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Attstraet-Gptimistic concurrency control schemes allow uncontrolled access to shared data objects during 
transaction processing under the explicit assumption that read and write coticts among transactions are 
rare events. Before a transaction commits, the DBMS has to validate that no conflict has occurred 
Conflict resolution mainly relies on transaction abort. 

Two different optimistic concurrency control schemes are introduced and compared to each other. The 
problems of implementing such schemes and their implications on DBMS processing is investigated in 
some detail. A number of general properties of optimistic concurrency control schemes is derived, and 
their advantages and drawbacks w.r.t. two-phase locking approaches are discussed. 

INTRODUCTION 

When transactions are accessing a database concur- 

rently, a concurrency control (CC) scheme has to 
prevent conflicts among them such that their seri- 
alizability can be guaranteed. A system of concurrent 
transactions is said to be serializable or has the 
property of serial equivalence if there exists at least 
one serial schedule of execution leading to the same 
results for every transaction and to the same final 
state of the database. 

Conventional CC schemes use two-phase locking 
protocols acquiring dynamically locks for the objects 
to be accessed. Since the implementation of predicate 
locks appears to be impractical, usually physical 
locks are used. Special care has to be taken in such 
implementations to prevent errors based on the non- 
existence of objects, e.g. phantoms[ 11. Approaches 
with appropriately implemented two-phase locking 
protocols guarantee a single user system view except 
for deadlocks. 

It is claimed[2] that locking approaches have the 
following inherent disadvantages: 

-Lock maintenance and deadlock detection repre- 
sent a substantial overhead, e.g. 10% of the total 
execution time in System R[3]. 

-There are no general purpose deadlock-free 
locking protocols that always provide a high degree 
of concurrency. 

tThis work was performed while the author was visiting 
IBM Research Laboratory, San Jose, CA 95193, U.S.A. 
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-Concurrency is significantly lowered whenever it 
is necessary to leave some hot spot data object 
(congested node) locked while waiting for a second- 
ary memory access. 

-Because of the presence of failures a strict two- 
phase locking protocol has to be applied to prevent 
backout of data which may have been accessed by 
completed transactions before the failing transaction 
aborts, that is, locks have to be kept until EOT. 

-Locking may be necessary at all only in the worst 
case, that is, in most cases a locking approach 
introduces too strong preventive measures. 

PRINCIPLES OF OPTIMISTIC CC 

Optimistic CC schemes[2,4,5] are designed to get 
rid of the locking overhead. They are optimistic in the 
sense that they take into account the explicit assump- 
tion that conflicts among transactions are rare events. 
Thus, they rely for efficiency on the hope that 
conflicts will not occur. Since dynamically requested 
locks are not applied, such schemes are deadlock- 
free. The burden of CC is deferred until EOT when 
some checking for potential conflicts has to take 
place. If a conceivable conflict is detected, a “pessi- 
mistic” view has to be taken: this conceivable conflict 
is resolved by aborting the transaction. Hence, these 
schemes rely on transaction backout as a control 
mechanism. 

The basic idea of an optimistic CC scheme is 
follows: The execution of a transaction consists 
three phases-read, validation, and write. 
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The end of the read phase corresponds to the 
signailing of EOT to the DBMS, that is, the trans- 
action gives up its right of unilateral abort. 

Read phase 
For each transaction a so-called transaction buffer 

(implemented as an intention list) is maintained un- 
der control of the DBMS. This buffer supports the 
abortion of a partially executed transaction during its 
read phase. Moreover, a completely executed, but 
contlicting transaction can be backed out during its 
validation phase without causing any effect to the 
global database state. During the read phase a read 
access is first directed to the transaction’s buffer. If 
the object is not found in the buffer, the (global state 
of the) database has to be accessed, that is, the system 
buffer or the data stored on disk. Read-only objects 
may or may not be cached in the transaction’s buffer 
for later use. Modified objects, however, are stored in 
the transaction’s buffer, Repeated modifications (in- 
sertions, deletions and updates) on the same objects 
within a transaction are made on its local copies. 

Note, whenever the modifications during the read 
phase are only applied to the abstract view of the 
objects visible at the DB programming interface, the 
underlying access path data are not affected at that 
time. This strategy preserves small granules of 
cord&t (records), but has far-reaching consequences 
on DBMS processing (see discussion below). Using 
copies of the original pages for the transaction’s 
modi~~tions, all ~o~~nding access path data can 
be changed immediately. This page-levef modification 
greatly facilitates normal DBMS processing. How- 
ever, the granule of conflict becomes much larger 
having potentially strong influences on the outcome 
of the optimistic CC. (Direct modification of the 
global database state during the “read phase” with- 
out having acquired the appropriate locks seems to 
lead to timestamping schemes, as another class of 

CC [6,71. 

After signalling EOT (prepared to COMMIT), the 
DBMS has to check whether or not the transaction 
intending to commit was in conflict with any of the 
transactions operating in parallel. Since no locks are 
held, the objects read by the transaction might have 
been modified meanwhile by concurrent transactions. 
If so, some conflict resolution policy has to be 
applied. If no con&& is detected, the transaction is 
prepared to commit. 

Write phase 
A reader transaction is automatically committed 

after successfully completing the validation phase. A 
writer transaction has to force sufficient log data to 
a safe place, consisting at least of the REDO informa- 
tion for the transaction’s modifications, e.g. for ar- 
chive recovery purposes in case of a media failure. 
This action completes phase 1 of a two-phase COM- 
MIT protocol. 

Then the modifications can be propagated to the 
global database state. “Write” does not necessarily 
mean “output to disk”. It only requires to make the 
transaction’s modifications generally visible, e.g. in 
the system buffer. The question whether or not they 
should be immediately forced to disk or replaced by 
normal buffer management is of no importance to the 
principle of optimistic CC. The committed data has 
to be secured in phase 2 and eventually later on 
against system failure@, 91. 

On the first sight, optimistic CC schemes appear to 
be very appealing and seductive, since they seem to 
promise getting rid of waiting times, deadlock prob 
lems, and the management of lock control data 
inherent in conventional locking schemes. The pro- 
posed solutions-demonstrated at a rather high level 
of abstraction-seem to be reasonable and elegant. In 
particular, many implementation problems inherent 
in these schemes disappear at the abstract level 
chosen for the discussion or are hidden when only 
dealing with read and update orations on simple 
objects. Insertion and deletion is assumed to be 
covered by these operations, e.g. all potential objects 
are somehow represented in the database-insertion 
of an object means its transition from a special null 
state to some meaningful state and deletion of an 
object vice versa. Due to these assumptions which 
hardly seem to be achievable in practical applications 
these schemes get rid of the messy phantom-related 
problems which are discussed below. 

VALIDATlON OF SERIAL EQU~AL~CE 

Since no restrictions are applied to read accesses 
during the read phase, it must be assured during the 
validation phase of a transaction that all its read 
accesses were directed to the same database state. 
This, in turn, implies that the result of the transaction 
is equivalent to its execution in some serial schedule. 

In order to validate the serial equivalence criterion, 
a unique transaction number Ti is assigned to a 
transaction at the end of its read phase (in fact, the 
actual assignment can be postponed until successful 
validation). Each time a transaction number is as- 
signed, the transaction number count (TNC) is in- 
cremented by 1. If 7; finishes its read phase before Tj 
(i.e. Ti is validated before T,), then Ti < Tj holds. 

For each T, and for all Ti with T, c q, there must 
exist some serially equivalent schedule with Ti exe- 
cuted before I;. In order to be serializable two 
transactions T, and I; must observe the following two 
rules: 

Rule 1: No read dependency 
Rule 11: q does not read data modified by a 

concurrent transaction I;-. 
Rule 12: q does not read data modified by a 

concurrent transaction Ti. 

Rule 2: No overwriting 
T, does not overwrite data which has been written 
by a concurrent transaction q and vice versa. 
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There are two basic ways to guarantee rules 1 
and 2: 

(a) no time overlap between T, and q; 
(b) no object set overlap (data overlap) between Ti 

and Ti. 
(a) and (b) can be applied separately to read sets 

(RS) and write sets (WS) to construct more soph- 
isticated protocols. 

This leads to the following set of alternatives for 
optimistic CC: 

1. No time overlap at ail 
Serial execution of T, and Tj which trivially guaran- 
tees rules 1 and 2. 

2. No time overlap of write phases 
2.1 lJ does not read data being modified by Ti (no 

object set overlap). This guarantees rule 12. 
2.2 c completes write phase before q starts write 

phase (no time oberlap; q cannot affect the read 
phase of q) This guarantees rules 11 and 12. 

prevent time overlap of write phases, only one com- 
mitting transaction can be accepted at a time, If 
COMMIT processing can be performed efficiently, 
enforcement of this condition seems to be sufficient. 

Alternative 3 (and 4) allows n committing trans- 
actions at a time provided that the corresponding 
conditions are satisfied. At the expense of higher 
complexity, some parallelism might be gained during 
COMMIT processing. In [2] an algorithm for parallel 
validation is given intending to shrink the time 
interval needed for exclusive DB control on behalf of 
the committing transaction. Additional problems are 
introduced (a committing transaction invalidates a 
transaction, even though the former transaction is 
itself invalidated). These algorithms tend to become 
very complex even although their underlying model 
of data and operations is very simple, i.e. they do not 
have to maintain hidden access path data and system 
control structures. Therefore, the expected gain of 
these algorithms might be compensated by additional 
complexity and overhead in real DB imple- 
mentations. 

3. No object set overlap of write sets 
3.1 T, does not read data being modified by T (no 

object set overlap). This guarantees rule 12. 
3.2 T, does not read data being modified by T, (no 

time overlap between read phase of Ti and write 
phase of q; q cannot affect the read phase of 
Ti). This guarantees rule 11. 

3.3 Write sets of T, and Tj are disjunct (no object 
set overlap allowing concurrent execution of 
write phases). This guarantees rule 2. 

We concentrate on optimistic CC schemes which 
are based on alternative 2. Two different approaches 
are discussed in the following. 

4. No object set overlap of read sets and write sets 
Totally independent concurrent execution which 
trivially guarantees rules 1 and 2. 
Alternatives l-3 are a reformulation of the seri- 

alizability conditions given in [2]. Alternative 4 is a 
trivial addition (for symmetry reasons). It is a little bit 
stronger than alternative 3, but does not allow for 
greater concurrency. It should be emphasized that 
these alternatives represent sufficient, but not neces- 
sary, conditions for serializability[S]. 

Alternative 1 is obvious; no care has to be taken 
when transactions do not overlap in time. The chosen 
transaction numbering scheme controls this condi- 
tion. 

BACKWARD ORIENTED OPTIMISTIC CC 

Backward oriented optimistic CC (BOCC) checks 
during the validation phase of q whether its read set 
RS&) intersects with any of the write sets WS(T,) 
of all concurrently executed transactions Ti having 
finished their read phases before i’J. Since “blind” 
modifications are not very likely, each transaction has 
to be validated in practice. 

Let Tsta,, be the highest transaction number as- 
signed to some transaction when Tj starts, and Thniah 
the highest transaction number when TJ enters its 
validation phase. Then, essentially the following pro- 
cedure in T,‘s validation phase will decide q’s destiny. 

VALID: = TRUE; 
FOR T: = Tshe+ 1 TO Tenish DO 

IF RS(q)(lWS(Ti)l =@ THEN 
VALID : = FALSE; 

IF VALID THEN COMMIT 
ELSE ABORT; 

For concurrently executed transactions, alternative The scenario shown in Fig. 1 illustrates the set of 
2 provides the basic approach for optimistic CC. To transactions to be checked. 

read validation write 

T, +---t--l 

T act 
Fig. 1. Validation scenario for transaction q (BOCC). 



114 T. Hi;RDw 

BOCC requires all finishing transactions--readers 
or writers-to be tested whether or not they satisfy 
the serializability criterion as long as they have read 
some data (RS = (0)). Of course, for “blind” write 
only transactions there is nothing to check. It allows 
no flexibility in the COMMIT or ABORT decision to 
be made. 

In the given scenario, RS(q) has to be checked 
against WS(T,) and WS(T,). Since T2 and T3 have 
already committed, the only conflict resolution strat- 
egy is to abort if there is an intersection. 

The given procedure allows exactly one validating 
and committing transaction at a time. It has to be 
executed in a “critical section” w.r.t. other trans- 
actions intending to commit. Within this critical 
section, all other transactions can proceed with their 
read phases. If the serialization of validation and 
write phases is a problem, part of the validation can 
be executed in parallel. Let us assume that q has been 
validated against T,, to Tfinilh outside of a critical 
section. Since new transactions (T~nish + , to TenirK) 
could have committed in the meantime, they have to 
be checked additionally. If this is done in parallel, 
again some transaction could have committed re- 
quiring further checking. In order to prevent being 
passed forever, eventually a critical section has to be 
entered for the final validation step and for the write 
phase. 

Note, the read sets of committed transactions are 
of no interest any more. But all write sets of over- 
lapping transactions (which are static sets) have to be 
kept until their last concurrent transaction has 
finished. In case of long transactions having a large 
number of concurrent writers this requirement might 
be a strong handicap. 

FORWARD ORIJDXRD OPTIMISTIC CC 

Forward oriented optimistic CC (FOCC) checks 
during the validation phase of Tj whether its write set 
WS(TJ intersects with any of the read sets RS(TJ of 
all transactions Ti having not yet finished their read 
phases. This strategy assures that read sets are always 
clean. Write sets are only propagated-if they do not 
conflict with the current read sets of all other active 
transactions. 

read 

Let the active transactions have the numbers T,,, 
until T,,,. Then, Tj is validated as follows: 

VALID: = TRUE; 
FOR Ti: = T,, TO T,,,, DO 

IF WS(T/)nRS(TJl = $3 THEN 
VALID: = FALSE; 

IF VALID THEN COMMIT 
ELSE RESOLVE CONFLICT; 

The scenario shown in Fig. 2 illustrates the set of 
transactions to be checked. 

FOCC places the burden of CC exclusively to 
writers. It requires only finishing writer transactions 
to be tested whether or not they satisfy the seri- 
alizability criterion. Hence, readers will be auto- 
matically committed, once they reach their EOT. 

Since the transactions to be checked during valida- 
tion have not yet committed, this approach offers a 
great deal of flexibility in handling a detected conflict. 
In the given scenario, WS(ZJ has to be checked 
against RS(T,, ,) and RS(T,, &. When a confIict is 
realized, the following resolution strategies are con- 
ceivable: 

1. Defer due to conflicting readers 
When the set of conflicting transactions are read- 

ers, the validating transaction Tj may be deferred; 
validation has to be retried later. The conflicts are 
resolved as soon as all conflicting readers have 
finished. Of course, this strategy embodies an opti- 
mistic view even during validation. It is true that the 
current transactions will finally terminate (assume 
they are correct), but new readers might cause further 
conflicting accesses in the meantime. As mentioned 
earlier, the risk of indefinite delay is present in all CC 
schemes based only on transaction abort and has to 
be cured sooner or later by some drastic serialization 
protocol. Provided that conthcts are rare events, this 
strategy expands nicely the idea of optimistic CC. 

2. Defer due to conflicting writers 
Even with some writers in the set of conflicting 

transactions, the defer strategy may provide a non- 
hurting conflict resolution, when the “future” write 
sets of such conflicting transactions are disjoint with 
the write set of rr;.. Assume T/ has modified A, B to 

val.idation write 

Tj T------H 

T, I-~----H 

T2 t-t---w 

T t 
act1 

T act2 ’ 

Fig. 2. Validation scenario for q (FOCC). 
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A’, B’, and that the writer T,,, has currently read A, 
B and C, while preparing C’. Deferring q until T,, 
has committed gurarantees the serialization order 
T,,, < q. This strategy, however, represents an even 
more optimistic view of the world with all the impli- 
cations of the first strategy. 

3. Kill and commit 
Since all conflicting transactions have not yet com- 

mitted, the obstacles can be removed deliberately. 
Assume q. is a long writer, and T,,, has just started 
its execution. In such cases, a killer scheme might be 
advantageous. 

A weaker interaction would consist of invalidating 
the conflicting transactions’ read sets. An invalidated 
transaction might survive, if it decreases its level of 
consistency, e.g. does not rely on repeatable reads. 

4. Abort 
The validating transaction q. is immediately abor- 

ted. 
With the choice of a particular strategy or a mix of 

them, a priority scheme for readers or writers can be 
supported. 

A critical point of FOCC is the checking of dy- 
namic read sets which has to be performed when- 
ever a writer commits. The simplest solution is to 
quiesce system activity (no concurrent progress in 
read phases) and to check all active lists in a critical 
section. Since this may not be tolerable for per- 
formance reasons, some mechanism permitting paral- 
lel activity in read phases has to be invented (see 
below). 

Note, FOCC-strategies seem to have many com- 
mon properties with locking protocols granting only 
S-locks during the read phase. A writer must try to 
convert its S-locks for modified objects into X-locks 
at EOT. If no sharing occurs, the corresponding 
X-lock is immediately granted. If several S-locks are 
held on an object, the conversion must be deferred. 
An important difference, however, is introduced by 
the version control. The lock protocol automatically 
precludes different versions of the same object and 
makes sure that the same version is repeatedly 
granted to the requesting transaction, whereas in 
FOCC-strategies version control has to be achieved 
by some special mechanisms (e.g. token schemes). 

In comparing the BOCC- and the FOCC- 
strategies, the following observations seem to be 
important: 

-The write set is often a (small) subset of the read 
set; if not, then the disjoint fraction is caused by new 
insertions which hardly lead to conflicts (at the record 
level). 

-BOCC must validate a potentially large read set 
against a potentially large number of old (static) write 
sets. The read set and the number of write sets 
increase with the duration of the validating trans- 
action. 

-FOCC validates no read sets. It has to check a 
(small) write set against a limited number of concur- 

rent (dynamic) read sets. The sizes and the number of 
the read sets is not dependent on the length of the 
validating transaction. 
-Validation in FOCC-strategies is more difficult 
(allowing concurrent activity in read phases is more 
costly), because dynamic sets have to be examined. 
Since only writers are subject to validation, checking 
is much less frequent compared to BOCC-strategies. 

Since the read set of a transaction has to be 
controlled anyway during its lifetime, less overhead 
should be expected for FOCC-strategies. It is also 
safe to say that FOCC-strategies offer more degrees 
of freedom in handling and optimizing conflict reso- 
lution. 

IMPLEMENTATION CONSIDERATIONS 

Optimistic CC seems to be conceivable with objects 
of different levels of abstraction. Obviously, the 
following two are prime candidates: 

-high level objects of the data model, e.g. records; 
-objects at the storage structure level, e.g. pages. 
Record-level CC requires a list of modified records 

to be kept in the transaction buffer until the write 
phase is executed. The propagation of the 
modifications to their home pages including the 
corresponding access path structures has necessarily 
to take place during the write phase. To obtain a 
realistic implementation for such optimistic CC 
schemes with acceptable COMMIT processing 
times[9], it must be assumed that a NOSTEAL- 
property for a transaction’s modified objects can be 
maintained, that is, that the corresponding pages can 
be kept in the DB system buffer until its write phase 
is executed. Without this assumption pages to be 
modified have to be reread from disk in the critical 
section whenever they have been replaced from the 
system buffer during a transaction’s lifetime. A 
FORCE-policy (writing all modified pages to disk at 
EOT) should be avoided, because all pages neces- 
sarily have to be written during the write phase. 
Hence, a NOSTEAL/NOFORCE-strategy seems to 
be indispensable for satisfactory COMMIT pro- 
cessing times. 

Page-level CC allows the preparation of all 
modifications including access path structures in co- 
pies of their corresponding home pages during the 
read phase. Hence, very short write phases can be 
achieved. With a NOSTEAL/NOFORCE-strategy 
the write phase only consists of making the modified 
pages generally available in the system buffer (and of 
saving sufficient log information). Even a STEAL/ 
FORCE-stragtegy which may obtain acceptable 
COMMIT processing times seems to be achievable 
with an ATOMIC propagation scheme[9], e.g. a 
transaction oriented shadow page mechanism 
(TOSP) which has to be tailored to maintain a 
transaction’s modified pages on disk. Such a mech- 
anism would imply 

-to tentatively write the modified pages from the 
transaction buffer to disk during to read phase; 

-to apply a logging technique to the modified 
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entries of the page tables in order to avoid syn- 
chronous I/O of page table blocks; 

-to propagate the set of pages atomically after 
successful validation during the write phase. 

In either case, COMMIT processing must be a 
primary concern for the implementation of an opti- 
mistic CC scheme for performance reasons. Note, in 
a virtual OS environment page faults can expand its 
duration even with NOSTEAL- or NOFORCE- 
assumptions. 

In order to speed up the validation process appro- 
priate data structures have to be designed for main 
memory use. For each transaction, two separate data 
structures should be maintained for its associated RS 
and WS. These two structures could be merged into 
one when special read and write flags are used for its 
entries. Each entry-called token-describes an ob- 
ject accessed with its name (e.g. TID or page-#). 
Since these data strnctures have to be compared 
efficiently with each other, bit list representations 
would be an appropriate choice; because of their size 
they are impractical in most appIi~tions. Com- 
pressed bit lists, however, require encoding and deco- 
ding operations for their modification and decoding 
operations for their comparison. Some sort order 
seems to be mandatory when tables or linked lists are 
used. Tables would require high overhead for the 
sorted insertion of entries. Linked lists imply linear 
search for look-up operations. Hence, the actual 
implementation has to balance these conflicting re- 
quirements. 

BOCC schemes must keep information concerning 
the WS of all committed transactions which have 
some time overlap with running transactions. Main- 
taining a global list/table of all WS of the correspond- 
ing transactions is difficult because of garbage col- 
lection Such an approach would avoid the need of 
keeping duplicate tokens for an object and of check- 
ing them several times. Therefore, a global table 
pointing to the lists/tables of tokens is proposed 
according to the scheme as shown in Fig. 3. 

The global table could be organized as a circular 
table. The current active range (CAR) of WS should 

qlcssal 

table ws 

be implemented as a sliding range, since WS can be 
dropped as soon as their related transactions don’t 
have any time overlap with running transactions. 
LBP indicates the lower bound of CAR, for the upper 
bound, a pointer derived from TNC can be used. The 
entries T,,, and TGnish indicate the subrange in the 
global table which has to be checked against RS 
(T,J. After successful validation of Tect, the next 
available transaction-# is derived from TNC and 
assigned to T,,; WS(T,,,) is attached at the end of 
CAR to the global table. LBP is given by the lowest 
T,,, value stored in the RS-structures of all running 
transactions. When a tran~ction terminates (~orn~t 
or abort), its T,,,, value is compared with LBP. If 
they are equal (mod table size), LBP is advanced to 
the minimum of the Tstart values of the remaining 
active transactions; the WS being out of CAR are 
subject to garbage collection. 

A conflict occurs when the circular table overflows 
(TNC tries to overwrite LBP) due to some long 
inning transaction. Aborting the corresponding 
transaction resoives this contlict. Nevertheless, since 
a large number of WS have to be maintained for long 
times, serious storage management problems may 
arise. 

FOCC strategies allow a less sophisticated impla 
mentation, since they do not rely on the checking of 
old WS. It is sufficient to keep information for the RS 
and WS of all active ~ansactions as described. Vali- 
dation is strai~tfo~ard as long as it is done in a 
system-wide critical section. When parallel read 
phase actions are permitted, checking is more intri- 
cate because the RS are dynamic. One solution could 
consist of collecting the (new) concurrent reads in a 
special list in addition to their maintenance in their 
RS. This special list would have to be checked in a 
second step in a critical section. 

GENERAL PROPERTIES OF OPTIMISTIC CC SCHEMES 

Without going into further detail the following 
general properties of optimistic CC schemes based on 
record- or page-level are stated: 

Fig. 3. Maintenance of token lists/tables in BOCC schemes. 
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Simple in-transaction backout Storage overhead 
CC schemes with an intention list implementation 

(transaction buffer) are ideally suited for transaction 
abort due to user/data error, violation of restrictions, 
timeout, etc. Of course, locking schemes used to- 
gether with intention lists provide the same kind of 
advantage. 

Higher rate of transaction abort 
They also allow a very efficient backout when a 

conflict is detected during validation. Such conflicts 
are resolved in locking schemes either by transaction 
wait or by deadlock detection and resolution. 

It is assumed that transaction wait normally dimin- 
ishes the risk of conflict. Hence, a higher fraction of 
transactions has to be expected to be aborted by 
using optimistic CC schemes. This is confirmed by 
empirical results [ lo] which compare locking proto- 
cols with optimistic CC schemes by using simulation 
experiments based on reference strings of various 
real-life DB applications. This study reveals clearly 
that validation conflicts in optimistic CC schemes 
cause transactions to be aborted to a much higher 
percentage than do deadlocks in the locking oriented 
schemes (with a parallelism of 32 transactions 36% 
compared to 10%). 

Due to the storage overhead of tokens and 
records/pages in virtual memory, optimistic CC re- 
stricts itself to rather short writer transactions. As 
discussed earlier, STEAL for pages is only practical 
in combination with complex mapping schemes, e.g. 
TOSP. OvertIow of token lists to DASD data sets, 
however, has to be avoided for performance reasons. 
A load transaction would definitely cause problems. 
On the other hand, optimistic CC shows its special 
strength in a scenario with one long writer and many 
short readers proceeding without blocking and 
waiting times. By the way, such cases may not be 
typical for database processing environments. 

Even long reader transactions accessing a key 
range or an entire file would consume a considerable 
fraction of control space (e.g. for tokens). Such 
transactions may be quite common in DB environ- 
ments. 

When locking schemes are used, there is no need of 
private data buffers. Of course, a load transaction 
would also cause storage overflow problems when 
executed in a NOSTEAL-en~ronment. Storage over- 
head of lock repr~ntation can be avoided with 
locking schemes having some notion of hierarchy. 

Control of phantom problems 

Fair scheduling 
When aborted transactions are reexecuted, there is 

a certain probability that they are backed out again. 
In order to obtain a sufficiently fair scheduling an 
appropriate conflict resolution strategy should be 
applied. Such requirements rule out optimistic CCs- 
themes in their backward oriented version because 
their only choice is rolling back the unsuccessfully 
validating transaction. 

FOCC schemes, however, exhibit greater 
flexibility. It is reported in IlO] that the pure kill 
strategy achieved the best throughput. This is due to 
the fact that no validation ever fails. To observe the 
fair scheduling requirements, transactions already 
aborted several times must be favored in a conflict 
situation. Therefore, the pure kill scheme has to be 
modified appropriately. 

In order to guarantee a consistent view of data in 
a multi-user DBMS, all user actions must be equiv- 
alent to the same sequence of actions in a serialized 
system. A well chosen implementation of an opti- 
mistic CC scheme (e.g. based on tokens of all physical 
objects touched) provides some level of consistency, 
e.g. it prevents error types like lost update, inconsis- 
tent analysis, dependency on uncommitted updates, 
etc. However, it does not provide full consistency, 
since access of sequence of records (including missing 
records) are not reproducible. 

Need of seri~izatio~ 
The probability of transaction abort seems to be 

strongly dependent on the length of the transaction 
(number of objects touched). Especially long trans- 
actions with overlapping read/write sets tend to pro- 
duce permanent validation conflicts such that they all 
have to be reexecuted over and over again. To limit 
the thrashing situations and to solve the livelock 
problem, these critical transactions must be enabled 
to commit with a few restarts in the worst case. Strict 
serialization has been proposed to be enforced by 
some exclusive locking protocol in 121. A similar 
approach using a dynamic load balancing algorithm 
with lock-out of transactions was chosen in [lo]. 

Phantom problems caused by the non-existence of 
objects or the interference of conc~ently created 
objects having some semantic relations~ps to exist- 
ing objects are not prohibited without special pre- 
ventive measures. For example, token schemes based 
on records do not handle the case where records are 
missing during read operations, later inserted by 
another transaction, and then re-read by the original 
transaction. Since the records were originally missing, 
there are no tokens to validate, and therefore no way 
to catch that a logical conflict has occurred. This 
problem can be alleviated to some degree, if page- 
level tokens are chosen and the insertion of a “miss- 
ing” record can be detected via the access path 
structures which it belongs to. 

In locking schemes, phantom problems can be 
prevented by using hierarchical locks, e.g. at the 
relation or segment level. On the other hand, the 
granules of locking should be chosen as smah as 
possible. By using some tricks, preventive measures 
for missing records can be introduced at the record 
(entry) level. They include, for example, locking of 
key ranges in index structures, locking of predecessor 



118 T. Htie~ 

and successor in link structures, locking of “end of 
file” indicators, locking of TIDs to exclude their 
reusage, etc. When no particular access path is avail- 
able to determine the location of the “non-existing” 
record or the sequence of records to be read, a 
hierarchical locking scheme helps to prevent phan- 
toms, e.g. for a relation scan, the entire relation is 
lockedjll]. 

Of course, such tricks could also be introduced into 
an optimistic CC scheme. For example, a successor or 
predecessor token of a missing record has to be 
inserted into the read set of the requesting trans- 
action. A writer has to keep in addition to the token 
for the newly inserted record the token of the 
successor/predecessor in its write set. In order to 
validate these tokens, special interpretation rules 
have to be observed. 

Such enhancements at the record/page level do not 
seem to provide a general solution to the phantom 
problem. Assume a relation scan which keeps tokens 
of all pages accessed. When the underlying segment 
allows dynamic growth, there might still be some 
problems. Therefore, an extension of the optimistic 
CC scheme seems to be necessary. For example, such 
phantom problems can be handled by a hierarchical 
token scheme analogous to the locking approach. It 
is debatable, however, whether this extension is in the 
spirit of the optimistic view because of the large 
granule of conflict, i.e. a relation-level token is in 
conflict with all record tokens of the resp. relation. A 
writer transaction modifying a single record causes- 
probably fi~titious~on~c~ with all ~ncu~ent 
readers on behalf of which a relation-level token is 
used. Since there is a high probability of transaction 
abort it would be definitely better to delay these 
transactions by use of locks. 

Time-consuming FORCE schemes 
If the modified objects of a transaction are forced 

to the materialized database on disk at EOT to avoid 
partial REDO in case of a system crash, with record- 
level CC all the page I/O has to be done in a 
synchronous way at EOT causing potentially long 
delays. Page-level CC allows greater flexibility when 
combined with ATOMIC propagation schemes. 

Deferred checking of consistency ~o~traints 
With record-level CC, certain integrity constraints 

cannot be. checked during the read phase, e.g. simple 
unique key conditions or complex conditions like 
“average salary in department x less than y”. They 
have to be postponed to the COMMIT phase. (Even 
when they would not be satisfied at the actual 
modification time, a truly optimistic view should rely 
on the hope that things change in favor of the 
checking transaction.) Hence, immediate checking of 
integrity conditions would sometimes save unneees- 
sary work. But this requires page-level CC. 

Deferred modiJcation of access path &ta 
Using record-level CC in a DB environment with 

a rich variety of access path structures, a potentially 
high overhead is created during EOT-even with 
NOSTEAL-policies and NOFORCE-strategies due 
to hidden costs caused by lower level objects. Assume 
the insertion of a new record which has to be 
propagated in the critical section. Assume further 
that the corresponding record type has n (say 17) 
index structures implemented as B*-trees. Since these 
access path structures were not touched during the 
read phase, they are not found in the system buffer. 
Hence, n *h pages (h = avg. height of a B*-tree) have 
to be fetched in the worst case in order to modify the 
related index structures of the record type. Neglecting 
split operations, updates of free placement informa- 
tion and tables used for indirect addressing 
(DBTT = database key translation tables), etc. a sub- 
stantial (overhead) time span is consumed. Note, 
these costs apply for the ideal combination scheme 
NOSTEAL/NOFORCE. In addition, a few I/O’s 
have to be taken into account for writing REDO- 
information to the log. When a FORCE-strategy is 
used, massive synchronous I/O operations have to be 
expected even in the scenario with only one record 
insertion triggering a number of index modifications. 

The deletion or update of an object read by some 
access path is also a lengthy operation when some 
additional index structures are involved. Hence, all 
modification operations may require a large number 
of I/O’s in the critical section. 

Complexity of query processing 
The deferred index rn~~~on points to another 

problem which can cause all sorts of strange effects 
and complexities with record-level CC. Assume a 
transaction having inserted a record (in its local 
buffer) directs a query (How many.. .) to the DBMS 
which uses an appropriate index st~cture for its 
evaluation. Assume further that the newly inserted 
record belongs to the qualification set of the query. 
Such statistical queries can often be answered by 
looking only to an index entry. When the “opti- 
mized” COUNT-function does not include the local 
insertions of the issuing transaction, the wrong an- 
swer is returned. In order to correct such pecularities, 
a substantial effort has to be made in implementing 
query evaluation (compiieating selection, join, view 
const~~tion, etc. considerably). 

The same problems arise with queries of trans- 
actions having deleted or updated records in their 
local buffers. Therefore, special code has to be exe- 
cuted for all kinds of queries, because these records 
are still present in the index st~ctur~ used by the 
query evaluation. Hence, with record-level CC all 
modification operations will cause an increased com- 
plexity of the query evaluation process. 

Page-level CC avoids these complexities when 
some indirect page addressing scheme is used. 

Use of record-level CC 
Because of the arguments concerning modification 

and query evaluation and the problems involved with 
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access path structures, record-level CC probably 
works only well in applications with simple file 
structures and a few simple transaction types where 
main memory operations can be guaranteed at COM- 
MIT processing. In fact, a particular record-level CC 
scheme based on predicate testing is already imple- 
mented in IMS Fast Path for main storage database 
applications[l2]. 

Page-level CC seems to be the only choice for 
optimistic CC in a complex DB environment. 

Drawbacks of page-level CC 
Using page-level CC, each record modification is 

prepared in the local buffer using a copy of its home 
page. Also, all related index pages are fetched during 
the read phase and updated in advance. Each page 
access has to be accompanied with a look aside to the 
transaction’s buffer. This approach may consume 
large portions of local storage space or need to 
support some overflow scheme. Its main disadvan- 
tage, however, seems to be the increased granule of 
conflict (pages), which may considerably worsen the 
ratio of transactions to be aborted (even if no real 
conflict at the level of the data model is present). The 
larger the granule of conflict, the more likely are 
fictitious conflicts. The situation becomes particularly 
bad if it coincides with high traffic data elements. 

For example, in many DBMS the available storage 
space is attempted to be occupied consecutively, that 
is, insertions of different transactions are allocated in 
the same page. While this strategy does not cause any 
trouble with record-level CC, it may produce 
fictitious co&i& with page-level CC. In data entry 
applications, the “current” hot spot page would 
provide some serious performance problems. (Arbi- 
trary distribution of newly inserted records may lead 
to lower space utilization and may contradict value- 
or time-based clustering.) 

Hence, the serialization of locking approaches on 
hot spot data pages due to an unsuitable locking 
granule may be turned into thrashing transaction 
aborts in such an optimistic CC scheme. 

COMPARISON WITH LOCKING APPROACHES 

Locking schemes guarantee one consistent image 
of the database at every point in time. For this 
purpose, they may sacrifice some degree of potential 
parallelism. However, they provide the facility of 
selecting an appropriate level of control to alleviate 
contention-related problems. 

Optimistic CC schemes allow the uncontrolled 
creation of private data copies during the trans- 
actions’ execution for the sake of enhanced concur- 
rency. Their essential problem consists of merging 
these copies during COMMIT processing thereby 
regaining a transaction-consistent database image. 
As previously discussed, a lot of processing 
diffic~ties do arise, when these copies do not match 
with the units of transfer (pages). Hence, in order to 
be practically feasible for DBMS use, optimistic CC 

seems to be linked to the page level. As shown in 
various system implementations [ 11, 131, the locking 
approach has no restrictions of that kind. It can be 
chosen for the record or even for the field level. 

In addition, particular assumptions- 
NOSTEAL/NOFORCE or ATOMIC propagation 
to the materialized DB-have to be introduced to 
minimize COMMIT processing or to reduce main 
storage use. Locking does not necessarily require 
such an environment for efficient transaction pro- 
cessing. 

Note, concurrency control protocols in a DBMS 
are not designed for one special purpose only. Never- 
theless, it is often argued that an optimistic CC 
approach should be chosen in applications where 
conflicts are unlikely. Since locking also behaves 
quite well in such a particular environment (no wait 
or deadlock conflicts), there seems to be little reason 
to introduce a specialized control mechanism. For a 
design decision concerning concurrency control, the 
following properties and requirements should be 
carefully regarded: 

(1) Hot spot data need controlled serialization. 
(2) If waiting situations and deadlocks are unlikely, 

locking is as good as optimistic CC. 
(3) Each system needs some control hierarchy in 

order to provide efficient read and write operations 
on large data sets. For example, operations like 
loading a tile, deleting a file, searching a file se- 
quentially can be supported appropriately by some 
hierarchical locking scheme. 

(4) Locking seems to be better suited to handle 
non-existence problems of records. 
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