations, 
-of two entire relations, 

-maintaining the access path for 
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-insertion, 
-update, 
-deletion of tuples. 

A detailed study of the generalized access path structure considering all these 
cost factors in terms of actual page accesses is described in [12]. 

The results comparing the access costs for retrieval operations on clustered 
and unclustered tuples show that the generalized access path structure is at least 
competitive for all types of the considered access primitives compared to other 
access path types. 

The sequential access costs for a relation in value-determined order are lower 
for the link structure as far as the number of pages touched is concerned. The 
reason for this behavior is the increased number of leaf pages which have to be 
fetched for the generalized access path structure. On the other hand, this quantity 
of access path pages is negligible with regard to the entire number of data pages 
transferred. Furthermore, some storage space is saved in the data pages due to 
elimination of chain pointers, so that more related tuples may be clustered in a 
page. 

The comparison of the maintenance costs for the various access path structures 
show that the generalized access path structure is insensitive to the number of 
MEMBER tuples per attribute value, while the costs are increasing linearly with 
the chain length of a link occurrence in case of unclustered tuples. 

5. ADDITIONAL FEATURES OF THE GENERALIZED ACCESS PATH 
STRUCTURE 

5.1 Support of Relational Operations 

The generalized access path structure supports in a natural way the join of 
relations, because the access information for tuples of different relations having 
matching values is stored close together. Although binary link structures imple- 
mented as embedded chains allow only one-to-many joins in a natural way, the 
generalized access path structure also supports many-to-many joins (natural joins 
[9]) easily. The algorithms for joining relations need not be restricted to two 
relations at a time, if more than two relations are to be joined on matching values. 
For the general case linking m different relations together on matching domain 
values an m-way join may be defined. A simple approach for this type of join 
would be to execute (m - 1) subsequent Z-way joins. However, with the gener- 
alized access path structure, appropriate algorithms can easily be designed which 
perform an m-way join at a time. 

Having the generalized access path structure, some query types can be an- 
swered without looking at the actual data. For example, there is no need to add 
an attribute NEMP (number of employees) to the DEPT relation, because the 
values of this attribute can be derived from a generalized access path without 
additional costs. The number of employees belonging to a given department may 
be counted using the access path on domain DEPARTMENT NUMBER (DNO) 
for DEPT and EMP. 

Let us assume that one wants to list all departments with DNO > 50 which 
have less than 5 employees. The corresponding SEQUEL query [l] referring to 
DEPT and EMP relations is stated as follows: 
ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978. 
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SELECT DNO 
FROM DEPT X 
WHERE DNO > 50 
AND 

(SELECT COUNT (*) 
FROM EMP 
WHERE DNO = XDNO) < 5; 

To evaluate this query no tuple has to be accessed because all information can 
be extracted from the access path data. 

A useful feature in a database system is the availability of mechanisms to check 
existing integrity assertions [ 111 which describe properties of data objects such as 
type, value range, unit, update rules, etc., and also their relationships to other 
data objects. Such time-independent assertions about the relations in a database 
are formulated to preserve the integrity of data. The system has to prevent 
update operations which would violate an assertion or to trigger further mainte- 
nance operations to preserve the integrity of the database. 

Those actions should be achieved without degrading the performance of the 
system. Hence, performance oriented aids such as access paths are required for 
efficient checks of assertions in case of insertion, deletion, and update transac- 
tions. 

The generalized access path structure offers some powerful means to support 
this goal. For example, the uniqueness of a defined primary key can be guaranteed 
easily through the index mechanism. During the creation of such an access path, 
checks for duplicates may be included without additional costs. Owing to the 
centralized and clustered access path data, checks on the membership and 
ownership of sets (functional dependencies) can be obtained without further page 
accesses. For example, an OWNER tuple with existing MEMBER tuples can be 
prevented from deletion, or alternatively can trigger propagated deletion of all 
MEMBER tuples, by looking only at the particular node in the access path. 

5.2 Implementation of Access Paths Bearing Essential Information 

In hierarchical and network models of data often some information is represented 
by suitable access path structures. For example, the DNO attribute in the EMP 
relation indicating the membership of a particular employee to his department is 
dropped from the EMP relation. Instead, a special access path relating each 
OWNER to his MEMBER tuples is established. Now, this access aid is bearing 
information relevant to the user [lo]. In this case access path data are used to 
complete the logical data structure of the user. Assume, for example, the following 
two relations connected by an appropriate path (e.g. pointer chain) with the 
meaning that a referenced employee belongs to the connected department: 

DEPT DNO, DNAME, LOC, 
I 

If we drop the access path in this example, the fact that an employee belongs 
to a particular department is lost, because this kind of information is represented 
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by the access path. If the connection is implemented through a generalized access 
path structure all information is preserved when navigational access is from the 
OWNER tuple. However, if an arbitrary member tuple is located, it is hard to 
find the OWNER tuple. For this case the following addition may be considered. 
Each MEMBER tuple keeps the OWNER pointer in its prefix such that the 
OWNER tuple can be accessed directly. By using the generalized access path 
structure, all MEMBER tuples can be found without touching the OWNER 
tuple. In this respect the MEMBER relation can be treated independently. It can 
be considered as a “complete” relation in which a particular attribute, e.g. DNO, 
is factored out. Maintenance is only slightly more difficult in this case. A 
MEMBER tuple can be inserted or deleted without fetching the OWNER tuple. 
The OWNER pointer is found in the generalized access path structure. 

The scheme discussed above can be applied to access paths representing 
network relationships in the essential and inessential cases. Assume we have 
three relations, SUPPLIER, PART, and SUPPLY, with the following OWNER- 
MEMBER relationships: 

Each MEMBER tuple in the SUPPLY relation has stored the OWNER pointers 
to both OWNER relations. Assume that generalized access paths exist for the 
domains SNO and PNO. Then the location of the OWNER tuples and naviga- 
tional access from the OWNER tuples to the related MEMBER tuples is achieved 
via the corresponding generalized access path structures. The access to the 
different OWNERS of a particular MEMBER tuple is gained by following the 
OWNER pointers stored in the prefix of the tuple. In our example the attributes 
SNO and PNO in SUPPLY can be dropped resulting in a change from “inessen- 
tial” to “essential” OWNER pointers. 

Of course, the scheme of keeping two OWNER pointers in the prefix of a 
MEMBER tuple can be generalized to the representation of all existing OWNER 
relationships by OWNER pointers in the essential and inessential cases. 

5.3 Simple Reorganization Algorithms 

Link structures having distributed access path data are difficult to reorganize. 
The various pointers pointing to a tuple to be moved have to be found and reset 
properly. Instead of controlling and supplying three different types of pointers in 
a link, only one TID has to be provided per tuple in a generalized access path. 
The OWNER and MEMBER tuples can be removed independently without 
affecting each other. Only one TID has to be maintained in a generalized access 
path structure if a tuple is moved to another page. 

Because of the centralized access path information, load, reload, and restruc- 
turing of tuples should be achieved in a simpler and more efficient way. The 
design of appropriate algorithms seems to be facilitated with the aid of generalized 
access path structures. It will be studied in detail in a separate paper. 
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5.4 Concurrency of Operations 

In a multi-user envirohment concurrent operations on access paths should be 
allowed without interfering with other operations being performed. Serializing 
the access along some heavily used access paths can create an unacceptable 
bottleneck of the entire database system. 

It is shown in [4] that concurrent operations on B-trees can be carried out 
using simple locking protocols. Thus, this solution is adequate for images using 
B-tree structures. For generalized access path structures the solution presented 
in [4] should be extended in order to support concurrency on different access 
paths in one B*-tree. The author plans to describe this locking protocol in a 
separate paper. 

6. CONCLUSIONS 

In summary we have described a new kind of implementation technique of access 
paths leading to the generalized access path structure. It combines the advantages 
of link and image structures in retrieval and update operations, and is competitive 
from a performance point of view. 

The presented proposal is based on the observation that the height of the B*- 
tree describing the necessary page fetches to access a leaf page remains constant 
for a wide variety of different leaf page numbers. Therefore, access path data 
such as twin and parent pointers can be factored out from the tuples and stored 
more economically in variable length lists of the generalized access path structure. 
Since these pointers are clustered in single pages, the various kinds of conceivable 
pointers such as FIRST, NEXT, PRIOR, OWNER, etc., can be represented 
implicitly by their relative position in the variable length TID list. As a result a 
substantial saving of storage space is gained with this structure. 

Finally, this unified approach to access path implementation should reduce the 
complexity of the system implementation. 
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