
inform. Systems Vol. 12, No. 1, pp. 83-98, 1987 ~306-437~~87 $3.00 i- 0.00

Printed in Great Britain Pergamon Journals Ltd

EVALUATION OF A MULTIPLE VERSION SCHEME
FOR CONCURRENCY CONTROL

University of Kaiserslautern, West Germany

and

ERWIN PETRY

ETH Zurich, Switzerfand

(Received 1G February 1986; in revised form 17 September 1986)

Abstract-This paper presents a thorough investigation of all relevant properties of a multiple version
scheme for concurrency control. It offers conflict-free scheduling for reader transactions thereby generally
reducing resource contention. By using a trace-driven simulation model we explored the effective
parallelism achievable in multi-user database systems and the number of occurring deadlocks as a
complementary measure. The workload was represented by six reai-life object reference strings of different
applications running on databases which vary in size between 60 MB and 2.9 GB. To compare and valuate
the outcome of our experiments we used known results for RX-, MC- and optimistic s~~hron~~t~on
protocols derived under the same conditions. Furthermore, version-dependent criteria and their influence
on general database performance were considered. The results obtained underline the value of the multiple
version concept for concurrency control; many criteria vote for its use in future database systems with
highly concurrent transactions.

1. INTRODU~ION

During the recent years quite a variety of concurrency
control methods was proposed in literature [IA].
While locking with two-phase RX-protocols was the
synchronization method IO yr ago, we have now the
selection of a broad range of algorithms based on
extended locking pro&cots [5,6], timestamps [7,8),
versions [9-l I], the optimistic idea [22-151 and their
combinations [l] when an appropriate DBMS con-
currency control (CC) has to be designed. Although
probably more than 100 CC-algorithms can be com-
posed by skilfully combining the known ideas, there
is very little information available on their per-
formance, even for the main concepts. Performance
evaluation and comparison, however, are prerequi-
sites for a thorough design decision.

After more than 5 yr of learning we are convinced
by our experience that we will not come to a quick
conclusion on all methods, system structures and
applications. Why are evafuation and comparison of
CC-methods so difficult? This is essentially due to the
following:

--There are numerous parameters to consider,
mainly concerning arrival time, parallelism, appli-
cation and database characteristics.

-.Analytic modeling does not seem to be reliable and
accurate because of numerous simplifications to
keep the formulae tractable.

-Simulation models driven by synthetic workloads
usua3y do not capture all essentia1 database and

application parameters, e.g. size and reference pat-
tern of the database including hot spots, etc.

-There are no accepted measures for comparison;
is, for example, an increase of paraftdism or a
decrease of deadlock frequency more important?

Of course, some preliminary studies and rest&s on
some CC-methods are already known [16-193. HOW-

ever, these results are not conclusive (and hard to
compare) in various ways. There is no unanimous
recommendation of a CC-algorithm neither within
the framework of an experimental study nor amoag
the various investigations.

To determine the performance of CC-algorithms,
we soon abandoned the idea of pure analytic mud-
eiing and also simulation based on random numbers
We refined our models to use tray-driven simulation.
The workfoad was modefled by traces of object
references collected during the execution of trans-
actions on a real DBMS. A sample of different object
reference strings served for an accurate description of
a wide spectrum of applications during simulation.
With this broader basis, we hope to derive more
precise and mcue reliable results. Some aspects of our
quantitative analysis are reported in [20,21].

Here we want to investigate the application of
implicit versions [I 11 to enhance concurrency in cen-
tralized multi-user DBMS. After outlining the idea of
version use for CC, we mainly concentrate on its
performance evaluation by describing our simulation
en~ronment, performance criteria and results. To

83

84 Tmso HKIUXR and ERWIN PETRY

compare its benefits we refer to results gained for
other CC-methods [20].

2. CONCURRENCY CONTROL USING VERSIONS

Versions are used in databases in various ways and
with different meaning e.g. for time mapping (tem-
poral or CAD databases) or for synchronization. In
temporal databases, versions of an object are explic-
itly made visible to the user to refer to specific points
or intervals in time. An implicit versioning concept is
employed to reduce contention during parallel data-
base access and to enhance concurrency, thereby
hiding the notion of versions at the user interface. Of
course, the use of a combination of both concepts is
also conceivable.

Here we are, however, only interested in the evalu-
ation of the implicit versioning concept and its poten-
tial gain for the performance of concurrency control.
Therefore, our method does not reflect the permanent
storage and the temporal access of versions. We
rather apply temporary versions being discarded
when no transaction is accessing them any more.

2.1. CC with two versions

A scheme using up to two versions of an object was
proposed in [S]. This so-called RAC-scheme allows
several transactions to read an object while a writer
transaction creates a new version of that object. As
soon as the new version is committed, it can be
referenced by (new) transactions. Transactions hav-
ing read the old version must see this version during
their lifetime prohibiting the creation of the next
version by a waiting writer. Therefore, long readers
can delay a writer for a long time in a two-version
scheme.

To eliminate such read-write conflicts, the version
concept can be enhanced to exploit multiple old
versions of a data object [1 I]. Here we only sketch the
main idea of the algorithm, before we focus on its
evaluation.

2.2. CC with multiple implicit versions

We need a strict separation of readers and writers;
the type of a transaction must be declared at begin of
transaction (BOT). A transaction is a reader if it only
issues read operations and a writer if it references
(among possible read operations) at least one object
of the database with the intention to change it.

Reader transactions. On any demand, a reader q
always gets that version of the referenced object
having been the current one at BOT(Z’i). q needs not
issue any synchronization request and no syn-
chronization measure is applied to the referenced
object. The multiple version concept guarantees that
readers always see the consistent state of the database
at their BOT. The consequence is that readers always
can be served immediately, are never involved in
deadlock situations and hence can always terminate
correctly.

Writer transactions. A writer competes in all its
read and update operations for the latest versions of
database objects with all concurrent writers. There-
fore, writers must be synchronized. This demand may
be achieved by any known CC-method. However,
optimistic methods do not seem to be favorable
because of a relatively high risk of conflicts, resulting
from the fact that all transactions involved are up-
dating the database. Hence, it seems adequate to use
the conventional two-phase RX-protocol among
writer transactions. While changing an object A from
version A, to Ai+,, a writer is working on a copy of
A, thereby keeping the current version A, available for
readers.

The parahelism of the version scheme is illustrated
in Fig. 1. Because readers always see the DB-state
which was current at their start, they can be serialized
at their BOT. Writers are assigned to the serialization
order at EOT as usual. Therefore, the resulting
serialization order of the schedule in Fig. 1 is T2, Tl,
T4, T3, T5, that is, T2, for example, must not see the
modifications of Tl because of
BOT(T2) < EOT(T1).

R(Ai) x(A~-A~+,)

T1 (writer) b x i

Ref(Ai) RefCAi)

T2 hader) k
..I)

T3 (writer) 1
X(Ai) delayed X(A'+l"Ai+Z) ___-*__-___

T4hzdff)
Ref (Ai+, 1

- '**

Ref(Ai+2)
T5 keader) [=: . . .

latest version
Ai Ai+ A.

? vr 79
)t

time of T2 TlT4 T3 T5
serialization

Fig. 1. Concurrent reader (Ret) and writer (R, X) references to different versions of object A and their
serialization order.

Evaluation of a rnultj~Ie version scheme 85

It is obvious that fewer confhcts are provoked
when only writers and no readers must be syn-
chronized. This potential gain can be utilized in
various ways:

-The reduction of conflicts for the same throughput
compared to RX-protocols is used to greatly im-
prove response time.

-The parallelism can be further increased to
maximize throughput without aiming at minimal
response times. More readers cost only the over-
head of a higher multi-programming level, but they
imply no additional locking conflicts.

--Deadlocks are expected to be more rare events as
long as the writer parallelism is less than that of a
conventional RX-scheme.

Certainly, a definite disadvantage can also be ob-
served from Fig. 1. Transaction T2 gets a picture of
the database which becomes more and more obsolete
relative to the latest version of an object (A, instead
of .4+2). This phenomenon of out-of-date object
references seems to be a principal disadvantage and
may cause some problems ~~culia~ties) with long
reader transactions.

3. IMPLEME~ATION OF A MULTIPLE
VERSION SCHEME

To be able to always give to readers any object
having been in the database at their BOT, we must
keep in some way the then actual state of the
database. Because writers may produce new versions
of the same object while other readers are still active,
the system has to manage potentially many versions
of the same object.

Typically, object versions are kept at the page level.
As illustrated in Fig. 2, a viable implementation may
be sketched as follows:

-The latest versions are stored in the database.
-The older (temporary) versions are kept in a ver-

sion pool.
-Versions are chained in reverse chronological

order. They contain identifiers and time-stamps of
their creating transactions to direct readers always
to the database state at their BOT.

database of
latest version5

T5 -)
%+2

-Pages of the database and of the version pool
may be fetched into the system buffer for efficient
reference.

Each page is marked with a time-stamp indicating
EOT-time of the creating transaction. Since the pages
(versions) of an object A are chained according to
their temporal commit sequence, object access is at
least conceptually easy. A writer transaction T’, al-
ways gets the top page (latest version in the data-
base); page updates are prepared in a private buffer
before they replace the current versions in the data-
base during EOT-processing. Successful commit im-
plies pushing the replaced pages of c (at least
logically) to the version pool in an atomic manner. Of
course, there are protocols to achieve this kind of
time-critical page propagation to the system buffer
for performance reasons; their actual replacement
and transfer to the version pool may then be decided
by some replacement algorithm when room for new
pages has to be prepared.

A reader transaction Tj gets automatically the
youngest version of A older than BOT(Tj) for all its
references. Conceptually, starting at the latest version
of A (top) the chain of versions has to be searched to
find the appropriate version of A. A real imple-
mentation may either provide sequential search or
accelerate its location by an index or hash mech-
anism. BOT of the oldest reader To determines the
time range within which all versions of all objects
have to be stored. Although many versions younger
than BOT(7’0) may presently not be referenced, they
have to be kept if there are active readers with a
BOT-time in the range where the version was the
current one, since some of these readers may request
them later on.

To speed up the access of versions, large system
buffers are assumed to be very helpful. Principally, all
versions may temporarily or permanently reside in
the buffer thereby using the version pool only as a
backup store.

As soon as the oldest reader To commits, a number
of versions can be freed. The next oldest reader Tno

now limits with
to be kept.

its BOT(Tno) the range of

version pool

Ai

Ai+l

versions

Fig. 2. Basic storage scheme for versions (references to versions of A: see Fig. I).

86 Tnao HAanaa and ERWIN PETRY

INTERFACE BETWEEN

STRING CONVERTER AND SCHEDULER

: PARALLELISM = N

Fig. 3. Use of a string converter.

Hence, a suitable implementation has to provide
a number of quite complex algorithms. The most
important task is the effective organization of the
version pool:

-To rapidly detemine the appropriate versions for
readers;

-To locate versions not referenced any more;
-To perform fast garbage collection to regain space

of outdated versions.

Since the details of the implementation are not
important for our concept evaluation, we will not
further discuss them. The interested reader will find
an efficient proposal for the organization of the
version pool including recovery management in [l 11.

4. SIMULATION METHOD

The practical usefulness of any CC-algorithms is
strongly dependent on its performance under realistic
conditions which we intend to evaluate precisely. The
kind of modeling has a far-reaching influence on the
accuracy of results. Probabilistic models to represent
the transaction load and the referenced data of the
database are very imprecise in all DB-applications,
because essential aspects like non-uniform trans-
action reference patterns and object locality are typ-
ically not well reflected. Therefore, important DB-
phenomena like high traffic data elements and hot
spots having stong impact on synchronization and
throughput will not be observed during the simu-
lation. With this expectation, however, the question
concerning the practical value of the prediction re-
sults must be raised.

Trace-driven simulation guarantees a much higher
degree of realism because it does not require any
idealization or assumptions necessary when the
DBMS and transaction behavior are expressed by
random numbers. It permits precise modeling of the
relevant DBMS components under realistic condi-
tions, since transaction and data references are de-
rived from real applications. Using such an approach,
object reference strings incorporate the workload
model consisting of transactions and additionally the
reference model for the database.

4.1. Object reference strings and their conversion

The workload model driving the simulation is
represented by object reference strings (ORS) which
describe the history of object references (e.g. pages)
of a DBMS application. For our purpose, the essen-
tial contents of an ORS are

-a BOT-record for each transaction describing its
type and origin;

-a LOGREF-record for every object reference con-
taining type of a request, object identifier, etc.;

-an UNFIX-record for every object release as a
counterpart to a LOGREF-record;

-an EOT-record for each transaction, whether
successful or not.

All records in the ORS are time-stamped; they are
ordered in temporal sequence of the original event
execution in the DBMS and allow for appropriate
derivation of synchronization information, that is,
lock requests and lock modes in case of locking for
example.

An ORS reflects the real load situation, e.g. num-
ber of concurrent transactions and their scheduling,
of an execution interval of the corresponding DBMS
application. Hence, driving a sychronization sub-
system with the very ORS in recording sequence
would result in exactly one simulation run-a poor
outcome of the modeling efforts. Therefore, the
possibilities of simulation are greatly enhanced if an
ORS can be transformed in a parameterized way to
generate load situations of arbitrary levels of concur-
rency. This is achieved by the string converter, as
illustrated in Fig. 3. Upon initialization it can display
the ORS with any number of transactions executing
in parallel. The scheduler can activate new trans-
actions (BOT) up to the declared level of parallelism.
For active transactions, references may be requested
according to scheduling decisions, wait situations,
etc. They are delivered in their logical recording
sequence within a transaction. An EOT-reference will
usually cause the scheduler to request a new BOT-
record after having performed all commit actions
depending on the synchronization protocol. Trans-
actions that have to be rolled back because of some

Evaluation of a multiple version scheme 87

Fig. 4. Overview of the gross achitecture; static calling hierarchy.

failure, e.g. deadlock, can be returned to the string
converter to be restarted at a later point in time. To
support greater flexibility in simulating synchroniz-
ation protocols, the scheduler is also able to dynam-
ically decrease the level of parallelism under difficult
scheduling situations, e.g. repeated deadlock of a
transaction.

4.2. Functions and structure of the simulation system

For investigating the performance of CC-schemes,
we designed a simulation system in PL/I. Its gross
architecture is shown in Fig. 4. The synchronization
algorithm is explicitly coded and all important com-
ponents are represented with their essential features.
Simulating the implicit version scheme requires the
following components:
-Scheduler. It is the central component serving for

system intialization, transaction activation and
control, resource multiplexing and failure hand-
ling. Scheduling of transaction requests is done in
a round-robin-manner subject to delays of blocked
transactions. They are reactivated by the scheduler
as soon as the lock manager grants their lock
request, or they are rolled back when a deadlock
is encountered.

-String converter. It is transforming an ORS and
delivers the references according to the specified
load model (as described above).

-Lock manuger. It manages all requested locks in a
lock table organized as a hash structure. It checks
for deadlocks by using a cycle search in a wait-for
graph.

-Bufir manager. It controls the system buffer and
manages the references to the database. Page re-
placement considers locality of actual and old
versions.

-Version pool manager. It controls the version pool
organized as a ring buffer and accesses the appro-
priate versions for readers. Garbage collection is
necessary to free occupied space not needed any

more. In case of threatening pool overflow, space
will be reclaimed by aborting the oldest reader
transaction.

-Statistics. A print module collects the events,
computes various statistics and outputs readable
lists with the results of a simulation run. Statistics
are available on frequency and cause of dead-
locks, blocking situations, number of restarts, etc.
Furthermore, for each nominal parallelism the
so-called effective parallelism roughly equrvalent
to throughput is obtained.

These modules implement a number of functions
whose services can be requested by subroutine calls.
The system structure of Fig. 4 can be easily accom-
modated to the simulation of other types of syn-
chronization protocols.

Essential parameters initializing every simulation
run are the following:

-parallelism (n): describes the maximal number of
concurrent transactions;

-system buffer size;
-LIMIT: maximal number of restarts of the

same transaction (in case of deadlocks) before
special scheduling measures are used to avoid
cyclic restart;

-synchronization dependent characteristics and,
of course, the workload (ORS, transaction mixes
(TA -mixes).

4.3. Workload for the simulation

Most important for the quality and significance of
results is the workload of the simulation model. As
explained in Section 1, our load model consists of
reference strings of real DBMS applications. We
selected a wide variety of ORS derived from applica-
tions of the DBMS UDS [32], which cover a broad
range of applications. Their general properties are
summarized in Table 1. These overall properties do
not characterize all aspects of the workload necessary

Table 1. General characteristics of the object reference strings

ORS
Properties TA-mix 1 TA-mix 2 TA-mix 3 TA-mix 4 TA-mix 5 7’.4-mix 6

Size of DB 60MB 60MB 150MB 2.9 GB 280 MB 560 MB
Total no. of TAs 262 39 669 2014 860 2288
Total no. of logical references 109216 79750 40751 57959 54465 9862
Writers in % 94.6 12.8 46.0 13.2 33.5 45.6

88 THEO HORDER and ERWIN FWRY

Table 2. Classification scheme for transactions described by object
reference strings

TA-mix I TA-mix 2

Type RS ws RS ws

Tl l-50 0 l-50 0
T2 51-100 0 51-100 0
T3 > 101 0 > 101 0
T4 6-70 14 6-70 14
T5 71-110 14 71-I 10 14
T6 > 111 5-100 0 0

TA-mix 3 TA-mix 4

Type RS ws RS ws

Tl l-5 0 l-5 0
T2 620 0 610 0
T3 2 21 0 > 11 0
T4 1-3 1 l-10 l-4
T5 410 2-5 1 l-30 5-13
T6 > 11 25 231 > 14

TA-mix 5 TA-mix 6

Type RS ws RS ws

Tl l-5 0 l-5 0
T2 610 0 26 0
T3 > 11 0 0 0
T4 l-20 l-9 l-5 l-2
T5 21-30 10-14 6-10 3
T6 231 2 15 ,I1 24

to understand and interpret the behavior of the CC-
algorithms. Therefore, we are going to describe our
workload in greater detail. Since there is no com-
monly accepted scheme available, an appropriate ad
hoc classification of transaction types is formed re-
garding the sizes of their read sets (RS) and write sets
(WS). Depending on the RS-size we distinguish be-
tween short, average and long readers (types Tl-T3)
and vice versa between short, average and long
writers considering the RS- and WS-sizes (types
T4-T6). As an example, a transaction of TA-mix 1
is of type T4 (short writer) if it issues between 6 and
70 read references and between 1 and 4 references
with the intention to modify. Table 2 shows our type
classification for the six transaction mixes. With these
specifications we obtain the type distribution of
transactions and their frequencies as our most refined
description of the workload (Table 3). Locality of
reference is also an important issue for CC. To
roughly characterize the potential locality of trans-
action processing, the reference frequency of pages is
illustrated in Table 4. As indicated by the reference
frequency, a number of pages exhibit some kind of

Table 3. Transaction toe distribution

TA-mix 1 TA-mix 2

Type #TA %TA %LOGREF #TA %TA %LOGREF

Tl 0 0.0 0.0 0
T2 4 1.5 11.4 13
T3 10 3.8 14.7 21
T4 170 64.9 4.1 3
T5 74 28.2 59.5 2
T6 4 1.5 10.2 0

TA-mix 3

Type # TA %TA %LOGREF # TA

0.0 0.0
33.3 57.8
53.8 40.0

7.7 0.1
5.1 2.0
0.0 0.0

TA-mix 4

% TA %LOGREF

Tl 119 17.8 1.1 1295 64.3 11.6
T2 153 22.9 19.0 311 15.4 7.9
T3 89 13.3 53.4 142 7.0 50.6
T4 188 28.1 15.6 57 2.8 3.6
T5 65 9.7 6.2 101 5.1 1.6
T6 55 8.2 18.7 108 5.4 18.7

TA-mix 5 TA-mix 6

Type # TA %TA %LOGREF # TA %TA %LOGREF

Tl 225 26.3 3.4 903 29.5 17.8
T2 303 35.2 6.3 341 14.9 17.8
T3 43 5.0 41.6 0 0.0 0.0
T4 160 18.6 14.5 763 33.3 26.9
T5 54 6.3 10.3 100 4.4 9.5
T6 74 8.6 23.9 181 7.9 28.0

high traffic behavior. Of course, the frequency of
reference is only an approximate indicator of locality,
since the relative distance of rereferences is not
regarded. On the other side, more accurate descrip-
tion of locality would require another set of par-
ameters making the workload characterization even
more complex. Therefore, we confine ourselves with
a very simple ad hoc characterization of locality
revealing only the differences of the rereference
behavior among the various TA-mixes. Here, a page
is said to exhibit LOCALITY if it is referenced more
than 8 times.

Tables l-4 reveal substantial differences in all
respects. The first two transaction mixes have been
traced in a scientific database application with a large
share of batch transactions; some transactions are
very long, since they either have to check complex
integrity constraints, or have to read large portions of
the (relatively small) database. Both mixes show a
high degree of locality (2 30% of pages). While
TA-mix 1 contains a high percentage of short update
transactions together with a few average and long
readers, TA-mix 2 incorporates a very large fraction

Table 4. Reference frequency of pages

Ref. frequency
of pages TA-mix 1 TA-mix 2 TA-mix 3 TA-mix 4 TA-mix 5 TA-mix 6

1 264 337 838 3443 2573 906
2-3 775 871 779 1947 1200 785
48 1331 1727 631 1098 1132 347
9-20 786 1802 277 393 485 69

21-50 98 163 138 285 276 5
51-200 55 30 134 255 Ill 11
> 200 73 56 17 4 14 13

Total no. of different 3382 4986 2814 7395 5791 2136
referenced pages

Locality 30% 41% 20% 12% 15% 5%

Evaluation of a multiple version scheme 89

of average and long readers competing with a rela-
tively small number of short and average writers.

The four remaining transaction mixes originate
from different interactive DB/DC-environments with
mainly short transactions; in order to discriminate
different transaction types we have changed the
respective RS- and WS-sizes (see Table 2). TA-mixes
3 and 5 run on a medium size database. TA -mix 3 has
a substantial share of writers (> 45%) and also a
number of relatively long readers. TA-mix 5 contains
a similar structure (> 33% writers). Both mixes
provide an average degree of locality and hide a great
potential of mutual hindrances.

TA-mixes 4 and 6 have been recorded on quite
large databases with more than 2000 transactions in
each string. While TA-mix 4 is composed of a small
fraction of writers and many short readers, TA-mix
6 consists of many extremely short transactions with
a relatively high percentage of writers (> 45%). Both
exhibit very low locality. Because of size of database
and structure of transactions it is assumed that both
mixes are mainly conflict-free.

5. PERFORMANCE OF CC-ALGORITHMS

Using the described simulation system and the empir-
ical reference data of various classes of applications,
we want to learn as much as possible about the
practical behavior of the multiple version concept
(MVC) and about the conditions of its appropriate or
unfavorable use. Therefore, our goal is its thorough
performance evaluation. But what are the measures
for CC-algorithms?

5. I. Criteria for performance comparison

There are different approaches to this problem in
the literature-a synthetic response time parameter in
[23], the number of blocking situations and the
number of transactions in [171, etc. It is argued in [20]
that these measures may be favorable for certain
synchronization protocols, but unsuitable for others.
Peinl and Reuter [20] propose a more general mea-
sure which can be applied to any CC-method. Hence,
we will follow their proposal--also for the sake of
comparing their results with ours.

The rationale of the quality measure is as follows:

For each simulation run, the maximum number of
parallel transactions, n, is specified. Although the
scheduler tries to keep n transactions permanently
running in parallel, the current number of active
transactions, CP,, will often be lower caused by
blocking situations. The CP,-values have to be deter-
mined appropriately, e.g. in k equidistant obser-
vations. Here, the current parallelism was measured
after every logical reference actually executed
(k = # LOGREFACT). Hence, the average paral-
lelism is yielded by

ii = i CPJk.
i= I

Since 7i contains the average number of active trans-
actions, it reflects in some way the length of blocking
situations. Due to rollback and re-execution of trans-
actions, there are actually more ORS-references to
execute in a simulation run (# LOGREFACT) com-
pared to the references in the original string
(# LOGREFMIN). We obtain a relative increase of
references

q = # LOGREFACT/ # LOGREFMIN,

which is independent of the size of the string. This
repetition factor reflects the overhead of backups or
work to be done twice for a given CC-method.

Based on 6 and q(q > 1), a single measure is
proposed in [20] for the effective parallelism:

n* = A/q.

Since a certain amount of the n transactions running
in parallel is re-executing aborted transactions in-
stead of doing useful work, this fact is taken into
account by the calculation of n *. Hence, the effective
parallelism n * can be used directly as a relative
measure of transaction throughput.

5.2. Empirical results of the MVC-protocol

First, we present the results of the MVC-protocol
which are derived under the following premises:

-The executed schedules guarantee serializability of
transactions.

-A protocol equivalent to consistency level 3 is
observed [24] (long R- and X-locks to warrant the
prevention of inconsistent analysis, lost update,
etc.).

Technical parameters of all simulation runs were

-round-robin scheduling;
-LRU-replacement in a system buffer of 256 pages

(it turned out that variations of buffer size had very
little impact on the results);

-version pool size large enough to contain all
version pages (< 3000);

-buffer management with STEAL and FORCE
using (a simulation of) ATOMIC propagation [27];

-LIMIT = 3;
-the ORS using TA-mixes 16;
-the maximum parallelism n, which was evaluated

in the range 2-32.

These premises and parameters were also necessary
for the intended comparability of the results.

Table 5 displays the MVC-performance figures for
our six transaction mixes. Let us now crudely inter-
pret our first impression of the results. Without
doubt, TA-mix 2 delivers the best results. This is due
to the large fraction of readers and a small number
of short and average writers. MVC seems to be
tailored to this combination of workload. In contrast
to that it is very susceptible to high update rates with
strong hindrances. As shown with TA-mix 1, MVC

90 THEO H&RDEX and ERWIN PETRY

Table 5. Performance figures of the MVC-protocol

TA-mix 1 TA -mix 2
-.__-

n A 4 n* A 4 n*

2 1.90 1.01 1.89 2.00 1 .oo 2.00
4 3.30 1.21 2.12 4.00 4.00
8 5.71 1.56 3.67 8.00

t ::
8.00

16 9.64 1.86 5.19 16.00 1.00 16.00
32 18.98 1.95 9.15 - - -

TA-mix 3 TA-mix 4

n ti 4 n* A Q I!*

2 I .99 1 .oo 1.99 2.00 1 .oo 2.00
4 3.92 1 .oo 3.92 3.98 1.00 3.98
8 1.59 1.00 7.59 7.84 1.00 7.81

16 14.91 1.03 14.50 14.50 1.02 14.15
32 27.65 1.02 27.04 21.03 1.06 19.92

TA-mix 5 TA-mix 6

n A 4 n’ ri 4 n*

2 1.99 1 .oo 1.99 2.00 1.01 1.98
4 3.79 1.01 3.74 3.95 1.02 3.89
8 6.21 1.04 5.99 7.64 1.05 7.21

16 9.20 1.05 8.74 13.94 1.15 12.17
32 14.54 1.09 13.38 24.66 1.27 19.47

cannot do much with such mixes. The low values for
R at higher degrees of paralle~sm (5 N n/2) are actu-
ally lowered for n* by a factor of -2 due to
re-processing. It is expected that also other algo-
rithms do not like this kind of workload and that the
obtained results will be close to those of RX-
protocols. Surprisingly well does TA-mix 3, although
it contains 46% writers. An explanation can be found
in the share of references. The relatively long readers
performing about 75% of the references do not hurt,
and the writers with the remaining share of references
must be short and only weakly overlapping. TA-
mixes 4 and 5 also obtain a very low q. The moderate
nL and if* values at high degrees of parallelism (32)
must be provoked by writer conflicts and blocking
situations (not leading to deadlocks), e.g. due to high
traffic data elements. TA-mix 5 has a larger fraction
of writers which are responsible for the low effective
parallelism (n* = 13.38 for n = 32). Even with ex-
tremely short writers, TA-mix 6 does not so well as
expected (at least for n = 32). With increasing paral-
lelism, fi shrinks and q grows more than proportional.
This effect of increased blocking and re-processing is
clearly revealed by the quotient n*/n which has the

values 0.91 and 0.61 for n = 8 and n = 32. It is
obvious that our hypothesis drawn from the static
workload characterisation in 4.3 expecting conflict-
free workloads for XA-mixes 4 and 6 does not hold.
Dynamic synchronization and their interpretation is
much more difficult.

5.3. Analysis of deadlocks

MVC uses locks for writers and, hence, is a pessi-
mistic approach. We distinguish two sources of dead-
locks:

-R- and X-requests of different transactions cause
a cyclic wait situation (CW) blocking all partici-
pating transactions permanently.

-Lock conversion is also an important issue. Often,
simulations of locking protocols tacitly assume
that all objects are either referenced in R- or in
X-mode. In real systems, however, as pointed out
by our ORS, access to an object is very frequently
performed by issuing a read-reference first and
then converting it to an update reference later on.
Such lock conversions (LC) may result in a dead-
lock, too, as explained by PO] in detail. Running
level 2 consistency, some of these deadlocks will he
avoided, however, by risking “inconsistent anal-
ysis” or similar phenomena for the concerned
transactions.

Table 6 gives a summary of the number of dead-
locks occurred where their causes+yclic wait and
lock conversion-are separately considered. Dead-
lock resolution was achieved by rolling back the
transaction causing the situation. When the LIMIT
was reached for a particular transaction, the sched-
uler tried to avoid further rollback of this contlict
transaction. It was achieved by temporally lowering
the actual concurrency by retaining new transactions
until the conflict transaction has finished. Some ex-
periments in [25] used other cost measures like num-
ber of locks held for selecting a rollback victim. The
results obtained were very similar to the presented
ones. As a side remark, LIMIT = 2 generally pro-
duced a slightly diminished deadlock rate because
then the protocol lowered the concurrency more

Table 6. Rollback freuuencies

TA-mix I TA-mix 2 TA-mix 3
n CW LC XD CW LC ED CW LC ZD

2 7
I:

7 0 0 0 0 0 0
4 22 22 0 0 0 1 1
8 110 8 118 0 0

:
1 0 1

16 214 3-f 251 3 1 4
32 339 58 397 ” ” ” 7 6 13

TA-mix 4 TA-mix 5 TA-mix 6
n ct+’ LC T;D CW LC XD CW LC ZD

2 0 0 0 0 0 0 0 7 1
4 0 0 4 3 I 2 14 16
8 2

I:
2 II 13 24 16 42 58

16 17 4 21 21 56 77 60 115 175
32 57 15 72 43 81 124 57 227 284

frequently but resulting in a reduced effective paral-
lelism.

It can be stated that the deadlock frequency grows
with the degree of parallelism-as expected. In most
mixes the growth seems to be linear. However, the
ideal TA-mix 2 is deadlock-free. Except for the
pathological TA-mix 1, MVC gets com~ratively
small or moderate deadlock rates computed as the
number of deadlocks related to the number of
transactions to be executed, n = 32(16) yields the
following:

7% -mix 2 1 TA -mix 3 1 TA -mix 4

This kind of characterization reveals that in the
TA -mixes 3-6 between 2 and 14% of the transactions
had to be reprocessed whereas TA -mix 1 provoked a
rollback of more than 150%. This means that each
transaction had 2.5 processing attempts in the aver-
age.

Our discussion so far commented the results of
MVC for themselves and did not focus an the
selection decision for a CC-algorithm. Apart from
special cases (the ideal ?“A-mix 2), we do not know
how good MVC really is. To valuate MVC we must
figure out how well other algorithms behave with
critical workloads. Throughput characterized by pure
factors for e&ctive paraliel~sm and deadlock fre-
quency is not very helpful for the valuation of a
CC-method, but in comparison with a number of
candidate CC-methods is ~~t~~ularly useful for se-
lecting the appropriate syncbroni~tion protocol. The
increase of transaction throughput per time unit or,
in our case, the relative gain of n * and the differewe
in the deadlock rate compared to other algorithms
serve as illustrative factors to estimate the quality of
CC-methods. Therefore, we refer to known results of
three synchroni~tion protocols [ZO] to compare and
interpret our own results. IIence, we quote the

-RX-protocol [24] as a one-version scheme (only
latest object state for ~~d~rs/~ters);

-RAC-protocoi [5] as a two-version scheme (latest
object state and up to one next older state for
readers);

-0CGmethod [131 {latest object state for readers/
writers and, in a sense, up to m private copies for
writers where only one of them can be serialized);
hence, it is some sort of a two-version scheme.

Our MVC”protoco1 is a n-version scheme {rr arbi-
trary) providing the latest object state for readers/
writers and up to n-l old versions for readers.

As for MVC, deadlock resolution is done for RX
and RAC by rolling back the transaction causing the
deadlock and by lowering the degree of concurrency
as soon 8s a transaction reaches the LIMIT.

OCC offers mom parameters to observe. In order

to get a well-tuned method, a number of in-
vestigations were ~rformed analyzing backward ori-
ented (BOCC) and fo~ard-oriented OCC (FOCC).
According to our empirical studies [ZO, 261 it is safe
to say that BOCC having less tuning facilities delivers
worse results than FOCC. Hence, we concentrate our
efforts on FOCC for the synoptical comparison.

Validation conflicts in CCC correspond to dead-
locks in locking schemes. Whereas BOCC does not
alfow any freedom, confiici resomtion in FOCC
suggests various possibilities:

Pure ABORT. A validating transaction is aborted
when a conflict is detected. An immediate restart
often caused problems similar to livelacks. Even
delayed restarts could sometimes not prevent thrash-
ing situations. This conflict resolution method hides
the danger of cyclic restarts that execution may never
end. Thus, it is not very useful.

Pure K&5. A validation conilict is resolved in
favor of the committing transaction by rolling back
all conflicting transactions (KILL). It tends to pro-
duce high rollback rates for long transactions, but it
will finally end, because the validating transaction
always wins.

~~~r~~ seherne. A transition is aborted up to 
LIMIT times, then it is marked golden. For commit- 
ting a golden transaction, KILL is used. As a sup 
porting scheduling measure, the degree of parallelism 
is lowered by blocking all but one golden transaction 
to guarantee the rollback LIMIT for golden trans- 
actions. 

We select the results of pure KILL and of the 
hybrid scheme-referenced as FOCC-K and FOCC- 
II-for our synopti~ai comparison For com- 
pleteness, the figures of the five protocols for PZ* and 
EL) (number of deadi~k$~rollba~ks~ are summarized 
in Tables 7 and 8. For convenience, we refer to a 
graphical synopsis, as shown in Fig. 5. 

TA-mix 1 offers a tough nut for all locking algo- 
rithms, OCC was applied as the FOCC-variant using 
a KILL-strategy which assures that a transaction will 
survive once it has entered its validation phase. Since 
no blocking situations occur, it is always Z = n. Due 
to validation conflicts transactions have to be rolled 
back. With FOCC, these are only in-progress trans- 
actions. We do not definitely know whether or not 
such transa~~ons have processed many references 
before abort. At a low degree of pamlielism a 
conflicting transaction may run comparatively Long 
before it will be finally aborted, whereas the proba- 
bility grows with higher parallelism that it ,will be 
killed sooner. Since OCC always runs with 18 (max. 
concurrency), the highest abort rate can be expected. 
Our factor 4 does not fully express this fact because 
it does not describe the amount of lost work per 
aborted transaction. Here we got n * = 10 for n = 16 
implying q = t.6. For this difficult mix, OCC suc- 
seeded with a better result despite the high share of 
short writers, It is obvious that special measures have 
to be taken for long readers to avoid cyclic restart, 



92 THEO HARDER and ERWIN PETRY 

Table 7. Synopsis of performance figures for n* 

mix TA-mix I TA-mix 2 
___l--.. 

n RX RAC FOCC-H FOCC-K MVC RX RAC FOCC-H FOCC-K MVC 

2 1.68 1.57 1.54 1.50 1.89 2.00 2.00 2.00 2.00 2.00 
4 2.46 2.16 2.24 2.62 2.72 3.98 4.00 3.95 3.95 4.00 

1: 3.62 5.92 2.91 4.97 4.72 3.80 10.59 6.01 3.67 5.19 14.18 7.90 15.62 1.97 13.65 7.27 15.18 7.92 16.00 8.00 

32 10.05 6.18 6.89 16.32 9.75 - - - - - 

mix TA-mix 3 TA-mix 4 

n RX RAC FOCC-H FOCC-K MVC RX RAC FOCC-H FOCC-K MVC 

2 1.94 1.99 1.87 1.85 1.99 2.00 2.00 I .96 1.97 2.00 
4 3.56 3.71 3.73 3.54 3.92 3.77 3.84 3.45 3.32 3.98 
8 5.93 6.68 6.48 6.67 7.59 6.33 6.75 5.25 6.45 7.81 

16 8.13 9.93 9.62 10.91 14.50 8.40 8.79 7.51 12.13 14.15 
32 11.06 15.15 16.60 18.14 27.04 12.62 14.89 10.89 20.78 19.92 

mix TA-mix 5 TA-mix 6 
- __- 

?I RX RAC FOCC-H FOCC-K MVC RX RAC FOCC-H FOCC-K MVC 

2 1.94 1.97 1.83 1.66 1.99 1.97 1.97 1.89 1.93 1.98 
4 3.69 3.59 2.69 3.25 3.74 3.85 3.78 3.34 3.71 3.89 
8 5.62 5.69 3.86 5.75 5.99 6.99 7.04 5.44 6.66 7.21 

16 7.87 8.50 5.83 8.64 8.74 11.21 11.54 8.60 11.03 12.17 
32 10.71 11.84 9.84 14.78 13.38 18.28 18.29 14.40 15.35 19.47 

TA-mix 2 was ideal for MVC. In general, it should 
not be so easy for the competitor algorithms to cope 
with the very large fraction of average and long 
readers which is no problem with MVC because of 
the multipie versions. Their excellent results seem to 
point to delightful reference patterns which allow for 
low-conflict concurrency despite the presence of 
writers. The outcome of TA-mixes 3 and 4 demon- 
strates a clear advantage of MVC. As it should be 
expected, the ranking of the effective parallelism (n *) 
is determined by the degrees of freedom-from one 
version for RX to n versions for MVC. 

TA-mix 5 produces a comparably low concur- 
rency, slightly better than TA-mix 1. The superiority 
of OCC coincides also here with the poor effective 

parallelism of the remaining candidates, Maybe, 
these situations indicate that the sheer “trial and 
error”-approach of OCC wins even at the cost of 
excessive victim transactions to be re-processed 
whenever the other approaches limit their effective 
parallelism to a low value. The relatively high per- 
centage of writers in TA-mix 6 seem to be a handicap 
for OCC. As for the previous mix, MVC turns out to 
be clearly the best locking approach. 

It may be stated as a preliminary conclusion that 
MVC has done well for all mixes. Having a domi- 
nating share of readers, then such a scheduling 
capability could be expected. But surprisingly, it also 
delivers good values for mixes with a considerable 
fraction of writers (TA -mixes 3 and 6). 

Table 8. Synopsis of rollback frequencies 

mix TA-mix I TA-mix 2 

n Rx RAC FOCC-H FOCC-K MVC RX RAG FOCC-H FOCC-K MVC 

2 2 14 24 16 7 0 0 0 0 0 
4 25 76 75 51 22 0 0 I 1 0 

8 80 154 137 94 118 0 0 6 1 0 
16 175 220 31s 198 251 0 0 17 7 0 
32 220 206 514 436 397 - - - 

mix TA-mix 3 TA-mix 4 

n RX RAC FOCC-H FOCC-K MVC RX RAC FOCC-H FOCC-K MVC 

2 0 0 12 11 0 0 1 15 10 0 
4 16 2 73 28 1 1 1 82 32 0 
8 25 4 121 55 1 15 5 247 ill 2 

16 33 34 192 112 4 4.5 146 420 253 21 
32 56 78 267 245 13 122 126 518 424 72 

mix TA-mix 5 TA-mix 6 

” RX RAC FOCC-H FOCC-K MVC RX RAC FOCC-H FOCC-K MVC 

2 2 5 29 12 0 9 14 21 15 7 
4 2 25 113 34 7 15 44 87 41 16 
8 40 68 280 134 24 59 97 234 127 58 

16 85 176 385 307 77 143 227 400 345 175 
32 125 199 452 558 124 246 354 530 893 284 



Evaluation of a multiple version scheme 93 

As a final argument, FWC-K must be observed 
with caution. To underline its negative image as a 
scheduling strategy tending to thrashing situations, 
we list the maximum numbers of restarts of a trans- 
action in the various mixes: 

TA*mix 1 T.4 -mix 3 TA -mix 4 TA-mix 6 
.-l____ 

20 1 13 i 16 41 

5. FURTHER ASPECYS OF MVC 

The advantages of MVC are exclusively based on 
the version pool use. To evaluate its overhead, it is 
therefore necessary to investigate various aspects of 
the version pool. 

6. I. Version pool size 

For each object, a chain of versions must be stored 

24 

t 

(0) 

~ 

TLC- mix 7 

16 , FOCC-K 
/ 

/ 

24 

t 

TA-mix 2 

n* 

8 

TA-m:x 3 

e FOCC-H 

24 8 16 32 24 8 16 32 

covering the interval of the current point in time to 
BOT(TO) (oidest active reader). In Table 9, we have 
listed two measures of version pool occupancy: 

-the maximum number of pages used for versions 
during the simulation; 

-the average pool occupancy for versions. 

The number of versions grows strongly when many 
writers coincide with long readers, as demonstrated 
with TX-mixes 1 and 4 . Either writers or long 
readers atone cause only small version pool sizes 
(see TA-mixes 2 and 6). The increase of the version 
pool is also influenced by n. After a fast growth 
with smaller values of n it seems to reach a cer- 
tain saturation for high degrees of parahelism. The 
average number of versions is often less than half 
the maximum. 

600 1 
/ FOCC-k‘ 

TA-miXI / 
FQCC-K 

400 - 

I 

600 1 
CD 

II 

200 

TA-mix 2 

FOCC-H 
I , , ___eiFOCC-K I 

400 

200 

TA- mix 3 

/- 
_c FOCC-)? 

,_---, , ’ 

, FOCC-K 

.’ 

1 RAC 

5-i n 

Fig. 5. Synoptical comparison of CC-dgorithms. 



94 THEO HjiRDER and ERWIN PETRY 

24 

(b) 600 

TA-nix4 

TA-mix 6 

16 - 

n* 

, - 

TA-mix 4 # F0CC-H 

_.// /- 
/-. 

/ 

, FOCC-K 

/ 
/ 

/ 
/ 

/ I 

/ / 

/ / 

I / 

TA-mix 5 
FOCC-K 

/ 

/ 
/ A--- 

FOCC - H 

/._--9- 
, / 

/ 
x 

/ 5 

, t693t FOCC-K 

24 600 

16 400 

8 200 

4 

2 

24 6 16 32 

n n 

Fig. S (Continuation). Synoptical comparison of CC-algorithms. 

Table 9. Maximum and average number of versions in the version 
nnnl 

TA-mix 1 TA -mix 2 TA -mix 3 

n max av. max. a”. ma* a”. 

2 502 41.6 8 0.87 47 11.9 
4 870 160.4 9 4.37 135 YJ.8 
8 827 159.2 16 11.22 285 134.2 

989 259.2 25 17.56 707 360.2 
1057 444.0 - - 833 468.8 

TA-mix 4 TA-mix 5 TA-mix 6 

n max av. max a”. max av. 

2 280 45.6 207 53.7 73 2.21 
4 615 200.1 422 its.0 73 5.44 
8 1183 539.0 78.5 276.6 73 17.48 

16 2252 1256.9 1244 4iO.P 94 35.26 
32 2589 1461.9 1122 411.2 137 48.37 

As already mentioned, a ring buffer imple- 
mentation is preferable for the version pool. Then, 
the maximum number of pages needed can be easily 
controlled by transaction aborts. 

6.2. References to the version pool 

Readers obtain part of their pages from the version 
pool. To estimate the impact of version pool refer- 
ences on the overall performance, it is necessary to 
investigate the frequency of such events since each 
reference may involve several physical I/O to the 
version pool. 

The percentage of pages fetched from the version 
pool is plotted in Fig. 6. As expected, it enhances with 
increasing parallelism, but it seems to saturate at a 



Evaluation of a multiple version scheme 95 

n 

Fig. 6. Percentage of references satisfied by the version pool. 

certain n. Average values are OS-2.5% for TA -mixes 
4-6. This rather small overhead augments the 
effective parallelism of MVC substantially compared 
to the RX-protocol (see Fig. 5). Merely TA -mix 3 
uses up to 7% version pool references. However, this 
amplified reference activity does also exptain its excel- 
lent scheduling results (cf. Fig. 5). On the other hand, 
the demand for version pool pages is low enough to 
be effectively optimized by special implementation 
techniques, for example, by using an extended system 
buffer or a main memory resident index to limit a 
version pool reference to one physical i/O. 

Now we have answered the question concerning the 
overhead of the version pool to be carried by the 
readers. Yet, the versions must be produced before, 
causing a certain effort for the writers. As already 
mentioned, the system buffer is managed under a 
ST~AL~FORCE-policy. FORCE as the critical attri- 
bute responsible for the overhead means the enforced 
propagation of all modified pages at EOT, that is, 
versions are written to the version pool before 
(STEAL) or not later than EOT [27). Hence, we get 
a considerable output overhead for update-intensive 
mixes, above all in case of short writers. The follow- 
ing output activity expressed as percentage of alf 
LOCREFs was observed: 

These costs, however, cannot be attributed to the 
version scheme. In any case, a modified page must 
also be rewitten in a version-free data base (update- 
in-place). On the other hand, the youngest version of 
an object saved in the version pool may be taken as 
its before-image serving as UNDO-information for 
transaction abort. Therefore, the version use in an 
integrated recovery scheme incorporates a substantial 
optimization potential compared to recovery meeh- 
anisms based on page logging for UNDO- 
info~ation. 

Again, with the availability of large system buffers 
a NOSTEA~/N~FORCE-policy can be applied 
which offers the advantage of relying only on REDO- 
information. Then, the entire version pool (or at least 
a considerable part of it) should be integrated in the 
system buffer avoiding all version-related I/O. In such 
a scheme, all versions are kept in main memory for 
their life time; disk storage may be neccessary only in 
overflow situations. 

The issues discussed so far involve more or less 
matters of resource use or access overhead. But an 
important problem has not yet been explored in 
detail. We have stated that MVC-~hedules are seri- 
alizable; nevertheless, the results of reader trans- 
actions exhibit essential differences compared to 
those of other protocols, since reader sometimes refer 
to (slightIy) antiquated versions. In a sense, up-to- 
date evaluation is sacrificed for performance. How 
serious is the problem in practical situations? 

The issue of antiquated versions is outlined by the 
transaction schedule in Fig. 7 which generates the 
serialization order Tr, Tl, 72, T3. Tfie view of Tr is 
fixed to the database state before EOT (Tl) where the 
then current versions A,, l3, and C, hold. Since (short) 
writers permanently change the state of the database, 
the reader’s view gets aider and older. The reader Tr 
refers under the MVC-protocol the versions .A,, &, 
and C,, no matter how long it runs. Note, Tr would 
have got the versions A,, B2 and C, under an Rx- 
protocol (with the serialization order 7’1, TZ, T3, 
Tr ja fact that should be considered carefully. 

In order to quantify the “antiquation” problem, we 
analyze age and frequency of version references. 
Most of the mixes have only a number of references 
of age 1 and a few of age 2. Only two mixes listed in 

transaction 
schedule Tr') 

Ref(AJ 
Y 

Ref(Bo) Refq)) 
v, 

View of Tx 
;I \I 3, 

llrrk!rF!x 
Al B2 C3 



96 THEO HORDER and ERWIN PETRY 

Table IO. Number of versions referenced by readers ordered by their 

n TA-mix 3 

age 2 4 8 16 32 

0 28,257 27,830 27,296 26,980 26,530 
1 255 668 1057 1136 1244 
2 0 14 159 364 629 

: 0 0 0 0 0 0 32 0 73 36 

n TA-mix 5 

aze 2 4 8 16 32 

0 22,485 22,168 22,020 22,009 21,948 
1 78 133 171 137 175 
2 0 26 23 
3 ; 100 15 i; 24 
4 6 162 123 22 16 
5 0 7 215 110 39 
6 0 0 0 170 176 

0 0 0 81 162 
0 0 0 7 7 

Table 10 possess a well-marked reference behavior 
indicating the seriousness of the problem. References 
of age 0 are to the latest version whereas those of age 
k lead to antiquated versions whose current version 
is k modi~~ations ahead. The remarkable observation 
is the quite surprising age 8 of versions-certainly in 
rare cases--as proved by TA-mix 5. Despite such 
pathological exceptions, the lion’s share of reader 
references is directed to the latest version. Therefore, 
the “average” age of a version requested by a reader 
is very low, as illustrated in Fig. 8. For example an 
average age of 0.1 indicates that on 10 references a 
reader gets one version of age 1 besides 9 current 
versions. 

7. CONCLUSIONS 

In this paper, we have tried to investigate all 
relevant properties of a multiple version scheme for 
concurrency control. Prime importance was put on its 
performance evaluation in a realistic environment. 
For this task, we designed a trace-driven simulation 
program and used real-life object reference strings 
from sizeable databases rather than database refer- 
ences generated by random numbers. The most im- 

TA - mix 1~0 ,TA- mix 2=O 

/TA-mix 5 
TA-mix 3 

TA-mix 4 
TA-mtx 6 

24 8 16 32 

n 

Fig. 8. Average age of versions for readers. 

portant performance measures introduced were the 
effective parallelism, n *, and the number of dead- 
locks. 

To evaluate the obtained performance figures, we 
compared them to the corresponding ones of RX-, 
RAC- and OCC-protocols. A unified basis-the 
same reference strings and the same configuration 
and scheduling parameters-supported an accurate 
valuation of the algorithms. Further performance- 
relevant aspects such as references to and size of the 
version pool or the “antiquation” problem were also 
considered. 

The effective parallelism is essentially a relative 
throughput measure being good for the direct com- 
parison of candidates. It must be weighted with the 
complementary measure of transaction rollbacks 
caused by deadlocks/validation conflicts because they 
have a negative influence on the transaction’s re- 
sponse time (and may become an inconvenience for 
the user). The performance comparison based on our 
reference strings allows for the following safe conclu- 
sions: 

-MVC is clearly superior in most mixes neglecting 
the pathological TA-mix 1. 

-In cases of a very high percentage of writers 
(TA-mix l), MVC behaves nearly like the RX- 
protocol; 

-RX, RAC and FOCC-H are distinctly inferior in 
all cases; 

-FOCC-K is competitive in the TA-mixes 2, 4 and 
5 w.r.t n* values at the cost of high abort rates. 
MVC also produced the best overall results con- 
cerning deadlocks/validation conflicts; 

-The price to pay for the MVC (storage, anti- 
quation) is relatively low compared to the per- 
formance gain. 

The OCC-algorithms sometimes cause substan- 
tially more conflicts than MVC. Hence, they are too 
optimistic. On the other hand, the RX-scheme is too 
pessimistic and RAC-limited to two versions-does 
not allow the use of the full power of versions, 
obviously. Compared to that, MVC can apply all 
degrees of freedom introduced by the version idea. 

The appropriate selection of the CC-algorithms 
becomes more important with increasing concurrency 
(see Table 7). Since higher degrees of parallelism 
can be expected in future high-performance database 
systems, MVC seems to be a good candidate. With a 
growing share of reader transactions its performance 
gets (relatively) better because all readers are taken 
away from the resource competition. 

MVC does not offer an immediate solution for 
high-performance transaction systems [28] with high 
percentages of short writer transactions (DEBIT- 
CREDIT). Their high performance features mainly 
rely on special synchronization mechanisms for high 
traffic data elements [29,30], asynchronous I/O and 
special log protocols. However, it would permit the 
conflict-free scheduling of long readers in parallel. 



Evaluation of a mull .iple version scheme 91 

Even in DB-sharing systems [31], the use of MVC 
may be advantageous (assuming a clever imple- 
mentation) because old versions are read-only and 
cannot be invalidated. But its implications in such 
systems must be investigated, yet. 

The version concept is not suitable for syn- 
chronizing hot spots or high traffic data. In these 
cases, efficient protocols should be designed to cir- 
cumvent the problem, or better, they should be 
removed by proper database design. 

MVC is no remedy for long writers. Their mini- 
mum conflict serialization is hard for every CC- 
algorithm. Therefore, such transactions should be 
avoided by appropriate application design. 

MVC requires a certain storage overhead. In the 
sketched implementation with an external version 
pool, a small percentage of external version refer- 
ences (N 0.5-2.5) is necessary which, nevertheless, 
may cause performance problems. But in future 
database systems, storage may be sacrificed for ob- 
taining higher degrees of parallelism. Hence, the 
MVC-approach becomes more and more realistic 
with larger memory sizes where the version pool may 
be entirely integrated in the system buffer making 
version references and garbage collection to main 
memory operations. To reduce memory space ver- 

sioning may be based on record entries instead of 
pages. Such an approach, of course, requires efficient 
implementation techniques separating the logging 
from the version concept. With NOSTEAL buffer 
management, UNDO-information becomes super- 
fluous. Page commitment at EOT just generates a 
new version in the buffer (NOFORCE); the necessary 
REDO-information should be collected on an entry 
(not page) basis and should be buffered to reduce 
logging I/O (group commit). 

A final problem is the reference of readers to 

REFERENCES u31 

[I] P. A. Bernstein and N. Goodman: Concurrency control 
in distributed database systems. Ass. Comput. Mach. 
Comput. Suru. 13 (2), 185-222 (1981). [241 

[2] P. Dadam: Synchronization in distributed databases: 
A survey. 1form. Spektrum 4, 175-184 (1981) (in 
German). 

I31 

[41 

K. P. Eswaran, J. N. Gray, R. A. Lorie, I. L. Traiger: 
The notions of consistency and predicate locks in a 
database system, Communs Ass. Comput. Mach. 19 [25] 
(ll), 624633 (1976). in database systems. Diploma thesis, Umverslty ot 
W. H. Kohler: A survey of techniques for syn- Kaiserslautern (1983) (in German). 
chronization and recovery in decentralized computer [26] E. Gerstner, Empricial investigations of optimistic con- 
systems. .4ss. Comput. Mach. Comput. Surv. 13, (2), currency control in database systems. Diploma thesis, 
149-184 (1981). University of Kaiserslautern (1983) (in German). 

antiquated versions. This is inherent to the MVC and [I91 
cannot be solved. But it may not be so significant in 
a practical environment. At any rate, it is no problem 
for readers running seconds or minutes. With a 

1201 

runtime of several hours the user should be aware 
that his view to the database is frozen to his BOT- [2I1 
time in order to avoid confusion on the user’s side. 
There is nothing wrong with this kind of inter- ,22l 
pretation, since consistent results are guaranteed. 

[5] R. Bayer, H. Heller, A. Reiser: Parallelism and recov- 
ery in database systems. Ass. Comput. Mach. Trans. 
Database Systems 5 (2), 130-156 (1980). 

161 R. Bayer, K. Elhardt, J. Heigert and A. Reiser, Dy- 
namic timestamp allocation for transactions in data- 

base systems. In Proc. 2nd Int. Symp. on Distributed 
Data Bases, pp. 9-20. Berlin (1982). 

[7] P. A. Bernstein and N. Goodman, Timestamp based 
algorithms for concurrency control in distributed data- 
base systems. In Proc. 6th Int. Co@ Very Lurge Data 
Bases, pp. 285-300. Montreal (1980). 

[8] W. K. Lin, J. Nolte, Basic timestamp, multiple version 
timestamp, and two-phase locking. In Proc. 9th Int. 
Cot~f: on VLDB, pp. 109-119. Florence (1983). 

(91 D. P. Reed, Naming and synchronization in a decen- 
tralized computer system. Ph.D. dissertation, Dept of 
Electrical Engineering, M.I.T., Cambrige, MA (1978). 

[lo]. R. E., Stearns, J. Rosenkrantz, Distributed database 
concurrency controls using before values. In Proc. 
ACM SIGMOD Conf.. pp. 7483 (1981). 

[I l] A. Chan, et ul. The Implementation of an integrated 
concurrency control and recovery scheme. In Proc. 
ACM SIGMOD Conf., pp. 184-191. Fl (1982). 

[12] H. T., Kung, J. T. Robinson, On optimistic methods 
for concurrency control. Ass. Comput. Mach. Trans. 
Database Systems 6 (2), 213-226 (1981). 

[13] T. HPrder, Observations on optimistic concurrency 
control schemes. Inform. Systems 9 (2), 11 l-120 (1984). 

[14] G. Schlageter, Optimistic methods for concurrency 
control in distributed database systems. In Proc. 
VLDB, pp. 125-130. Cannes (1981). 

[15] R. Unland, U. Praedel, G. Schlageter, Design alter- 
natives for optimistic concurrency control schemes. 
In Proc. 2nd Int. Conf. on Databases, QQ. 288-297. 
Churchill College, Cambridge (1983). _ _ 

1161 M. Carev. Modeling and evaluation of database con- . 1 

currency- control algorithms, UCB/ERL 83/56. PhD 
dissertation, University of Berkeley, CA (1983). 

[17] W. Kiessling, G. Landherr, A quantitative comparison 
of lockprotocols for centralized databases. In Proc. 9th 
Inr. Conf on VLDB. pp. 12&131. Florence (1983). 

[18] D. R. Ries. M. Stonebraker, Effects of locking 
granularity in a database management system. Ass. 
Comput. Mach. Trans. Database Systems 2 (3). 233-246 
(1977). 
D. RI Ries and M. Stonebraker, Locking granularity 
revisited. In ACM Trans. on Database Svstems 4 (2), 
21&227 (1979). 
P. Peinl, A. Reuter, Empirical comparison of database 
concurrency control schemes, In Proc. 9th Inf. Conf. on 
VLDB, pp. 97-108. Florence (1983). 
T. Hlrder, P. Peinl, A. Reuter, Performance analysis of 
synchronization and recovery schemes. IEEE Database 
Engng 8 (2), 50-57 (1985). 
E. Petry. Simulation and analysis of an implicit version 
concept for database systems. Diploma thesis, Univer- 
sity of Kaiserslautern (1984) (in German). 
D. A. Menasce, T. Nakanishi, Optimistic vs. pessi- 
mistic concurrency control mechanisms in database 
management systems. Inform. Systems 7, (I), 13-27 
(1982). 
J. N. Gray, R. A. Lorie, G. R. Putzolu and 
I. L. Traiger, Granularity of locks and degrees of 
consistency in a shared database. In Modeling in 
Dutabase Management Systems (Edited by G. M. 
Nijssen) pp. 365-394. Elsevier North-Holland, New 
York (1976). 
I. Arifin, Empirical investigations of locking proctocols 



98 THEO HXRDER and ERWIN PETRY 

[27] T. Harder, A. Reuter, Principles of transaction oriented 
database recovery. Ass. Comput. Mach. Comput. Surv. 
15 (4), 287-317 (1983). 

[28] J. Gray et al., One thousand transactions per second. 
In Proc. IEEE Spring Computer Conf., pp. 96-101, San 
Francisco, CA (1985). 

[30] Reuter, A.: Concurrency on High-Traffic Data ele- 
ments. In Proc. Conf. on Principles of Database Sys- 
tems, pp. 83-93. Los Angeles, CA, (1982). 

[31] K. Shoens et al., The AMOEBA project. In Proc. IEEE 
Spring Comput. Conz, pp. 102-105. San Francisco, CA 
(1985). 

(291 D. Gawlick, Processing “hot spots” in high perfor- [32] UDS, Universal Data Base Management Systems 
mance systems. In IEEE Spring Computer Conf., pp. UDS-V4 Reference manual package, Siemens AG, 
249257, San Francisco, CA (1985). Munich (1983). 


