
Inform. Symm Vol. 9, No. 2, pp. 111-120, 1984
Printed in the U.S.A.

03064379/84 53.00 + .I0
0 1984 Pergamon Press Ltd.

OBSERVATIONS ON OPTIMISTIC CONCURRENCY
CONTROL SCHEMES

THKI H&DER~
Department of Computer Sciences, University of Kaiserslautem, Postfach 3049, D-6750 Kaiserslautem

West Germany

(Received 18 April 1983; in revised form 6 October 1983)

Attstraet-Gptimistic concurrency control schemes allow uncontrolled access to shared data objects during
transaction processing under the explicit assumption that read and write coticts among transactions are
rare events. Before a transaction commits, the DBMS has to validate that no conflict has occurred
Conflict resolution mainly relies on transaction abort.

Two different optimistic concurrency control schemes are introduced and compared to each other. The
problems of implementing such schemes and their implications on DBMS processing is investigated in
some detail. A number of general properties of optimistic concurrency control schemes is derived, and
their advantages and drawbacks w.r.t. two-phase locking approaches are discussed.

INTRODUCTION

When transactions are accessing a database concur-

rently, a concurrency control (CC) scheme has to
prevent conflicts among them such that their seri-
alizability can be guaranteed. A system of concurrent
transactions is said to be serializable or has the
property of serial equivalence if there exists at least
one serial schedule of execution leading to the same
results for every transaction and to the same final
state of the database.

Conventional CC schemes use two-phase locking
protocols acquiring dynamically locks for the objects
to be accessed. Since the implementation of predicate
locks appears to be impractical, usually physical
locks are used. Special care has to be taken in such
implementations to prevent errors based on the non-
existence of objects, e.g. phantoms[11. Approaches
with appropriately implemented two-phase locking
protocols guarantee a single user system view except
for deadlocks.

It is claimed[2] that locking approaches have the
following inherent disadvantages:

-Lock maintenance and deadlock detection repre-
sent a substantial overhead, e.g. 10% of the total
execution time in System R[3].

-There are no general purpose deadlock-free
locking protocols that always provide a high degree
of concurrency.

tThis work was performed while the author was visiting
IBM Research Laboratory, San Jose, CA 95193, U.S.A.

read

Tl

validation write

- ,_~_--_--_t.~

-Concurrency is significantly lowered whenever it
is necessary to leave some hot spot data object
(congested node) locked while waiting for a second-
ary memory access.

-Because of the presence of failures a strict two-
phase locking protocol has to be applied to prevent
backout of data which may have been accessed by
completed transactions before the failing transaction
aborts, that is, locks have to be kept until EOT.

-Locking may be necessary at all only in the worst
case, that is, in most cases a locking approach
introduces too strong preventive measures.

PRINCIPLES OF OPTIMISTIC CC

Optimistic CC schemes[2,4,5] are designed to get
rid of the locking overhead. They are optimistic in the
sense that they take into account the explicit assump-
tion that conflicts among transactions are rare events.
Thus, they rely for efficiency on the hope that
conflicts will not occur. Since dynamically requested
locks are not applied, such schemes are deadlock-
free. The burden of CC is deferred until EOT when
some checking for potential conflicts has to take
place. If a conceivable conflict is detected, a “pessi-
mistic” view has to be taken: this conceivable conflict
is resolved by aborting the transaction. Hence, these
schemes rely on transaction backout as a control
mechanism.

The basic idea of an optimistic CC scheme is
follows: The execution of a transaction consists
three phases-read, validation, and write.

as
of

B3.r Euc

111

112 T. HjiRnER

The end of the read phase corresponds to the
signailing of EOT to the DBMS, that is, the trans-
action gives up its right of unilateral abort.

Read phase
For each transaction a so-called transaction buffer

(implemented as an intention list) is maintained un-
der control of the DBMS. This buffer supports the
abortion of a partially executed transaction during its
read phase. Moreover, a completely executed, but
contlicting transaction can be backed out during its
validation phase without causing any effect to the
global database state. During the read phase a read
access is first directed to the transaction’s buffer. If
the object is not found in the buffer, the (global state
of the) database has to be accessed, that is, the system
buffer or the data stored on disk. Read-only objects
may or may not be cached in the transaction’s buffer
for later use. Modified objects, however, are stored in
the transaction’s buffer, Repeated modifications (in-
sertions, deletions and updates) on the same objects
within a transaction are made on its local copies.

Note, whenever the modifications during the read
phase are only applied to the abstract view of the
objects visible at the DB programming interface, the
underlying access path data are not affected at that
time. This strategy preserves small granules of
cord&t (records), but has far-reaching consequences
on DBMS processing (see discussion below). Using
copies of the original pages for the transaction’s
modi~~tions, all ~o~~nding access path data can
be changed immediately. This page-levef modification
greatly facilitates normal DBMS processing. How-
ever, the granule of conflict becomes much larger
having potentially strong influences on the outcome
of the optimistic CC. (Direct modification of the
global database state during the “read phase” with-
out having acquired the appropriate locks seems to
lead to timestamping schemes, as another class of

CC [6,71.

After signalling EOT (prepared to COMMIT), the
DBMS has to check whether or not the transaction
intending to commit was in conflict with any of the
transactions operating in parallel. Since no locks are
held, the objects read by the transaction might have
been modified meanwhile by concurrent transactions.
If so, some conflict resolution policy has to be
applied. If no con&& is detected, the transaction is
prepared to commit.

Write phase
A reader transaction is automatically committed

after successfully completing the validation phase. A
writer transaction has to force sufficient log data to
a safe place, consisting at least of the REDO informa-
tion for the transaction’s modifications, e.g. for ar-
chive recovery purposes in case of a media failure.
This action completes phase 1 of a two-phase COM-
MIT protocol.

Then the modifications can be propagated to the
global database state. “Write” does not necessarily
mean “output to disk”. It only requires to make the
transaction’s modifications generally visible, e.g. in
the system buffer. The question whether or not they
should be immediately forced to disk or replaced by
normal buffer management is of no importance to the
principle of optimistic CC. The committed data has
to be secured in phase 2 and eventually later on
against system failure@, 91.

On the first sight, optimistic CC schemes appear to
be very appealing and seductive, since they seem to
promise getting rid of waiting times, deadlock prob
lems, and the management of lock control data
inherent in conventional locking schemes. The pro-
posed solutions-demonstrated at a rather high level
of abstraction-seem to be reasonable and elegant. In
particular, many implementation problems inherent
in these schemes disappear at the abstract level
chosen for the discussion or are hidden when only
dealing with read and update orations on simple
objects. Insertion and deletion is assumed to be
covered by these operations, e.g. all potential objects
are somehow represented in the database-insertion
of an object means its transition from a special null
state to some meaningful state and deletion of an
object vice versa. Due to these assumptions which
hardly seem to be achievable in practical applications
these schemes get rid of the messy phantom-related
problems which are discussed below.

VALIDATlON OF SERIAL EQU~AL~CE

Since no restrictions are applied to read accesses
during the read phase, it must be assured during the
validation phase of a transaction that all its read
accesses were directed to the same database state.
This, in turn, implies that the result of the transaction
is equivalent to its execution in some serial schedule.

In order to validate the serial equivalence criterion,
a unique transaction number Ti is assigned to a
transaction at the end of its read phase (in fact, the
actual assignment can be postponed until successful
validation). Each time a transaction number is as-
signed, the transaction number count (TNC) is in-
cremented by 1. If 7; finishes its read phase before Tj
(i.e. Ti is validated before T,), then Ti < Tj holds.

For each T, and for all Ti with T, c q, there must
exist some serially equivalent schedule with Ti exe-
cuted before I;. In order to be serializable two
transactions T, and I; must observe the following two
rules:

Rule 1: No read dependency
Rule 11: q does not read data modified by a

concurrent transaction I;-.
Rule 12: q does not read data modified by a

concurrent transaction Ti.

Rule 2: No overwriting
T, does not overwrite data which has been written
by a concurrent transaction q and vice versa.

Observations on optimistic concurrency control schemes 113

There are two basic ways to guarantee rules 1
and 2:

(a) no time overlap between T, and q;
(b) no object set overlap (data overlap) between Ti

and Ti.
(a) and (b) can be applied separately to read sets

(RS) and write sets (WS) to construct more soph-
isticated protocols.

This leads to the following set of alternatives for
optimistic CC:

1. No time overlap at ail
Serial execution of T, and Tj which trivially guaran-
tees rules 1 and 2.

2. No time overlap of write phases
2.1 lJ does not read data being modified by Ti (no

object set overlap). This guarantees rule 12.
2.2 c completes write phase before q starts write

phase (no time oberlap; q cannot affect the read
phase of q) This guarantees rules 11 and 12.

prevent time overlap of write phases, only one com-
mitting transaction can be accepted at a time, If
COMMIT processing can be performed efficiently,
enforcement of this condition seems to be sufficient.

Alternative 3 (and 4) allows n committing trans-
actions at a time provided that the corresponding
conditions are satisfied. At the expense of higher
complexity, some parallelism might be gained during
COMMIT processing. In [2] an algorithm for parallel
validation is given intending to shrink the time
interval needed for exclusive DB control on behalf of
the committing transaction. Additional problems are
introduced (a committing transaction invalidates a
transaction, even though the former transaction is
itself invalidated). These algorithms tend to become
very complex even although their underlying model
of data and operations is very simple, i.e. they do not
have to maintain hidden access path data and system
control structures. Therefore, the expected gain of
these algorithms might be compensated by additional
complexity and overhead in real DB imple-
mentations.

3. No object set overlap of write sets
3.1 T, does not read data being modified by T (no

object set overlap). This guarantees rule 12.
3.2 T, does not read data being modified by T, (no

time overlap between read phase of Ti and write
phase of q; q cannot affect the read phase of
Ti). This guarantees rule 11.

3.3 Write sets of T, and Tj are disjunct (no object
set overlap allowing concurrent execution of
write phases). This guarantees rule 2.

We concentrate on optimistic CC schemes which
are based on alternative 2. Two different approaches
are discussed in the following.

4. No object set overlap of read sets and write sets
Totally independent concurrent execution which
trivially guarantees rules 1 and 2.
Alternatives l-3 are a reformulation of the seri-

alizability conditions given in [2]. Alternative 4 is a
trivial addition (for symmetry reasons). It is a little bit
stronger than alternative 3, but does not allow for
greater concurrency. It should be emphasized that
these alternatives represent sufficient, but not neces-
sary, conditions for serializability[S].

Alternative 1 is obvious; no care has to be taken
when transactions do not overlap in time. The chosen
transaction numbering scheme controls this condi-
tion.

BACKWARD ORIENTED OPTIMISTIC CC

Backward oriented optimistic CC (BOCC) checks
during the validation phase of q whether its read set
RS&) intersects with any of the write sets WS(T,)
of all concurrently executed transactions Ti having
finished their read phases before i’J. Since “blind”
modifications are not very likely, each transaction has
to be validated in practice.

Let Tsta,, be the highest transaction number as-
signed to some transaction when Tj starts, and Thniah
the highest transaction number when TJ enters its
validation phase. Then, essentially the following pro-
cedure in T,‘s validation phase will decide q’s destiny.

VALID: = TRUE;
FOR T: = Tshe+ 1 TO Tenish DO

IF RS(q)(lWS(Ti)l =@ THEN
VALID : = FALSE;

IF VALID THEN COMMIT
ELSE ABORT;

For concurrently executed transactions, alternative The scenario shown in Fig. 1 illustrates the set of
2 provides the basic approach for optimistic CC. To transactions to be checked.

read validation write

T, +---t--l

T act
Fig. 1. Validation scenario for transaction q (BOCC).

114 T. Hi;RDw

BOCC requires all finishing transactions--readers
or writers-to be tested whether or not they satisfy
the serializability criterion as long as they have read
some data (RS = (0)). Of course, for “blind” write
only transactions there is nothing to check. It allows
no flexibility in the COMMIT or ABORT decision to
be made.

In the given scenario, RS(q) has to be checked
against WS(T,) and WS(T,). Since T2 and T3 have
already committed, the only conflict resolution strat-
egy is to abort if there is an intersection.

The given procedure allows exactly one validating
and committing transaction at a time. It has to be
executed in a “critical section” w.r.t. other trans-
actions intending to commit. Within this critical
section, all other transactions can proceed with their
read phases. If the serialization of validation and
write phases is a problem, part of the validation can
be executed in parallel. Let us assume that q has been
validated against T,, to Tfinilh outside of a critical
section. Since new transactions (T~nish + , to TenirK)
could have committed in the meantime, they have to
be checked additionally. If this is done in parallel,
again some transaction could have committed re-
quiring further checking. In order to prevent being
passed forever, eventually a critical section has to be
entered for the final validation step and for the write
phase.

Note, the read sets of committed transactions are
of no interest any more. But all write sets of over-
lapping transactions (which are static sets) have to be
kept until their last concurrent transaction has
finished. In case of long transactions having a large
number of concurrent writers this requirement might
be a strong handicap.

FORWARD ORIJDXRD OPTIMISTIC CC

Forward oriented optimistic CC (FOCC) checks
during the validation phase of Tj whether its write set
WS(TJ intersects with any of the read sets RS(TJ of
all transactions Ti having not yet finished their read
phases. This strategy assures that read sets are always
clean. Write sets are only propagated-if they do not
conflict with the current read sets of all other active
transactions.

read

Let the active transactions have the numbers T,,,
until T,,,. Then, Tj is validated as follows:

VALID: = TRUE;
FOR Ti: = T,, TO T,,,, DO

IF WS(T/)nRS(TJl = $3 THEN
VALID: = FALSE;

IF VALID THEN COMMIT
ELSE RESOLVE CONFLICT;

The scenario shown in Fig. 2 illustrates the set of
transactions to be checked.

FOCC places the burden of CC exclusively to
writers. It requires only finishing writer transactions
to be tested whether or not they satisfy the seri-
alizability criterion. Hence, readers will be auto-
matically committed, once they reach their EOT.

Since the transactions to be checked during valida-
tion have not yet committed, this approach offers a
great deal of flexibility in handling a detected conflict.
In the given scenario, WS(ZJ has to be checked
against RS(T,, ,) and RS(T,, &. When a confIict is
realized, the following resolution strategies are con-
ceivable:

1. Defer due to conflicting readers
When the set of conflicting transactions are read-

ers, the validating transaction Tj may be deferred;
validation has to be retried later. The conflicts are
resolved as soon as all conflicting readers have
finished. Of course, this strategy embodies an opti-
mistic view even during validation. It is true that the
current transactions will finally terminate (assume
they are correct), but new readers might cause further
conflicting accesses in the meantime. As mentioned
earlier, the risk of indefinite delay is present in all CC
schemes based only on transaction abort and has to
be cured sooner or later by some drastic serialization
protocol. Provided that conthcts are rare events, this
strategy expands nicely the idea of optimistic CC.

2. Defer due to conflicting writers
Even with some writers in the set of conflicting

transactions, the defer strategy may provide a non-
hurting conflict resolution, when the “future” write
sets of such conflicting transactions are disjoint with
the write set of rr;.. Assume T/ has modified A, B to

val.idation write

Tj T------H

T, I-~----H

T2 t-t---w

T t
act1

T act2 ’

Fig. 2. Validation scenario for q (FOCC).

Observations on optimistic concurrency control schemes 115

A’, B’, and that the writer T,,, has currently read A,
B and C, while preparing C’. Deferring q until T,,
has committed gurarantees the serialization order
T,,, < q. This strategy, however, represents an even
more optimistic view of the world with all the impli-
cations of the first strategy.

3. Kill and commit
Since all conflicting transactions have not yet com-

mitted, the obstacles can be removed deliberately.
Assume q. is a long writer, and T,,, has just started
its execution. In such cases, a killer scheme might be
advantageous.

A weaker interaction would consist of invalidating
the conflicting transactions’ read sets. An invalidated
transaction might survive, if it decreases its level of
consistency, e.g. does not rely on repeatable reads.

4. Abort
The validating transaction q. is immediately abor-

ted.
With the choice of a particular strategy or a mix of

them, a priority scheme for readers or writers can be
supported.

A critical point of FOCC is the checking of dy-
namic read sets which has to be performed when-
ever a writer commits. The simplest solution is to
quiesce system activity (no concurrent progress in
read phases) and to check all active lists in a critical
section. Since this may not be tolerable for per-
formance reasons, some mechanism permitting paral-
lel activity in read phases has to be invented (see
below).

Note, FOCC-strategies seem to have many com-
mon properties with locking protocols granting only
S-locks during the read phase. A writer must try to
convert its S-locks for modified objects into X-locks
at EOT. If no sharing occurs, the corresponding
X-lock is immediately granted. If several S-locks are
held on an object, the conversion must be deferred.
An important difference, however, is introduced by
the version control. The lock protocol automatically
precludes different versions of the same object and
makes sure that the same version is repeatedly
granted to the requesting transaction, whereas in
FOCC-strategies version control has to be achieved
by some special mechanisms (e.g. token schemes).

In comparing the BOCC- and the FOCC-
strategies, the following observations seem to be
important:

-The write set is often a (small) subset of the read
set; if not, then the disjoint fraction is caused by new
insertions which hardly lead to conflicts (at the record
level).

-BOCC must validate a potentially large read set
against a potentially large number of old (static) write
sets. The read set and the number of write sets
increase with the duration of the validating trans-
action.

-FOCC validates no read sets. It has to check a
(small) write set against a limited number of concur-

rent (dynamic) read sets. The sizes and the number of
the read sets is not dependent on the length of the
validating transaction.
-Validation in FOCC-strategies is more difficult
(allowing concurrent activity in read phases is more
costly), because dynamic sets have to be examined.
Since only writers are subject to validation, checking
is much less frequent compared to BOCC-strategies.

Since the read set of a transaction has to be
controlled anyway during its lifetime, less overhead
should be expected for FOCC-strategies. It is also
safe to say that FOCC-strategies offer more degrees
of freedom in handling and optimizing conflict reso-
lution.

IMPLEMENTATION CONSIDERATIONS

Optimistic CC seems to be conceivable with objects
of different levels of abstraction. Obviously, the
following two are prime candidates:

-high level objects of the data model, e.g. records;
-objects at the storage structure level, e.g. pages.
Record-level CC requires a list of modified records

to be kept in the transaction buffer until the write
phase is executed. The propagation of the
modifications to their home pages including the
corresponding access path structures has necessarily
to take place during the write phase. To obtain a
realistic implementation for such optimistic CC
schemes with acceptable COMMIT processing
times[9], it must be assumed that a NOSTEAL-
property for a transaction’s modified objects can be
maintained, that is, that the corresponding pages can
be kept in the DB system buffer until its write phase
is executed. Without this assumption pages to be
modified have to be reread from disk in the critical
section whenever they have been replaced from the
system buffer during a transaction’s lifetime. A
FORCE-policy (writing all modified pages to disk at
EOT) should be avoided, because all pages neces-
sarily have to be written during the write phase.
Hence, a NOSTEAL/NOFORCE-strategy seems to
be indispensable for satisfactory COMMIT pro-
cessing times.

Page-level CC allows the preparation of all
modifications including access path structures in co-
pies of their corresponding home pages during the
read phase. Hence, very short write phases can be
achieved. With a NOSTEAL/NOFORCE-strategy
the write phase only consists of making the modified
pages generally available in the system buffer (and of
saving sufficient log information). Even a STEAL/
FORCE-stragtegy which may obtain acceptable
COMMIT processing times seems to be achievable
with an ATOMIC propagation scheme[9], e.g. a
transaction oriented shadow page mechanism
(TOSP) which has to be tailored to maintain a
transaction’s modified pages on disk. Such a mech-
anism would imply

-to tentatively write the modified pages from the
transaction buffer to disk during to read phase;

-to apply a logging technique to the modified

116 T. H;6RDER

entries of the page tables in order to avoid syn-
chronous I/O of page table blocks;

-to propagate the set of pages atomically after
successful validation during the write phase.

In either case, COMMIT processing must be a
primary concern for the implementation of an opti-
mistic CC scheme for performance reasons. Note, in
a virtual OS environment page faults can expand its
duration even with NOSTEAL- or NOFORCE-
assumptions.

In order to speed up the validation process appro-
priate data structures have to be designed for main
memory use. For each transaction, two separate data
structures should be maintained for its associated RS
and WS. These two structures could be merged into
one when special read and write flags are used for its
entries. Each entry-called token-describes an ob-
ject accessed with its name (e.g. TID or page-#).
Since these data strnctures have to be compared
efficiently with each other, bit list representations
would be an appropriate choice; because of their size
they are impractical in most appIi~tions. Com-
pressed bit lists, however, require encoding and deco-
ding operations for their modification and decoding
operations for their comparison. Some sort order
seems to be mandatory when tables or linked lists are
used. Tables would require high overhead for the
sorted insertion of entries. Linked lists imply linear
search for look-up operations. Hence, the actual
implementation has to balance these conflicting re-
quirements.

BOCC schemes must keep information concerning
the WS of all committed transactions which have
some time overlap with running transactions. Main-
taining a global list/table of all WS of the correspond-
ing transactions is difficult because of garbage col-
lection Such an approach would avoid the need of
keeping duplicate tokens for an object and of check-
ing them several times. Therefore, a global table
pointing to the lists/tables of tokens is proposed
according to the scheme as shown in Fig. 3.

The global table could be organized as a circular
table. The current active range (CAR) of WS should

qlcssal

table ws

be implemented as a sliding range, since WS can be
dropped as soon as their related transactions don’t
have any time overlap with running transactions.
LBP indicates the lower bound of CAR, for the upper
bound, a pointer derived from TNC can be used. The
entries T,,, and TGnish indicate the subrange in the
global table which has to be checked against RS
(T,J. After successful validation of Tect, the next
available transaction-# is derived from TNC and
assigned to T,,; WS(T,,,) is attached at the end of
CAR to the global table. LBP is given by the lowest
T,,, value stored in the RS-structures of all running
transactions. When a tran~ction terminates (~orn~t
or abort), its T,,,, value is compared with LBP. If
they are equal (mod table size), LBP is advanced to
the minimum of the Tstart values of the remaining
active transactions; the WS being out of CAR are
subject to garbage collection.

A conflict occurs when the circular table overflows
(TNC tries to overwrite LBP) due to some long
inning transaction. Aborting the corresponding
transaction resoives this contlict. Nevertheless, since
a large number of WS have to be maintained for long
times, serious storage management problems may
arise.

FOCC strategies allow a less sophisticated impla
mentation, since they do not rely on the checking of
old WS. It is sufficient to keep information for the RS
and WS of all active ~ansactions as described. Vali-
dation is strai~tfo~ard as long as it is done in a
system-wide critical section. When parallel read
phase actions are permitted, checking is more intri-
cate because the RS are dynamic. One solution could
consist of collecting the (new) concurrent reads in a
special list in addition to their maintenance in their
RS. This special list would have to be checked in a
second step in a critical section.

GENERAL PROPERTIES OF OPTIMISTIC CC SCHEMES

Without going into further detail the following
general properties of optimistic CC schemes based on
record- or page-level are stated:

Fig. 3. Maintenance of token lists/tables in BOCC schemes.

Observations on optimistic concurrency control schemes 117

Simple in-transaction backout Storage overhead
CC schemes with an intention list implementation

(transaction buffer) are ideally suited for transaction
abort due to user/data error, violation of restrictions,
timeout, etc. Of course, locking schemes used to-
gether with intention lists provide the same kind of
advantage.

Higher rate of transaction abort
They also allow a very efficient backout when a

conflict is detected during validation. Such conflicts
are resolved in locking schemes either by transaction
wait or by deadlock detection and resolution.

It is assumed that transaction wait normally dimin-
ishes the risk of conflict. Hence, a higher fraction of
transactions has to be expected to be aborted by
using optimistic CC schemes. This is confirmed by
empirical results [lo] which compare locking proto-
cols with optimistic CC schemes by using simulation
experiments based on reference strings of various
real-life DB applications. This study reveals clearly
that validation conflicts in optimistic CC schemes
cause transactions to be aborted to a much higher
percentage than do deadlocks in the locking oriented
schemes (with a parallelism of 32 transactions 36%
compared to 10%).

Due to the storage overhead of tokens and
records/pages in virtual memory, optimistic CC re-
stricts itself to rather short writer transactions. As
discussed earlier, STEAL for pages is only practical
in combination with complex mapping schemes, e.g.
TOSP. OvertIow of token lists to DASD data sets,
however, has to be avoided for performance reasons.
A load transaction would definitely cause problems.
On the other hand, optimistic CC shows its special
strength in a scenario with one long writer and many
short readers proceeding without blocking and
waiting times. By the way, such cases may not be
typical for database processing environments.

Even long reader transactions accessing a key
range or an entire file would consume a considerable
fraction of control space (e.g. for tokens). Such
transactions may be quite common in DB environ-
ments.

When locking schemes are used, there is no need of
private data buffers. Of course, a load transaction
would also cause storage overflow problems when
executed in a NOSTEAL-en~ronment. Storage over-
head of lock repr~ntation can be avoided with
locking schemes having some notion of hierarchy.

Control of phantom problems

Fair scheduling
When aborted transactions are reexecuted, there is

a certain probability that they are backed out again.
In order to obtain a sufficiently fair scheduling an
appropriate conflict resolution strategy should be
applied. Such requirements rule out optimistic CCs-
themes in their backward oriented version because
their only choice is rolling back the unsuccessfully
validating transaction.

FOCC schemes, however, exhibit greater
flexibility. It is reported in IlO] that the pure kill
strategy achieved the best throughput. This is due to
the fact that no validation ever fails. To observe the
fair scheduling requirements, transactions already
aborted several times must be favored in a conflict
situation. Therefore, the pure kill scheme has to be
modified appropriately.

In order to guarantee a consistent view of data in
a multi-user DBMS, all user actions must be equiv-
alent to the same sequence of actions in a serialized
system. A well chosen implementation of an opti-
mistic CC scheme (e.g. based on tokens of all physical
objects touched) provides some level of consistency,
e.g. it prevents error types like lost update, inconsis-
tent analysis, dependency on uncommitted updates,
etc. However, it does not provide full consistency,
since access of sequence of records (including missing
records) are not reproducible.

Need of seri~izatio~
The probability of transaction abort seems to be

strongly dependent on the length of the transaction
(number of objects touched). Especially long trans-
actions with overlapping read/write sets tend to pro-
duce permanent validation conflicts such that they all
have to be reexecuted over and over again. To limit
the thrashing situations and to solve the livelock
problem, these critical transactions must be enabled
to commit with a few restarts in the worst case. Strict
serialization has been proposed to be enforced by
some exclusive locking protocol in 121. A similar
approach using a dynamic load balancing algorithm
with lock-out of transactions was chosen in [lo].

Phantom problems caused by the non-existence of
objects or the interference of conc~ently created
objects having some semantic relations~ps to exist-
ing objects are not prohibited without special pre-
ventive measures. For example, token schemes based
on records do not handle the case where records are
missing during read operations, later inserted by
another transaction, and then re-read by the original
transaction. Since the records were originally missing,
there are no tokens to validate, and therefore no way
to catch that a logical conflict has occurred. This
problem can be alleviated to some degree, if page-
level tokens are chosen and the insertion of a “miss-
ing” record can be detected via the access path
structures which it belongs to.

In locking schemes, phantom problems can be
prevented by using hierarchical locks, e.g. at the
relation or segment level. On the other hand, the
granules of locking should be chosen as smah as
possible. By using some tricks, preventive measures
for missing records can be introduced at the record
(entry) level. They include, for example, locking of
key ranges in index structures, locking of predecessor

118 T. Htie~

and successor in link structures, locking of “end of
file” indicators, locking of TIDs to exclude their
reusage, etc. When no particular access path is avail-
able to determine the location of the “non-existing”
record or the sequence of records to be read, a
hierarchical locking scheme helps to prevent phan-
toms, e.g. for a relation scan, the entire relation is
lockedjll].

Of course, such tricks could also be introduced into
an optimistic CC scheme. For example, a successor or
predecessor token of a missing record has to be
inserted into the read set of the requesting trans-
action. A writer has to keep in addition to the token
for the newly inserted record the token of the
successor/predecessor in its write set. In order to
validate these tokens, special interpretation rules
have to be observed.

Such enhancements at the record/page level do not
seem to provide a general solution to the phantom
problem. Assume a relation scan which keeps tokens
of all pages accessed. When the underlying segment
allows dynamic growth, there might still be some
problems. Therefore, an extension of the optimistic
CC scheme seems to be necessary. For example, such
phantom problems can be handled by a hierarchical
token scheme analogous to the locking approach. It
is debatable, however, whether this extension is in the
spirit of the optimistic view because of the large
granule of conflict, i.e. a relation-level token is in
conflict with all record tokens of the resp. relation. A
writer transaction modifying a single record causes-
probably fi~titious~on~c~ with all ~ncu~ent
readers on behalf of which a relation-level token is
used. Since there is a high probability of transaction
abort it would be definitely better to delay these
transactions by use of locks.

Time-consuming FORCE schemes
If the modified objects of a transaction are forced

to the materialized database on disk at EOT to avoid
partial REDO in case of a system crash, with record-
level CC all the page I/O has to be done in a
synchronous way at EOT causing potentially long
delays. Page-level CC allows greater flexibility when
combined with ATOMIC propagation schemes.

Deferred checking of consistency ~o~traints
With record-level CC, certain integrity constraints

cannot be. checked during the read phase, e.g. simple
unique key conditions or complex conditions like
“average salary in department x less than y”. They
have to be postponed to the COMMIT phase. (Even
when they would not be satisfied at the actual
modification time, a truly optimistic view should rely
on the hope that things change in favor of the
checking transaction.) Hence, immediate checking of
integrity conditions would sometimes save unneees-
sary work. But this requires page-level CC.

Deferred modiJcation of access path &ta
Using record-level CC in a DB environment with

a rich variety of access path structures, a potentially
high overhead is created during EOT-even with
NOSTEAL-policies and NOFORCE-strategies due
to hidden costs caused by lower level objects. Assume
the insertion of a new record which has to be
propagated in the critical section. Assume further
that the corresponding record type has n (say 17)
index structures implemented as B*-trees. Since these
access path structures were not touched during the
read phase, they are not found in the system buffer.
Hence, n *h pages (h = avg. height of a B*-tree) have
to be fetched in the worst case in order to modify the
related index structures of the record type. Neglecting
split operations, updates of free placement informa-
tion and tables used for indirect addressing
(DBTT = database key translation tables), etc. a sub-
stantial (overhead) time span is consumed. Note,
these costs apply for the ideal combination scheme
NOSTEAL/NOFORCE. In addition, a few I/O’s
have to be taken into account for writing REDO-
information to the log. When a FORCE-strategy is
used, massive synchronous I/O operations have to be
expected even in the scenario with only one record
insertion triggering a number of index modifications.

The deletion or update of an object read by some
access path is also a lengthy operation when some
additional index structures are involved. Hence, all
modification operations may require a large number
of I/O’s in the critical section.

Complexity of query processing
The deferred index rn~~~on points to another

problem which can cause all sorts of strange effects
and complexities with record-level CC. Assume a
transaction having inserted a record (in its local
buffer) directs a query (How many.. .) to the DBMS
which uses an appropriate index st~cture for its
evaluation. Assume further that the newly inserted
record belongs to the qualification set of the query.
Such statistical queries can often be answered by
looking only to an index entry. When the “opti-
mized” COUNT-function does not include the local
insertions of the issuing transaction, the wrong an-
swer is returned. In order to correct such pecularities,
a substantial effort has to be made in implementing
query evaluation (compiieating selection, join, view
const~~tion, etc. considerably).

The same problems arise with queries of trans-
actions having deleted or updated records in their
local buffers. Therefore, special code has to be exe-
cuted for all kinds of queries, because these records
are still present in the index st~ctur~ used by the
query evaluation. Hence, with record-level CC all
modification operations will cause an increased com-
plexity of the query evaluation process.

Page-level CC avoids these complexities when
some indirect page addressing scheme is used.

Use of record-level CC
Because of the arguments concerning modification

and query evaluation and the problems involved with

Observations on optimistic concurrency control schemes 119

access path structures, record-level CC probably
works only well in applications with simple file
structures and a few simple transaction types where
main memory operations can be guaranteed at COM-
MIT processing. In fact, a particular record-level CC
scheme based on predicate testing is already imple-
mented in IMS Fast Path for main storage database
applications[l2].

Page-level CC seems to be the only choice for
optimistic CC in a complex DB environment.

Drawbacks of page-level CC
Using page-level CC, each record modification is

prepared in the local buffer using a copy of its home
page. Also, all related index pages are fetched during
the read phase and updated in advance. Each page
access has to be accompanied with a look aside to the
transaction’s buffer. This approach may consume
large portions of local storage space or need to
support some overflow scheme. Its main disadvan-
tage, however, seems to be the increased granule of
conflict (pages), which may considerably worsen the
ratio of transactions to be aborted (even if no real
conflict at the level of the data model is present). The
larger the granule of conflict, the more likely are
fictitious conflicts. The situation becomes particularly
bad if it coincides with high traffic data elements.

For example, in many DBMS the available storage
space is attempted to be occupied consecutively, that
is, insertions of different transactions are allocated in
the same page. While this strategy does not cause any
trouble with record-level CC, it may produce
fictitious co&i& with page-level CC. In data entry
applications, the “current” hot spot page would
provide some serious performance problems. (Arbi-
trary distribution of newly inserted records may lead
to lower space utilization and may contradict value-
or time-based clustering.)

Hence, the serialization of locking approaches on
hot spot data pages due to an unsuitable locking
granule may be turned into thrashing transaction
aborts in such an optimistic CC scheme.

COMPARISON WITH LOCKING APPROACHES

Locking schemes guarantee one consistent image
of the database at every point in time. For this
purpose, they may sacrifice some degree of potential
parallelism. However, they provide the facility of
selecting an appropriate level of control to alleviate
contention-related problems.

Optimistic CC schemes allow the uncontrolled
creation of private data copies during the trans-
actions’ execution for the sake of enhanced concur-
rency. Their essential problem consists of merging
these copies during COMMIT processing thereby
regaining a transaction-consistent database image.
As previously discussed, a lot of processing
diffic~ties do arise, when these copies do not match
with the units of transfer (pages). Hence, in order to
be practically feasible for DBMS use, optimistic CC

seems to be linked to the page level. As shown in
various system implementations [11, 131, the locking
approach has no restrictions of that kind. It can be
chosen for the record or even for the field level.

In addition, particular assumptions-
NOSTEAL/NOFORCE or ATOMIC propagation
to the materialized DB-have to be introduced to
minimize COMMIT processing or to reduce main
storage use. Locking does not necessarily require
such an environment for efficient transaction pro-
cessing.

Note, concurrency control protocols in a DBMS
are not designed for one special purpose only. Never-
theless, it is often argued that an optimistic CC
approach should be chosen in applications where
conflicts are unlikely. Since locking also behaves
quite well in such a particular environment (no wait
or deadlock conflicts), there seems to be little reason
to introduce a specialized control mechanism. For a
design decision concerning concurrency control, the
following properties and requirements should be
carefully regarded:

(1) Hot spot data need controlled serialization.
(2) If waiting situations and deadlocks are unlikely,

locking is as good as optimistic CC.
(3) Each system needs some control hierarchy in

order to provide efficient read and write operations
on large data sets. For example, operations like
loading a tile, deleting a file, searching a file se-
quentially can be supported appropriately by some
hierarchical locking scheme.

(4) Locking seems to be better suited to handle
non-existence problems of records.

Acknowledgements-1 would like to thank i. L. Traiger for
many fruitful discussions and hints concerning the subject
of this paper. His support during the preparation is greatly
appreciated. I also thank W. Effelsberg, C. Mohan, P. Peinl
and A. Reuter for their comments and su~stions. The
comments of the referees are gratefully acknowledged.

REFERENCES
[t] K. P. Eswaran, J. N. Gray, R. A. Lorie and I. L.

Traiger: The notions of consistency and predicate locks
in a database system. CACM l!?(l I), 624-633 (1976).

[Z] H. T. Kung and J. T. Robinson: On optimistic methods
for concurrency control. ACM TODS 6(2), 231-226
(1981).

[3] J. N. Gray: Notes on data base operating systems. In
Lecture Notes in Computer Science, Vol. 60. Springer-
Verlag, Berlin (1978).

[4] G. Schlageter: Optimistic methods for concurrency
control in distributed database systems. Proc. 7th Ini.
Conf. on VLDB. Cannes. France. 1981.

(51 S. C&i and S. O&ki: od the use of optimistic methods
for concurrency control in dist~but~ database. Proc.
6th Berkeley Workshop on D~t~jbuted Data Manage-
ment and Computer Networks, pp. 117-129. Asilomar,
Feb. 1982.

[6] R. H. Thomas: A majority consensus approach to
concurrency control. ACM TODS 4(2), 180-209
(1919).

[7] P. A. Bernstein, D. W. Shipman and B. Rothnie:
Concurrency control in a system for distributed data-
base (SDD-1). ACM TODS S(l), 18-51 (1980).

120 T. H;iRDER

[8] J. N. Gray et al.: The recovery manager of the system
R database manager. ACM Computing Surveys 13(2),
223-242 (1981).

IS] T. Harder and A. Reuter: Principles of transaction
oriented database recovery-a taxonomy. Research
Report. FB Informatik, Universitaet Kaiserslautem,
April 1982.

[lo] P. Peinl and A. Reuter: Empirical comparison of
database concurrency control schemes. Proc. 9th lnr.
Conf. on VLDB, Florence, Italy, 97-108, 1983.

[1 I] M. M. Astrahan et al.: System R: a relational approach
to database management. ACM TODS l(2), 97-137
(1976).

1121 IBM Corp. IMSjVS Version 1, Fast path feature.
General Info~ation M~ual, GH20-9062-2. IBM,
White Plains, N.Y., April 1978.

fl3J IBM Corp. IMS/VS Version i, General Information
Manual, GH20-1260. IBM White Plains, N.Y., Sept.
1980.

