
Infoml. systmls Vol. 5. pp. 137-147
0 Pergamon Press Ltd.. 1980. Printed in Great Britain

AN EXPERIMENT IN LEARNING DBTG
DATABASE ADMINISTRATION

W. EFFELSBERG, T. HARDER and A. REUTER

Fachbereich Informatik, Tech&he Hochschule Darmstadt, Hochschulstr. 1, D-6100 Darmstadt, Fedrep. Germany

(Received 26 September 1979; revised 23 January 1980)

Abstract-An experiment in optimizing the physical storage structures of a DBTG-like database w.r.t. a given
transaction load is described. It was carried out during a practical course on database administration. Logical data
structures and transaction programs were kept fixed while the underlying storage structures could be varied
according to a rich set of options and parameters. The preferences for certain search key and set mode options
leading to surprising time differences are discussed. Properties of good optimization solutions are presented. A
number of recommendations for the use of the set modes POINTER-ARRAY and CHAIN are given. Finally, some
general observations concerning the learning pattern of the students are summarized.

1. INTRODUCTION

The objective of a practical course on database ad-
ministration is to give students the opportunity to
become familiar with database programming, the design
of logical and physical data structures and various tasks
concerning the administration of databases. One of the
severe problems facing database administrators is the
problem of optimizing the storage structures and tailor-
ing the access paths of a database to meet the demands
made by the mix of transactions that the database system
must service.

In order to effectively train graduate students in the
database field, techniques have to be developed that will
enable them to explore and understand the scope and
impact of their decisions. The use of realistic experi-
ments in the design and optimization of databases pro-
vides a way for future database administrators to learn
the potential consequences of unsuitable decisions and to
gain a feeling for the essential parameters of the
problem.

This paper decribes an interesting experiment within a
practical course on database administration. The suc-
cessful attendance of this course required the solution of
6 different tasks performed in groups of 2-4 graduate
students (fourth year) having already studied some
theoretical courses on database systems. Among other
things the following tasks related to the logical data
structures, to the physical structures and access paths
and the mapping of these structures to physical devices
had to be achieved:

-COBOL-DML programs had to be written perform-
ing retrieval and update in a complex DBTG-like
database consisting of 5 record types and 10 set types[11.

-A given database with a given transaction load had to
be optimized w.r.t. the storage structures requiring the
application of the full set of storage structure
parameters. This experiment is to be described in this
paper.

--_A number of DML-calls had to be traced at the
physical device level given a dump of the related data

pages; by page we denote the unit of data transfer
between database buffer and non-volatile storage.

For these tasks a DBTG-like database system[2] was
used allowing the description of the logical data struc-
tures by the so called schema-DDL and subschema-
DDL[3] and the description of the physical storage
structures by the so called DSDL (data storage descrip-
tion language[4]). This concept of separating logical and
physical issues by means of different description lan-
guages provides a good, but not complete isolation of the
logical data from their underlying physical structures. A
separate DSDL can also be considered as a powerful
optimization tool while guaranteeing a reasonable degree
of data independence.

Our experiment to be described in detail is based on
the isolated design of storage structures obtained by
means of a separate DSDL. As a vehicle to learn
database administration, it was aimed to focus on the
following objectives:

-to use the additional degrees of freedom gained by a
separate DSDL to optimize a given database under a
given transaction load.

-to realize the optimization tradeoffs of interrelated
storage structures w.r.t. retrieval and update trans-
actions.

-to demonstrate the potential gains by suitable design
decisions w.r.t. storage structure parameters.

-to show the practical meaning of data independence
in database systems and to reveal the restrictions of
further optimization introduced by the lack of ideal data
independence.

In addition, some hints were expected concerning the
learning process of students and their preference of
certain optimization parameters.

2. DFSCRttl’ION OF THE DATABASE AND THE TRANSACTIONS

In designing the database to be optimized by the
students attending the practical course, a number of
difficulties had to be overcome:

137

138 W. EFFELSBERG et al.

(a) The database had to be not too complex, because
the manifold dependencies between a large number of
record types and sets cannot be analyzed and understood
within a few weeks.

(b) The database had to be not too large, because the
time for generating and loading the database with data
according to the frequency distributions, and running the
transactions would have been too long to be repeated
several times for more than 10 groups of students.

On the other hand it must be observed that:
(c) the database must not be too simple, because a

simple structure leaves no possibility for optimization,
(d) the database must not be too small, because there

might be no differences between the possible storage
structures, if most of the record types and access path
structures can be stored in one or a few pages.

We finally decided to use a database as shown in Fig.
1. It may be considered as a small part of a university
information system, containing the professors and
students of all departments (faculties) and the examina-
tions passed by the students. The schema-DDL for this

database is shown in Fig. 2. The occurrences of record
type FACULTY are identified by FA-NR, the occur-
rences of PROF by PERS-NR, the occurrences of
STUDENT by REG-NR. EXAMINER and
EXAMINEE are information bearing sets. Hence, the
occurrences of EXAMINATION cannot be identified by
themselves. The other fields of the record types are of no
interest or will be explained when describing the trans-
actions.

2.1 Definition of what is to be optimized
If one is asked to optimize a database design, it must

be defined precisely, how the success of such an attempt
can be measured. It is impossible to optimize a database
in an absolute way. Therefore, we need a sample of
transactions representing the characteristic “workload”
of the database. Then the optimization target is to reduce
the total execution time of these transactions in a well
defined environment. For our purpose we have defined
six transactions, three of them performing retrieval and
the others update operations on the database:

FACULTY
20 records with
66 bytes each

3 members/owner 30 members/owner

PROF
60 records with
93 bytes each

STUDENT
600 records with
84 bytes each

members/owner;
wan value is 30

400 ~vmer records with 2 members each
100 cwner records with no members

Fig. 1. Structure of the database to be optimized.

RECORD NAME IS FACULTY WITHIN
SEARCH KEY IS FA-NAME

DVP-FIl SET NAME IS FAPROF
URUER IS SORTED BY DEFINED KEYS
DUPLICATES ARE NOT ALLOWED
OWNER IS FACULTY.

MEMBER IS PROF MANDATORY AUTOMATIC
ASCENDING KEY IS FAM-NAME
SETOCCURRENCESELECTION IS THRU CURRENT OF SET.

USING INDEX
DUPLICATES ARE NOT ALLOWED
FA-NR PIG 9f21.
FA-NAME PIG Xi%).
FA-STREET PIG X(30).
FA-HOUSE PIG 9(04).

RECORD NAME IS PROF WITHIN DVP-FIl
PERS-NR PIG X(07).
FA-MEMBER PIG 9(02).
FAM-NIIME PIG X(20).
CHR-NAME PIG X(20).
INSTITUTE PIG X(40).
SAL-GROUP PIG X(04).

RECORD NAME IS STUDENT WITHIN DVP-FIl
REG-NR
FA-MEMBER

PIG 9(06).
PIG 9(02).

F&NAME PIG X(20).
CHR-NAME
CURR-TERM

PIG X(20).

GRAD-EXP
PIG 9(03).
PIG X(03).

DOMICILE PIG X(30).

RECORD NAME IS EXAMINATION WITHIN DVP-FIl
SUBJECT PIG 9(03).
MARK
DATE

PIG 9(01).

REPETITION
PIC 9(06).

REMARKS
PIG X(01).
PIG X(70).

SET NME IS FASTUD
ORDER IS IMMATERIAL
OWNER IS FACULTY.

MEMBER IS STUDENT MANDATORY AUTOMATIC
SETOCCURRENCE SELECTION IS THRU CURRENT OF SET.

SET NAME IS EXPMINER
ORDER IS SORTED BY DEFINED KEYS
DUPLICATES ARE ALLOWED
MJNER IS PROF.

MEMBER IS EXAMINATION OPTIONAL MANUAL
ASCENDING KEY IS DATE;MARK
SETOCCURRENCESELECTION Is THRU CURRENT OF SET.

SET NAME IS EXAMINEE
ORDER IS NEXT
OWNER IS STUDENT.

MEMBER IS EXAMINATION OPTIONAL MANUAL
SET OCCURRENCESELECTION IS THRU CURRENT OF SET.

Fig. 2. DDL of the database to be optimized.

An experiment in learning DBTG database administration I39

Transaction I:

Transaction 2:

Transactjon 3:

Transaction 4:

Transaction 5:

Transaction 6:

Lists the FAM-NAMES of all professors
examining subject 015. The instances of
record type EXAMINATION contain 25
different subject codes with a uniform
frequency dis~ibution.
Lists the FAN-NAMES of all students
having a mark 2 in a repeated examina-
tion. About 10% of the EXAMINATION
records will be qualified by this predi-
cate.
Lists the FAM-NAVES of all professors
having examined 5 students, whose
FAM-NAMES are obtained by random
selection. The frequency distributions are
given in Fig. 1.
Stores 25 new occurrences of record type
STUDENT with a uuiform distribution of
values in field FA-MEMBER.
Erases 25 occurrences of record type
STUDENT selected at random via REG-
NR and all their members in set
EXAMINEE.
Stores 100 new occurrences of record
type EXAMINATION and connects
them to their respective owners in the
sets EXAMINER and EXAMINEE.

In Fig. 3 a partial view of the database’s logical struc-
ture is shown for each transaction. In each case only

T2:

those paths within and between the different record
types are drawn, which are possibty used or affected by
the DML-statements constituting the respective trans-
action. As an example, let us consider transaction 5: To
retrieve the STUDENT record to be erased a FIND
STUDENT USING REG-NR (FIND-7) has to be exe-
cuted taking advantage of an appropriate access path
(SEARCH KEY) whenever possible. Erasing an occur-
rence of the STUDENT record type yields additionally
an implicit disconnection of this occurrence from the
FASTUD set and triggers the deletion of all occurrences
of EXAMINATION which it is owner of, because an
ERASE STUDENT ALL MEMBERS is issued by the
transaction. Consequently, all these records have to he
disconnected from their respective owners in the set
EXAMINER.

These logical path graphes illustrating the access
sequences of the different transactions are considered to
be self-explanatory. We shall make use of this specific
representation during the analysis of the various opti-
mization approaches,

2.2 Initial ~~~roa~~e~ to a “standard solution”
The students could compare their results to an initial

approach intended to give an example of a rather poor
solution. It comprises the DDL of Fig. 2 and the DSDL
as shown in Figs. 4(a and b). Figure 4(a) contains the
complete DSDL according to the syntax of our database
system; Fig. 4(b) shows a more illustrative graphic

\ 80 FETCH OWNER (FETCH-6.)

EXAMINATION
80 FIND DUPLICATE

(FIND-31

I FIND EXAMtNATl~N USING SUBJECT (FtND-7)

67 FETCH OWNE

67 FtND DUPLICATE
EXAMINATION

t FIND EXAMINATION CASING REPETITION, MARK

Fii. 3.

140 W. EFFELSBERC et al.

5 FIND STUDENT USING FAM-NAME

T3:

PROF STUDENT

T4:

EXAMINATION -$1s”“;;;;XT EXAMINATION

25 FIND FACULTY USING FA-NR

FACULTY FA-NR
1

STUDENT

25 STORE STUDENT (AUTOMATIC MEMBER)

T5:

FAcuLTyF
25 implicit ‘\

.\
DISCONNECT ‘. 25 FIND STUDENT USING REG-NR

‘\
‘\\

PROF REG-NR

\
‘1

-130 implicit
‘.

‘\\ ALL MEMBERS
DISCONNECT ‘\

‘\\
\r

EXAMINATION
I

-130 implicit ERASE EXAMINATION

T6: 100 FIND PROF USING PERS-NR 100 FIND STUDENT USING REG-NR

PROF F’ERS-NR
1

STUDENT REG-NR
I

100 CONNECT ALL

EXAMINATION
I

100 STORE EXAMINATION

Fig. 3. Logical access path graphs for the sample transactions.

An ex~riment in learning DBTG database administration

RECORD

RECORD

RECORD

RECORD

s E

NAME IS FACULTY;
DATABASE-KEY-TRANSLATION-TABLE IS 100.

NAME IS PROF ;
DATABASE-KEY-TRANSLATION-TABLE IS 500.

NAME IS STUDENT;
DATABASE-KAY-TRANSLATION-TABLE ISlOOO.

NAME IS EXAMINATIONS
DATABASE-KEY-TRANSLATION-TABLE IS 3000.

TS

SET NAME IS FAPROF;
MODE IS CHAIN;
POPULATION IS t0 INCREASE 5.

SET NAME IS FASTUD;
MODE IS CHAIN;
POPULATION 100 INCREASE 10.

SET NAME IS EXAMINER;
MODE IS CHAIN;
POPULATION ts 250 INCREASE 25.

SET NAME IS EXAMINEE;
MODE IS CHAIN;
POPULATION 10 INCREASE 5.

Fig. 4(a). Stand~d-~DL of the database to be optimized.

CHAIN//SORTED IND

CHAIN//SORTED

Fig. 4(b). Graphical representation of the standard solution.

represen~t~on ~n~~~ the most important DDL- and
DSDL-parameters influencing the execution time of the
transaction load. We shall use this representation to
discuss some sample solutions later in this paper. Its
semantics should be obvious without further explanation.
Apparently the standard solution can be optimized in
many aspects: The ORDER IS SORTED-clauses in the
DDL are not required in the DML-programs for trans-
actions l-6; there are no search keys speeding up the
FIND-operations most frequently used; all the sets are
implemented as single directed CHAINS, performing
poorly w.r.t. STORE- and E~SE~peration etc.

The evaluation of this solution is shown in Fig. 5. The
elapsed times of all DML-s~teme~ts of the six trans-
actions except READY and FINISH have been aggre-

Total elapsed rime: 19S,93 set

gated. Such a table serves to easily obtain information Fig. 5. Elapsed times for the standard solution (average time per
about the con~bution of the statements to the total time. call in msf.

142 IV. EFFE~BERG et at

The elapsed times and the frequencies of use of the
DML-statements are the primary criterion for the selec-
tion of optimization candidates to be supported by more
appropriate storage structures. On the other hand, this
table allows the analysis of each solution, i.e. the effects
of the optimized clauses w.r.t. the access paths used by
the different statements.

3. EVALUATION OFTHESTUDENTS'OPTIMIZATIONS

During the experiment under consideration the logical
data structure of the database and the transaction pro-
grams were kept fixed completely and had not to be
altered by the students. Only the physical data structure
could be changed in order to minimize the execution time
of the given transactions defining the load of the
database system.

A description of the various storage structures and
access aids to be eligible for the optimization process is
given in detail in the appendix. Unfortunately there is no
strict separation of the logical and physical aspects of data
structure in the CODASYL concept. As a consequence,
some conceivable optimization steps were not possible
without program modification while others were spread
over the DDL and DSDL schemas. The rest~ctions w.r.t.
the optimization features are listed in the appendix, too.

The evaluation of one optimization approach had to
include the following steps: generating the database ac-
cording to the respective DDL- and DSDL-description,
loading the sample data, executing the sample trans-
actions and recording the elapsed time for each DML-
statement. To achieve comparability between the
different solutions, all the evaluations had to take place
in the very same environment. For our purpose we used
the database system UDS[5], where the DSDL is called
SSL (storage structure language) on a SIEMENS 7.748
with 1 MB of storage under a real storage operating
system. The database system was given a buffer of 15
pages to reflect the small size of the total database. The
database consisted of physical pages of 2048 bytes. The
transactions were run in a fixed sequence in single user-
mode with no other jobs executing concurrently. The
database system performed UNDO-logging by recording
physical before images of the changed pages. A
measurement interface program linked between the
user’s program and the database connection module
recorded the elapsed times for all DML-statements.
These records were aggregated into statistical values by
a separate program yielding tables as shown in Fig. 5.

3.1 Results of our expedient
The numerical results achieved by 12 groups compet-

ing in the optimization race are shown in Fig. 6. Many
groups have started with a very poor initial approach

being even worse than the standard solution in one case
(group G02). But nearly all of them have considerably
improved their solution in the 2. and 3. approach. The mean
value drastically reduces from the 1. to the 2. approach
and could have reached 58.46sec in the 3. approach, if
we had removed group GO9 from the computation, This
group had a disastrous third solution due to an essential
misunderstanding of the differences between search keys
on record types and sets, respectively. All the other
groups had at least one solution sufficiently close to the
optimum value of 50 sec. We don’t want to consider, how
many of the final improvements are due to inter-soup
communication, because the good solutions, whether
they are found by chance or by analysis, necessarily look
similar. This will be discussed in detail in Section 5.
Figure 7 shows a graphical representation of the
numerical results, but the groups are arranged in a
different order to clarify the following aspect: We wan-
ted to know, whether the students had tried different
options in their approaches or whether they were pri-
marily interested in refining a good solution to gain the
minimum time, i.e. whether they looked upon the task as
a game or as a competition. Analysing the DSDL’s, we
found two types of groups: type I had an initial solution
showing a rather poor pe~orman~e; as a consequence,
they gave up this approach and tried a different one.
Type 2 was obviously contented with the outcome of
their initial solution; they didn’t take any risk and tried
only small variations of the approved DSDL. This shows
that major changes were only applied to unfavourable
solutions according to the rule never to change a winning
team. The only group to take three different approaches
was GOO-a synonym for our own efforts to find an
optimal solution.

The initial solutions &owed a wide variety in the
number of record search keys ranging from 0 to a
maximum of 7 per group although the students have been
warned of their extensive use.

Only two search keys-SK(PERS-NR) on PROF and
SK (REG-NR) on STUDENT-were essential for a
good solution. A conceivable search key SK(FA-NR) on
FACULTY didn’t affect the elapsed time very much,
because of the absence of update operations on that
record type and the disregard of load time. Search keys
on EXAMINATION were definite design errors provok-
ing a high update overhead without any gain in retrieval.
The use of search keys on sets being negative optimiza-
tion features in our sample database was ne~igible dur-
ing our experiment.

The following table shows the frequencies of use for
search keys on record types irrespective of the INDEX

GMI GO1 GO2 GO3 GO4 GO5 GO6 GO7 GO6 GO9 GlO Gil mean

1. appr. 57.60 177.69 307.40 116.32 65.49 172.53 145.99 90.62 101.59 152.09 54.59 62.09 125.51
2.appr. 67.96 71.06 103.53 54.70 73.46 61.59 121.70 59.74 74.66 100.26 56.37 6406 76.01
3.appr. 49.75 63.63 55.59 57.63 56.64 55.55 58.25 55.96 64.65 241.49 55.55 69.57 73.?2

Fig. 6. Numerical results for all groups in seconds of elapsed time.

4n experiment in learning DBTG database administration

130

120

110

100

90

80

GO1 GO3 GO6 GO9 GO2 GO5 GO4 GO7 GOB GIO Gil GO0

I
"

Type 1 TYPO 2

Fig. 7. Graphical distribution of the optimization approaches

or CALC option. “Standard” indicates the standard ap- The set mode of FAPROF was of minor importance
preach having only one useless search key SK(FA- due to the chosen transaction load and the small set
NAME) on FACULTY (12 times). occurrences, POINTER-ARRAY dominated absolutely

FACULTY

search keys used by 12 groups on

PROF STUDENT EXAMINATION

Standard 12 0 0 0
I. approach 5 10 12 6
2. approach 6 12 14 5
3. approach 8 II II 0

A drastic change in the use of the 3 possible set modes
was also observable. We consider the modes LIST,
POINTER-ARRAY and CHAIN without further
refinement due to ATTACHED/DETACHED-options.
The use of LIST-mode was not possible in case of
manual sets.

The following table aggregates the various design
decisions concerning the set mode:

in the remaining sets. About 90% of the PA-set modes
chosen contained the ATTACHED-option. This frequent
application of the ATTACHED-option destroying a pos-
sible cluster property of the owner record type is con-
sidered to be thoughtless from our point of view. The
best solution (see Fig. 8a) gained about 10% by applying
POINTER-ARRAY DETACHED twice. Initial ap-
proaches using CHAIN-mode without the LINKED TO

FAPROF FASTUD EXAMINER EXAMINEE
LIST PA CHAIN LIST PA CHAIN PA CHAIN PA CHAIN

Standard 0 0 I2 0 0 I2 0 I2 0 12
1. approach 4 0 8 I I 4 7 5 8 4
2. approach 4 0 8 2 9 1 12 0 II I
3. approach 4 0 8 2 IO 0 I2 0 I? 0

IS Vol. 5.No 2-D

144 W. EFFELSBERG et ul.

SK-I(PERS-NR)

PA/D/LAST
POP:50,10

SK-I(REG-NR) I

1

Fig. 8(a). The optimal solution.

57.44 set

I
CHAIN/ /NEXT

SK-I(PERS-NR) 1

t MPL

Fig. 8(b). An example of a pseudo optimization.

PRIOR-option (LP) were not very successful dis-
couraging further optimization attempts. While a
reasonable solution with CHAIN-mode and LP-option
for the EXAMINER- and EXAMINEE-sets is conceiv-
able, such a solution is not considered to be very stable
for larger set occurrences and unclustered member
records. The PA-solutions, however, promise a sub-
stantial robustness w.r.t. set occurrence growth and loss
of cluster property of member records.

The evaluation of the set order chosen for the relevant
sets FASTUD, EXAMINER and EXAMINEE can be
condensed to the following statistics:

SORTED/SORTED IND. NEXT/PRIOR LAST/IMMAT.

Standard 12 12 12
1. approach 1 13 16

2. approach I 9 20
3. approach 9 2 25

The set order has a major influence in connection with
set mode LIST and CHAIN. IMMATERIAL has the
effect of LAST when the DATABASE-KEYS are assig-
ned sequentially. Therefore, a design of CHAIN together
with LAST or IMMATERIAL set order had a disastrous
influence on the optimization efforts. On the other hand,

tFor a better understanding of following considerations we
refer to the access path graphs shown in Fig. 3.

the POINTER-ARRAY-technique is supposed to be
relatively insensitive to the choice of set order.

4. CHARACTERISTICS OF THE GOOD SOLtJTIONSt

The major features of the best solutions (i.e. those
below 60 set) can be explained by means of the optimal
DSDL shown in Fig. S(a). For the set EXAMINER and
EXAMINEE POINTER-ARRAY proved to be best
choice w.r.t. the performance of transactions 4-6. The
DETACHED-option for set EXAMINER was selected
due to the following consideration: Transactions 5 and 6
do only affect the member records and the set con-
nection data of set EXAMINER; in case of an
ATTACHED-pointer array, each pointer array will be
stored in physical proximity of the respective owner
record occurrence. Consequently, the pointer array
tables are spread over many pages. Hence, for each new
ERASE- or CONNECT-statement another page has to
be read, logged and written. The DETACHED-option
achieves a clustering of the pointer arrays and thus
reduces the physical I/O. This does not hold for set
EXAMINEE, because transaction 5 deletes the
STUDENT-records causing a log- and rewrite-operation
for the respective page. Therefore, the update of an
ATTACHED pointer array can be done without ad-
ditional costs, whereas the DETACHED-option would
trigger two more write operations. Hence, for set
EXAMINEE ATTACHED should be better w.r.t. trans-
action 5, DETACHED w.r.t. transaction 6. This is
confirmed by the results of different approaches showing
no significant differences in either case.

For set FASTUD the set modes CHAIN and POIN-
TER-ARRAY yield approximately equal results; LIST

An experiment in learning DBTG database administration 145

proved to be the optimal selection w.r.t. transaction 6
(this is due to a clustering of the updated records by
FA-NR), but showed a comparatively poor performance
for transactions 3 and 4. The search keys for PER%NR
and REG-NR on the record types PROF and
STUDENT, respectively, are essentially necessary,
irrespective of other features of the DSDL. The search
key for PERS-NR is for free anyway, because no update
is performed on record type PROF. That one for REG-
NR causes a slight deterioration of 25 STORE-opera-
tions, but it considerably speeds up 100 FIND-7. Search
keys on record type EXAMINATION are obviously
disadvantageous since this record type is affected by
more update- than retrieval-operations. The other clauses
are of minor importance for the result.

Finally we want to demonstrate what can be called a
pseudo optimization (Fig. 8b). The most frequently used
sets are implemented as CHAIN LINKED TO PRIOR,
and the elapsed time for this solution is close to the
minimum. Here we have utilized the fact, that the mem-
ber records of EXAMINER and EXAMINEE were
stored in the same or adjacent pages. Hence, the over-
head for updating the set connection data when storing
or deleting an EXAMINATION-record became neglig-
ible. This solution would perform as poorly as the stan-
dard solution in case of distributed member records.

The choice of set mode played the most important role
in the design process of the physical structures. While
set mode LIST is only eligible in special cases (Mem-
bership AUTOMATIC and only for one set type per
member record type) usually the key decision for the
database administrator is CHAIN vs POINTER-
ARRAY. Therefore, some general observations facilitat-
ing the critical judgement and advantageous use of these
storage structures are listed below:

-CHAIN is preferable only for very small set occur-
rences, if at all:

0 clustering of member records in a page is especially
favorable in case of update and logging. Only one page is
affected in the average.
l LINKED TO PRIOR is indispensible except for

very special cases
@data manipulation (retrieval) of the member record

requires frequent change of the set type
l update is difficult and expensive depending on the

set order clause, the cluster effect and the hidden logging
costs

0 the access time behavior is very sensitive to the set
order and the growth of the structure

-the behavior of POINTER-ARRAY is very stable
and does not rely on special set properties:

0 it is an “average good” structure
0 two pages are affected in general during update
l it is insensitive to the set order clause
0 the access time behavior only minimally reflects the

growth of the structure
0 the ATTACHED and DETACHED options support

the clustering of either owner records with the cor-
responding pointer-arrays or of all pointer-arrays
belonging to the same set type depending on processing
and update frequencies.

5. LEARNING DATABASE ADMINKTRATION

The following comments and observations concerning
the learning pattern and the behavior of the students
during their optimization efforts may be of general in-
terest.

(a) At first, a very uncritical and frequent use of
specific DSDL features and options could be observed,
e.g. “attached”, “ search key” “placement optimization”.
This was probably due to the seductive name of these
options promising an overall optimization. In fact, these
clauses should be applied very cautiously because they
are optimizing only special cases while destroying the
cluster property of records or increasing the maintenance
costs. The initial failure of the optimization efforts taught
the students to be more critical in using these “obvious
optimization features”.

(b) Such a practical course in database administration
requires a thorough and profound theoretical foundation
in advance. Lectures about the various methods of phy-
sical storage structures (at a very low level), their
detailed mapping to storage media and the dynamic
interior behavior of the system w.r.t. buffer management,
logging etc. have to be a necessary prerequisite to enable
precise design decisions and approximate estimates of
alternative solutions. Otherwise, blind guesses and trial
and error approaches are the consequence as demon-
strated by the less successful students. Without a good
theoretical preparation such a practical course would
only serve to simulate the behavior of a naive user.

(c) Even with experience in database administration it
is very difficult to predict the precise outcome of a
specific DSDL design. Simple “improvements or
changes” on a particular clause have a number of subtle,
but expensive reactions on other clauses. For example, the
clustering of the records of a record type destroys the
cluster of the corresponding records of a set type. The
influence of such counter-effects is amplified by the
replacement algorithm of the system buffer. Additional
hidden costs implied by locking and logging strategies have
to be taken into consideration. Wrong design decisions
gave an incentive to the (ambitious) students to gain a
deeper understanding of the relative influence of the
various optimization clauses. Probably, the more im-
portant learn-effect is to consciously deal with the in-
tricacies and the interrelationships of the physical struc-
tures and their manipulation than to find the optimum of a
particular structure under a given load.

Good and poor solutions were sometimes very similar
as far as the choice of parameters and storage structure
is concerned. But the assignment of a useless search key,
a wrong primary allocation factor or an insufficient in-
crease parameter turned a good solution into an
insufficient one.

(d) Various reasonable or promising optimization ap-
proaches failed due to the lack of data independence.
Such a negative experience made the importance of clear
separation of logical and physical data structuring more
vivid to the students than theoretical arguments. The
major restrictions were imposed by the following pro-
perties of our DBMS and the CODASYL concept, res-
pectively:

146 W. EFFELSBERG ef al.

-Set membership MANUAL is incompatible with set
mode LIST; on the other hand the membership could not
be changed to AUTOMATIC since this would have
caused program modifications (STORE/CONNECT vs
STORE).

-Access to a record type programmed via a FIND-7
statement cannot be supported by LOCATION MODE
CALC because this option is bound to a FIND-2 state-
ment. A unified approach to record access via FIND-7
wouldn’t result in any loss of functionality and per-
formance.

-Changing the set selection clause from CURRENT
OF SET to LOCA~ON MODE OF OWNER or vice
versa always requires program modification. Therefore
the system should be responsible for the optimal set
selection. An appropriate way to specify this feature is a
value-based set selection clause e.g. the STRUCTURAL
CONSTRAINT concept of 141.

6. CONCLUSION

A DSDL optimization experiment as discussed in this
paper seems to be an appropriate way of learning
database administration. It provoked a lot of competition
and interest among the students and mediated consider-
able insight in the problems of storage structure opti-
mization. It showed the substantial gain of good solu-
tions to the standard solution by a factor of 4; time
differences of the various optimization attempts spanned
a factor of 6 and more. But above all, this experiment
taught the students what data independence is good for.

REFERENCES

[I] CODASYL Database Task Group Rep., April 1971, available
from IFIP Administration Data Processing Group, 40 Paulus
Potterstraat, Amsterdam.

[2j H. Schenk: Implementational aspects of the CODASYL
DBTG proposal. In: Du~abuse Mu~uge~e~~ (Ed. by J. W.
Klimble and K. L. Koffeman), pp. 399-111. North Holland,
Amsterdam (1974).

91 CODASYL DDL Journal of Development, June 73 Rep,,
available from IFIP Administration Data Processing Group,
40 Paulus Potterstraat, Amsterdam.

[4] Report of the CODASYL Data Description Language Com-
mittee. Inform. Svst. 3,247-320 (1978).

[5] Siemens-hanual:. Software product UDS, Universal
Database System, Schema-DDL and SSL, Reference Manual,
No. Dl5/5169-01.

[6] R. W. Engles: An Analysis of the April 1971, DBTG-Rep. In:
Proc. I971 ACM SiGFIDET Workship OR Data descrip-
tion, Access and Control, San Diego, California, November
1971, pp~ 69-91.

APPIZNIHX

A.1 Possible uu~a~io~s of DDL-clauses
Unfortunately the CODASYL-DDL does not only describe

the logical data structure of the database, but has some influence
on the physical representation of access paths to the data as
well[6]. For instance, the LOCATION MODE IS CALC-clause
supports the placement of the records by a defined user key and
their retrieval by means of a hash algorithm. SEARCH KEY-
clauses specified in the schema-DDL allow the creation and
maintenance of the additional direct access oaths to the data
records.

A.2 Optimization features of the DSDL
Apart from the schema-DDL-clauses described above other

access path optimizations are possible by means of the data
storage description language (DSDL). If the SSL-parameters are
not explicitly specified, our database system assumes a default
storage structure with predelined values which may yield a poor
performance for many applications. The DSDL is supposed to be
the most important tool for the database administrator tailoring
the physical data structure of this database to the special charac-
teristics of the transaction load. The different DSDL-clauses are
totally invariant to the semantics of database transactions guaran-
teeing their isolated variations for optimization purposes. The most
important DSDL-clauses are discussed briefly.

A.2.1 The RECORD-clauses. The record concept of the DBTG-
proposal requires a unique identifier of a record (DATABASE-
KEY) within the database remaining unchanged during the time
the record exists in the database. An appropriate implementation
technique giving some kind of indirection for reorganization
purposes is the use of “transformation tables” associating the
DATABASE-KEY of a record to its physical address. The so
called DATABASE~KEY-~ANSLATION-TABLE (DB’IT)-
clause specifies the maximum number of entries in such a table
defined for every record type. The DBTT of a record type is
located in consecutive pages of an area separated from pages
containing the corresponding record occurrences. Hence, the
location of a record via its DATABASE-KEY requires two
logical accesses to the database. The PLACEMENT OPTI-
MIZATION FOR SET-clause is used to obtain physical proxi-
mity of records within set occurrences independent of the set mode
specified. This clause causes the database system to reserve free
space for sets and to place owner record, member records and set
connection data in one or more consecutive disk pages.

The INDEX-clause for records allows the olacement control
Additionally some of these DDL-clauses govern the use of

CODASYL-DML commands causing a high interdependence of
for search key tables or hash areas (PLACIN&). Further&e a

DDL and DML. For example, the usage of FIND-Zstatements
TYPE- and a DYNAMIC REORGANIZATION-parameter are

(FIND ANY) in the DML requires the LOCATION MODE IS
valuable options to tailor large B*-trees to specific requirements.
The TYPE-option defines the format of entries in a search key

CALC-clause in the DDL for the record types concerned. A ret
membership OPTIONAL MANUAL altered to MANDA-
TORY AUTOMATIC in the schema would provoke execution
time errors for all CONNECT- and DISCONNECT-statements
for that set type.

In order to avoid these problems some DDL options were not
eligible for the optimization of the access behavior. The two
most important DDL-clauses used as optimization candidates
were the ORDER-clause for sets, and the SEARCH KEY-clause
for sets and record types. The ORDER-clause has the following
form:

1 SORTED [INDEXED~
/ FIRST

PRIOR
IMMATERIAL I

The sequence of the set members in our database had no
logical meaning: thus the DDL-ORDER-clause was of no im-
portance for the results of our six transactions and could be used
for optimization of the set processing.

The SEARCH KEY-clause soecifies. that certain fields of a
record type can be used for the fast dir&t retrieval of records of
that type from Ihe database. Such search keys are implemented
and maintained by sorted tables according to the dynamic-
levelled-index-table concept[Z] (B*-tree concept) in case of the
INDEX option or by scatter tables (indirect hash areas) in case
of the CALC-option. In our database system search keys can be
either specified for the member records of each set in the
schema, or they can be specified for all records of a certain
record type. In the latter case an implicit set with OWNER IS
SYSTEM is automatically generated, and all records of the
corresponding record type are members of that set. The search
keys for record types can thus be treated like set search keys.

table (repeated key or database-key-list in case of duplicate
keys). The DYNAMIC REORGANIZATION-clause is used to
specify the number of pages involved in the reorganization
process of index tables. This parameter controls a typical time-
space tradeoff. A high number of pages to be reorganized causes
a higher overhead when page splitting occurs. On the other hand,
a better filling rate of the index pages is gained saving storage
space and sequential access time, Because of the size of our
database these parameters are supposed to be of minor influence.

A.2.2 The SET-clauses. The MODE-clause specifies the SET
mode, that is, the way how the owner and members of a set are
connected physically. Irrespective of the actual set mode chosen
every member record contains the logical address (DATABASE-
KEY) of his owner. This measure greatly facilitates the member-
owner access in case of information bearing sets. The insertion
order is given bv the set ORDER-clause in the DDL. As a
peculiarit;, ORDER IS IMMATERIAL is implemented in our
system as SORTED BY DATABASE-KEY resulting often in an
insertion sequence LAST. The complete form of the mode
clause [S] is:

I CHAIN [LINKED TO PRIOR]

MODE IS POINTER-ARRAY ATTACHED TO OWNER

LIST DETACHED [WITHIN realm-name]
[WITH PHYSICAL LINK] J

An experiment in learning DBTG database administration 147

requires the set membership MANDATORY AUTOMATIC;
thus. the DML-statements CONNECT and DISCONNECT are
not allowed for LIST-sets.

In case of an order clause SORTED INDEXED pointer-arrays
and lists are maintained as B*-trees. SORTED INDEXED in
connection with CHAIN-mode generates a sorted chain and an
additional index table.

If the option ATTACHED TO OWNER has been specified for
a LIST or POINTER-ARRAY, it will preferably be located in the
same page as the related owner record occurrence reducing a
possible cluster effect for the occurrences of the owner record
type. The access from owner to member is supposed to be
accelerated by this option.

DETACHED WITHIN realm-name places the POINTER-
ARRAY or LIST in the owner’s realm or the specified realm
respectively: it will not be located in the owner’s page preserving
a possible cluster property of the owner record type. The option
WITH PHYSICAL LINK causes the owner record to contain
the physical address (page address) of his related POINTER-
ARRAY or LIST.

The SET-clause POPULATION IS integer-l [INCREASE IS

MODE IS CHAIN causes the set owner and all his members to
be connected by forward pointers (NEXT) embedded in the
record occurrences. When LINKED TO PRIOR is specified all
pointers of the chain are bidirectional.

MODE IS POINTER-ARRAY leads to the creation of a table
for each set occurrence containing pointers to all member
records of the set occurrence. The page address of the pointer-
array is stored in the owner’s entry in the DBTT.

MODE IS LIST specifies that all members of a set occurrence
are to be stored in physical contiguity within a page and, if
necessary, in pointer-connected pages. As a consequence, the
same record type cannot be member of two sets with MODE IS
LIST. Because of their cluster property lists are preferable in
case of frequent sequential processing. The set mode LIST

I

integer-21 is used to reserve space for tables, lists and/or pointer-
arrays by specifying the number of member record occurrences
to be taken into account per set occurrence. Integer-l serves for
the initial assignment, integer-2 describes the increase for the
secondary allocation in case of overflow. Whatever the values of
integer-l and integer-2 are, the initial assignment will never
exceed one page.

The INDEX-clause for sets corresponds to the INDEX clause
for record types and has the same meaning (see chapter A.2.1).

The clause MEMBER IS PHYSICALLY LINKED TO
OWNER causes the member records of the set concerned to
contain a physical owner pointer accelerating the member-owner
access path.

