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Abstract-This paper presents a thorough investigation of all relevant properties of a multiple version 
scheme for concurrency control. It offers conflict-free scheduling for reader transactions thereby generally 
reducing resource contention. By using a trace-driven simulation model we explored the effective 
parallelism achievable in multi-user database systems and the number of occurring deadlocks as a 
complementary measure. The workload was represented by six reai-life object reference strings of different 
applications running on databases which vary in size between 60 MB and 2.9 GB. To compare and valuate 
the outcome of our experiments we used known results for RX-, MC- and optimistic s~~hron~~t~on 
protocols derived under the same conditions. Furthermore, version-dependent criteria and their influence 
on general database performance were considered. The results obtained underline the value of the multiple 
version concept for concurrency control; many criteria vote for its use in future database systems with 
highly concurrent transactions. 

1. INTRODU~ION 

During the recent years quite a variety of concurrency 
control methods was proposed in literature [IA]. 
While locking with two-phase RX-protocols was the 
synchronization method IO yr ago, we have now the 
selection of a broad range of algorithms based on 
extended locking pro&cots [5,6], timestamps [7,8), 
versions [9-l I], the optimistic idea [22-151 and their 
combinations [l] when an appropriate DBMS con- 
currency control (CC) has to be designed. Although 
probably more than 100 CC-algorithms can be com- 
posed by skilfully combining the known ideas, there 
is very little information available on their per- 
formance, even for the main concepts. Performance 
evaluation and comparison, however, are prerequi- 
sites for a thorough design decision. 

After more than 5 yr of learning we are convinced 
by our experience that we will not come to a quick 
conclusion on all methods, system structures and 
applications. Why are evafuation and comparison of 
CC-methods so difficult? This is essentially due to the 
following: 

--There are numerous parameters to consider, 
mainly concerning arrival time, parallelism, appli- 
cation and database characteristics. 

-.Analytic modeling does not seem to be reliable and 
accurate because of numerous simplifications to 
keep the formulae tractable. 

-Simulation models driven by synthetic workloads 
usua3y do not capture all essentia1 database and 

application parameters, e.g. size and reference pat- 
tern of the database including hot spots, etc. 

-There are no accepted measures for comparison; 
is, for example, an increase of paraftdism or a 
decrease of deadlock frequency more important? 

Of course, some preliminary studies and rest&s on 
some CC-methods are already known [16-193. HOW- 

ever, these results are not conclusive (and hard to 
compare) in various ways. There is no unanimous 
recommendation of a CC-algorithm neither within 
the framework of an experimental study nor amoag 
the various investigations. 

To determine the performance of CC-algorithms, 
we soon abandoned the idea of pure analytic mud- 
eiing and also simulation based on random numbers 
We refined our models to use tray-driven simulation. 
The workfoad was modefled by traces of object 
references collected during the execution of trans- 
actions on a real DBMS. A sample of different object 
reference strings served for an accurate description of 
a wide spectrum of applications during simulation. 
With this broader basis, we hope to derive more 
precise and mcue reliable results. Some aspects of our 
quantitative analysis are reported in [20,21]. 

Here we want to investigate the application of 
implicit versions [I 11 to enhance concurrency in cen- 
tralized multi-user DBMS. After outlining the idea of 
version use for CC, we mainly concentrate on its 
performance evaluation by describing our simulation 
en~ronment, performance criteria and results. To 

83 



84 Tmso HKIUXR and ERWIN PETRY 

compare its benefits we refer to results gained for 
other CC-methods [20]. 

2. CONCURRENCY CONTROL USING VERSIONS 

Versions are used in databases in various ways and 
with different meaning e.g. for time mapping (tem- 
poral or CAD databases) or for synchronization. In 
temporal databases, versions of an object are explic- 
itly made visible to the user to refer to specific points 
or intervals in time. An implicit versioning concept is 
employed to reduce contention during parallel data- 
base access and to enhance concurrency, thereby 
hiding the notion of versions at the user interface. Of 
course, the use of a combination of both concepts is 
also conceivable. 

Here we are, however, only interested in the evalu- 
ation of the implicit versioning concept and its poten- 
tial gain for the performance of concurrency control. 
Therefore, our method does not reflect the permanent 
storage and the temporal access of versions. We 
rather apply temporary versions being discarded 
when no transaction is accessing them any more. 

2.1. CC with two versions 

A scheme using up to two versions of an object was 
proposed in [S]. This so-called RAC-scheme allows 
several transactions to read an object while a writer 
transaction creates a new version of that object. As 
soon as the new version is committed, it can be 
referenced by (new) transactions. Transactions hav- 
ing read the old version must see this version during 
their lifetime prohibiting the creation of the next 
version by a waiting writer. Therefore, long readers 
can delay a writer for a long time in a two-version 
scheme. 

To eliminate such read-write conflicts, the version 
concept can be enhanced to exploit multiple old 
versions of a data object [ 1 I]. Here we only sketch the 
main idea of the algorithm, before we focus on its 
evaluation. 

2.2. CC with multiple implicit versions 

We need a strict separation of readers and writers; 
the type of a transaction must be declared at begin of 
transaction (BOT). A transaction is a reader if it only 
issues read operations and a writer if it references 
(among possible read operations) at least one object 
of the database with the intention to change it. 

Reader transactions. On any demand, a reader q 
always gets that version of the referenced object 
having been the current one at BOT( Z’i). q needs not 
issue any synchronization request and no syn- 
chronization measure is applied to the referenced 
object. The multiple version concept guarantees that 
readers always see the consistent state of the database 
at their BOT. The consequence is that readers always 
can be served immediately, are never involved in 
deadlock situations and hence can always terminate 
correctly. 

Writer transactions. A writer competes in all its 
read and update operations for the latest versions of 
database objects with all concurrent writers. There- 
fore, writers must be synchronized. This demand may 
be achieved by any known CC-method. However, 
optimistic methods do not seem to be favorable 
because of a relatively high risk of conflicts, resulting 
from the fact that all transactions involved are up- 
dating the database. Hence, it seems adequate to use 
the conventional two-phase RX-protocol among 
writer transactions. While changing an object A from 
version A, to Ai+,, a writer is working on a copy of 
A, thereby keeping the current version A, available for 
readers. 

The parahelism of the version scheme is illustrated 
in Fig. 1. Because readers always see the DB-state 
which was current at their start, they can be serialized 
at their BOT. Writers are assigned to the serialization 
order at EOT as usual. Therefore, the resulting 
serialization order of the schedule in Fig. 1 is T2, Tl, 
T4, T3, T5, that is, T2, for example, must not see the 
modifications of Tl because of 
BOT(T2) < EOT(T1). 

R(Ai) x(A~-A~+,) 

T1 (writer) b x i 

Ref(Ai) RefCAi) 

T2 hader) k 
..I) 

T3 (writer) 1 
X(Ai) delayed X(A'+l"Ai+Z) ___-*__-___ 

T4hzdff) 
Ref (Ai+, 1 

- '** 

Ref(Ai+2) 
T5 keader) [ =: . . . 

latest version 
Ai Ai+ A. 

? vr 79 
)t 

time of T2 TlT4 T3 T5 
serialization 

Fig. 1. Concurrent reader (Ret) and writer (R, X) references to different versions of object A and their 
serialization order. 
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It is obvious that fewer confhcts are provoked 
when only writers and no readers must be syn- 
chronized. This potential gain can be utilized in 
various ways: 

-The reduction of conflicts for the same throughput 
compared to RX-protocols is used to greatly im- 
prove response time. 

-The parallelism can be further increased to 
maximize throughput without aiming at minimal 
response times. More readers cost only the over- 
head of a higher multi-programming level, but they 
imply no additional locking conflicts. 

--Deadlocks are expected to be more rare events as 
long as the writer parallelism is less than that of a 
conventional RX-scheme. 

Certainly, a definite disadvantage can also be ob- 
served from Fig. 1. Transaction T2 gets a picture of 
the database which becomes more and more obsolete 
relative to the latest version of an object (A, instead 
of .4+2). This phenomenon of out-of-date object 
references seems to be a principal disadvantage and 
may cause some problems ~~culia~ties) with long 
reader transactions. 

3. IMPLEME~ATION OF A MULTIPLE 
VERSION SCHEME 

To be able to always give to readers any object 
having been in the database at their BOT, we must 
keep in some way the then actual state of the 
database. Because writers may produce new versions 
of the same object while other readers are still active, 
the system has to manage potentially many versions 
of the same object. 

Typically, object versions are kept at the page level. 
As illustrated in Fig. 2, a viable implementation may 
be sketched as follows: 

-The latest versions are stored in the database. 
-The older (temporary) versions are kept in a ver- 

sion pool. 
-Versions are chained in reverse chronological 

order. They contain identifiers and time-stamps of 
their creating transactions to direct readers always 
to the database state at their BOT. 

database of 
latest version5 

T5 -) 
%+2 

-Pages of the database and of the version pool 
may be fetched into the system buffer for efficient 
reference. 

Each page is marked with a time-stamp indicating 
EOT-time of the creating transaction. Since the pages 
(versions) of an object A are chained according to 
their temporal commit sequence, object access is at 
least conceptually easy. A writer transaction T’, al- 
ways gets the top page (latest version in the data- 
base); page updates are prepared in a private buffer 
before they replace the current versions in the data- 
base during EOT-processing. Successful commit im- 
plies pushing the replaced pages of c (at least 
logically) to the version pool in an atomic manner. Of 
course, there are protocols to achieve this kind of 
time-critical page propagation to the system buffer 
for performance reasons; their actual replacement 
and transfer to the version pool may then be decided 
by some replacement algorithm when room for new 
pages has to be prepared. 

A reader transaction Tj gets automatically the 
youngest version of A older than BOT(Tj) for all its 
references. Conceptually, starting at the latest version 
of A (top) the chain of versions has to be searched to 
find the appropriate version of A. A real imple- 
mentation may either provide sequential search or 
accelerate its location by an index or hash mech- 
anism. BOT of the oldest reader To determines the 
time range within which all versions of all objects 
have to be stored. Although many versions younger 
than BOT( 7’0) may presently not be referenced, they 
have to be kept if there are active readers with a 
BOT-time in the range where the version was the 
current one, since some of these readers may request 
them later on. 

To speed up the access of versions, large system 
buffers are assumed to be very helpful. Principally, all 
versions may temporarily or permanently reside in 
the buffer thereby using the version pool only as a 
backup store. 

As soon as the oldest reader To commits, a number 
of versions can be freed. The next oldest reader Tno 

now limits with 
to be kept. 

its BOT(Tno) the range of 

version pool 

Ai 

Ai+l 

versions 

Fig. 2. Basic storage scheme for versions (references to versions of A: see Fig. I). 



86 Tnao HAanaa and ERWIN PETRY 

INTERFACE BETWEEN 

STRING CONVERTER AND SCHEDULER 

: PARALLELISM = N 

Fig. 3. Use of a string converter. 

Hence, a suitable implementation has to provide 
a number of quite complex algorithms. The most 
important task is the effective organization of the 
version pool: 

-To rapidly detemine the appropriate versions for 
readers; 

-To locate versions not referenced any more; 
-To perform fast garbage collection to regain space 

of outdated versions. 

Since the details of the implementation are not 
important for our concept evaluation, we will not 
further discuss them. The interested reader will find 
an efficient proposal for the organization of the 
version pool including recovery management in [l 11. 

4. SIMULATION METHOD 

The practical usefulness of any CC-algorithms is 
strongly dependent on its performance under realistic 
conditions which we intend to evaluate precisely. The 
kind of modeling has a far-reaching influence on the 
accuracy of results. Probabilistic models to represent 
the transaction load and the referenced data of the 
database are very imprecise in all DB-applications, 
because essential aspects like non-uniform trans- 
action reference patterns and object locality are typ- 
ically not well reflected. Therefore, important DB- 
phenomena like high traffic data elements and hot 
spots having stong impact on synchronization and 
throughput will not be observed during the simu- 
lation. With this expectation, however, the question 
concerning the practical value of the prediction re- 
sults must be raised. 

Trace-driven simulation guarantees a much higher 
degree of realism because it does not require any 
idealization or assumptions necessary when the 
DBMS and transaction behavior are expressed by 
random numbers. It permits precise modeling of the 
relevant DBMS components under realistic condi- 
tions, since transaction and data references are de- 
rived from real applications. Using such an approach, 
object reference strings incorporate the workload 
model consisting of transactions and additionally the 
reference model for the database. 

4.1. Object reference strings and their conversion 

The workload model driving the simulation is 
represented by object reference strings (ORS) which 
describe the history of object references (e.g. pages) 
of a DBMS application. For our purpose, the essen- 
tial contents of an ORS are 

-a BOT-record for each transaction describing its 
type and origin; 

-a LOGREF-record for every object reference con- 
taining type of a request, object identifier, etc.; 

-an UNFIX-record for every object release as a 
counterpart to a LOGREF-record; 

-an EOT-record for each transaction, whether 
successful or not. 

All records in the ORS are time-stamped; they are 
ordered in temporal sequence of the original event 
execution in the DBMS and allow for appropriate 
derivation of synchronization information, that is, 
lock requests and lock modes in case of locking for 
example. 

An ORS reflects the real load situation, e.g. num- 
ber of concurrent transactions and their scheduling, 
of an execution interval of the corresponding DBMS 
application. Hence, driving a sychronization sub- 
system with the very ORS in recording sequence 
would result in exactly one simulation run-a poor 
outcome of the modeling efforts. Therefore, the 
possibilities of simulation are greatly enhanced if an 
ORS can be transformed in a parameterized way to 
generate load situations of arbitrary levels of concur- 
rency. This is achieved by the string converter, as 
illustrated in Fig. 3. Upon initialization it can display 
the ORS with any number of transactions executing 
in parallel. The scheduler can activate new trans- 
actions (BOT) up to the declared level of parallelism. 
For active transactions, references may be requested 
according to scheduling decisions, wait situations, 
etc. They are delivered in their logical recording 
sequence within a transaction. An EOT-reference will 
usually cause the scheduler to request a new BOT- 
record after having performed all commit actions 
depending on the synchronization protocol. Trans- 
actions that have to be rolled back because of some 
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Fig. 4. Overview of the gross achitecture; static calling hierarchy. 

failure, e.g. deadlock, can be returned to the string 
converter to be restarted at a later point in time. To 
support greater flexibility in simulating synchroniz- 
ation protocols, the scheduler is also able to dynam- 
ically decrease the level of parallelism under difficult 
scheduling situations, e.g. repeated deadlock of a 
transaction. 

4.2. Functions and structure of the simulation system 

For investigating the performance of CC-schemes, 
we designed a simulation system in PL/I. Its gross 
architecture is shown in Fig. 4. The synchronization 
algorithm is explicitly coded and all important com- 
ponents are represented with their essential features. 
Simulating the implicit version scheme requires the 
following components: 
-Scheduler. It is the central component serving for 

system intialization, transaction activation and 
control, resource multiplexing and failure hand- 
ling. Scheduling of transaction requests is done in 
a round-robin-manner subject to delays of blocked 
transactions. They are reactivated by the scheduler 
as soon as the lock manager grants their lock 
request, or they are rolled back when a deadlock 
is encountered. 

-String converter. It is transforming an ORS and 
delivers the references according to the specified 
load model (as described above). 

-Lock manuger. It manages all requested locks in a 
lock table organized as a hash structure. It checks 
for deadlocks by using a cycle search in a wait-for 
graph. 

-Bufir manager. It controls the system buffer and 
manages the references to the database. Page re- 
placement considers locality of actual and old 
versions. 

-Version pool manager. It controls the version pool 
organized as a ring buffer and accesses the appro- 
priate versions for readers. Garbage collection is 
necessary to free occupied space not needed any 

more. In case of threatening pool overflow, space 
will be reclaimed by aborting the oldest reader 
transaction. 

-Statistics. A print module collects the events, 
computes various statistics and outputs readable 
lists with the results of a simulation run. Statistics 
are available on frequency and cause of dead- 
locks, blocking situations, number of restarts, etc. 
Furthermore, for each nominal parallelism the 
so-called effective parallelism roughly equrvalent 
to throughput is obtained. 

These modules implement a number of functions 
whose services can be requested by subroutine calls. 
The system structure of Fig. 4 can be easily accom- 
modated to the simulation of other types of syn- 
chronization protocols. 

Essential parameters initializing every simulation 
run are the following: 

-parallelism (n): describes the maximal number of 
concurrent transactions; 

-system buffer size; 
-LIMIT: maximal number of restarts of the 

same transaction (in case of deadlocks) before 
special scheduling measures are used to avoid 
cyclic restart; 

-synchronization dependent characteristics and, 
of course, the workload (ORS, transaction mixes 
(TA -mixes). 

4.3. Workload for the simulation 

Most important for the quality and significance of 
results is the workload of the simulation model. As 
explained in Section 1, our load model consists of 
reference strings of real DBMS applications. We 
selected a wide variety of ORS derived from applica- 
tions of the DBMS UDS [32], which cover a broad 
range of applications. Their general properties are 
summarized in Table 1. These overall properties do 
not characterize all aspects of the workload necessary 

Table 1. General characteristics of the object reference strings 

ORS 
Properties TA-mix 1 TA-mix 2 TA-mix 3 TA-mix 4 TA-mix 5 7’.4-mix 6 

Size of DB 60MB 60MB 150MB 2.9 GB 280 MB 560 MB 
Total no. of TAs 262 39 669 2014 860 2288 
Total no. of logical references 109216 79750 40751 57959 54465 9862 
Writers in % 94.6 12.8 46.0 13.2 33.5 45.6 
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Table 2. Classification scheme for transactions described by object 
reference strings 

TA-mix I TA-mix 2 

Type RS ws RS ws 

Tl l-50 0 l-50 0 
T2 51-100 0 51-100 0 
T3 > 101 0 > 101 0 
T4 6-70 14 6-70 14 
T5 71-110 14 71-I 10 14 
T6 > 111 5-100 0 0 

TA-mix 3 TA-mix 4 

Type RS ws RS ws 

Tl l-5 0 l-5 0 
T2 620 0 610 0 
T3 2 21 0 > 11 0 
T4 1-3 1 l-10 l-4 
T5 410 2-5 1 l-30 5-13 
T6 > 11 25 231 > 14 

TA-mix 5 TA-mix 6 

Type RS ws RS ws 

Tl l-5 0 l-5 0 
T2 610 0 26 0 
T3 > 11 0 0 0 
T4 l-20 l-9 l-5 l-2 
T5 21-30 10-14 6-10 3 
T6 231 2 15 ,I1 24 

to understand and interpret the behavior of the CC- 
algorithms. Therefore, we are going to describe our 
workload in greater detail. Since there is no com- 
monly accepted scheme available, an appropriate ad 
hoc classification of transaction types is formed re- 
garding the sizes of their read sets (RS) and write sets 
(WS). Depending on the RS-size we distinguish be- 
tween short, average and long readers (types Tl-T3) 
and vice versa between short, average and long 
writers considering the RS- and WS-sizes (types 
T4-T6). As an example, a transaction of TA-mix 1 
is of type T4 (short writer) if it issues between 6 and 
70 read references and between 1 and 4 references 
with the intention to modify. Table 2 shows our type 
classification for the six transaction mixes. With these 
specifications we obtain the type distribution of 
transactions and their frequencies as our most refined 
description of the workload (Table 3). Locality of 
reference is also an important issue for CC. To 
roughly characterize the potential locality of trans- 
action processing, the reference frequency of pages is 
illustrated in Table 4. As indicated by the reference 
frequency, a number of pages exhibit some kind of 

Table 3. Transaction toe distribution 

TA-mix 1 TA-mix 2 

Type #TA %TA %LOGREF #TA %TA %LOGREF 

Tl 0 0.0 0.0 0 
T2 4 1.5 11.4 13 
T3 10 3.8 14.7 21 
T4 170 64.9 4.1 3 
T5 74 28.2 59.5 2 
T6 4 1.5 10.2 0 

TA-mix 3 

Type # TA %TA %LOGREF # TA 

0.0 0.0 
33.3 57.8 
53.8 40.0 

7.7 0.1 
5.1 2.0 
0.0 0.0 

TA-mix 4 

% TA %LOGREF 

Tl 119 17.8 1.1 1295 64.3 11.6 
T2 153 22.9 19.0 311 15.4 7.9 
T3 89 13.3 53.4 142 7.0 50.6 
T4 188 28.1 15.6 57 2.8 3.6 
T5 65 9.7 6.2 101 5.1 1.6 
T6 55 8.2 18.7 108 5.4 18.7 

TA-mix 5 TA-mix 6 

Type # TA %TA %LOGREF # TA %TA %LOGREF 

Tl 225 26.3 3.4 903 29.5 17.8 
T2 303 35.2 6.3 341 14.9 17.8 
T3 43 5.0 41.6 0 0.0 0.0 
T4 160 18.6 14.5 763 33.3 26.9 
T5 54 6.3 10.3 100 4.4 9.5 
T6 74 8.6 23.9 181 7.9 28.0 

high traffic behavior. Of course, the frequency of 
reference is only an approximate indicator of locality, 
since the relative distance of rereferences is not 
regarded. On the other side, more accurate descrip- 
tion of locality would require another set of par- 
ameters making the workload characterization even 
more complex. Therefore, we confine ourselves with 
a very simple ad hoc characterization of locality 
revealing only the differences of the rereference 
behavior among the various TA-mixes. Here, a page 
is said to exhibit LOCALITY if it is referenced more 
than 8 times. 

Tables l-4 reveal substantial differences in all 
respects. The first two transaction mixes have been 
traced in a scientific database application with a large 
share of batch transactions; some transactions are 
very long, since they either have to check complex 
integrity constraints, or have to read large portions of 
the (relatively small) database. Both mixes show a 
high degree of locality (2 30% of pages). While 
TA-mix 1 contains a high percentage of short update 
transactions together with a few average and long 
readers, TA-mix 2 incorporates a very large fraction 

Table 4. Reference frequency of pages 

Ref. frequency 
of pages TA-mix 1 TA-mix 2 TA-mix 3 TA-mix 4 TA-mix 5 TA-mix 6 

1 264 337 838 3443 2573 906 
2-3 775 871 779 1947 1200 785 
48 1331 1727 631 1098 1132 347 
9-20 786 1802 277 393 485 69 

21-50 98 163 138 285 276 5 
51-200 55 30 134 255 Ill 11 
> 200 73 56 17 4 14 13 

Total no. of different 3382 4986 2814 7395 5791 2136 
referenced pages 

Locality 30% 41% 20% 12% 15% 5% 
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of average and long readers competing with a rela- 
tively small number of short and average writers. 

The four remaining transaction mixes originate 
from different interactive DB/DC-environments with 
mainly short transactions; in order to discriminate 
different transaction types we have changed the 
respective RS- and WS-sizes (see Table 2). TA-mixes 
3 and 5 run on a medium size database. TA -mix 3 has 
a substantial share of writers ( > 45%) and also a 
number of relatively long readers. TA-mix 5 contains 
a similar structure ( > 33% writers). Both mixes 
provide an average degree of locality and hide a great 
potential of mutual hindrances. 

TA-mixes 4 and 6 have been recorded on quite 
large databases with more than 2000 transactions in 
each string. While TA-mix 4 is composed of a small 
fraction of writers and many short readers, TA-mix 
6 consists of many extremely short transactions with 
a relatively high percentage of writers ( > 45%). Both 
exhibit very low locality. Because of size of database 
and structure of transactions it is assumed that both 
mixes are mainly conflict-free. 

5. PERFORMANCE OF CC-ALGORITHMS 

Using the described simulation system and the empir- 
ical reference data of various classes of applications, 
we want to learn as much as possible about the 
practical behavior of the multiple version concept 
(MVC) and about the conditions of its appropriate or 
unfavorable use. Therefore, our goal is its thorough 
performance evaluation. But what are the measures 
for CC-algorithms? 

5. I. Criteria for performance comparison 

There are different approaches to this problem in 
the literature-a synthetic response time parameter in 
[23], the number of blocking situations and the 
number of transactions in [ 171, etc. It is argued in [20] 
that these measures may be favorable for certain 
synchronization protocols, but unsuitable for others. 
Peinl and Reuter [20] propose a more general mea- 
sure which can be applied to any CC-method. Hence, 
we will follow their proposal--also for the sake of 
comparing their results with ours. 

The rationale of the quality measure is as follows: 

For each simulation run, the maximum number of 
parallel transactions, n, is specified. Although the 
scheduler tries to keep n transactions permanently 
running in parallel, the current number of active 
transactions, CP,, will often be lower caused by 
blocking situations. The CP,-values have to be deter- 
mined appropriately, e.g. in k equidistant obser- 
vations. Here, the current parallelism was measured 
after every logical reference actually executed 
(k = # LOGREFACT). Hence, the average paral- 
lelism is yielded by 

ii = i CPJk. 
i= I 

Since 7i contains the average number of active trans- 
actions, it reflects in some way the length of blocking 
situations. Due to rollback and re-execution of trans- 
actions, there are actually more ORS-references to 
execute in a simulation run ( # LOGREFACT) com- 
pared to the references in the original string 
(# LOGREFMIN). We obtain a relative increase of 
references 

q = # LOGREFACT/ # LOGREFMIN, 

which is independent of the size of the string. This 
repetition factor reflects the overhead of backups or 
work to be done twice for a given CC-method. 

Based on 6 and q(q > 1), a single measure is 
proposed in [20] for the effective parallelism: 

n* = A/q. 

Since a certain amount of the n transactions running 
in parallel is re-executing aborted transactions in- 
stead of doing useful work, this fact is taken into 
account by the calculation of n *. Hence, the effective 
parallelism n * can be used directly as a relative 
measure of transaction throughput. 

5.2. Empirical results of the MVC-protocol 

First, we present the results of the MVC-protocol 
which are derived under the following premises: 

-The executed schedules guarantee serializability of 
transactions. 

-A protocol equivalent to consistency level 3 is 
observed [24] (long R- and X-locks to warrant the 
prevention of inconsistent analysis, lost update, 
etc.). 

Technical parameters of all simulation runs were 

-round-robin scheduling; 
-LRU-replacement in a system buffer of 256 pages 

(it turned out that variations of buffer size had very 
little impact on the results); 

-version pool size large enough to contain all 
version pages ( < 3000); 

-buffer management with STEAL and FORCE 
using (a simulation of) ATOMIC propagation [27]; 

-LIMIT = 3; 
-the ORS using TA-mixes 16; 
-the maximum parallelism n, which was evaluated 

in the range 2-32. 

These premises and parameters were also necessary 
for the intended comparability of the results. 

Table 5 displays the MVC-performance figures for 
our six transaction mixes. Let us now crudely inter- 
pret our first impression of the results. Without 
doubt, TA-mix 2 delivers the best results. This is due 
to the large fraction of readers and a small number 
of short and average writers. MVC seems to be 
tailored to this combination of workload. In contrast 
to that it is very susceptible to high update rates with 
strong hindrances. As shown with TA-mix 1, MVC 



90 THEO H&RDEX and ERWIN PETRY 

Table 5. Performance figures of the MVC-protocol 

TA-mix 1 TA -mix 2 
-.__- 

n A 4 n* A 4 n* 

2 1.90 1.01 1.89 2.00 1 .oo 2.00 
4 3.30 1.21 2.12 4.00 4.00 
8 5.71 1.56 3.67 8.00 

t :: 
8.00 

16 9.64 1.86 5.19 16.00 1.00 16.00 
32 18.98 1.95 9.15 - - - 

TA-mix 3 TA-mix 4 

n ti 4 n* A Q I!* 

2 I .99 1 .oo 1.99 2.00 1 .oo 2.00 
4 3.92 1 .oo 3.92 3.98 1.00 3.98 
8 1.59 1.00 7.59 7.84 1.00 7.81 

16 14.91 1.03 14.50 14.50 1.02 14.15 
32 27.65 1.02 27.04 21.03 1.06 19.92 

TA-mix 5 TA-mix 6 

n A 4 n’ ri 4 n* 

2 1.99 1 .oo 1.99 2.00 1.01 1.98 
4 3.79 1.01 3.74 3.95 1.02 3.89 
8 6.21 1.04 5.99 7.64 1.05 7.21 

16 9.20 1.05 8.74 13.94 1.15 12.17 
32 14.54 1.09 13.38 24.66 1.27 19.47 

cannot do much with such mixes. The low values for 
R at higher degrees of paralle~sm (5 N n/2) are actu- 
ally lowered for n* by a factor of -2 due to 
re-processing. It is expected that also other algo- 
rithms do not like this kind of workload and that the 
obtained results will be close to those of RX- 
protocols. Surprisingly well does TA-mix 3, although 
it contains 46% writers. An explanation can be found 
in the share of references. The relatively long readers 
performing about 75% of the references do not hurt, 
and the writers with the remaining share of references 
must be short and only weakly overlapping. TA- 
mixes 4 and 5 also obtain a very low q. The moderate 
nL and if* values at high degrees of parallelism (32) 
must be provoked by writer conflicts and blocking 
situations (not leading to deadlocks), e.g. due to high 
traffic data elements. TA-mix 5 has a larger fraction 
of writers which are responsible for the low effective 
parallelism (n* = 13.38 for n = 32). Even with ex- 
tremely short writers, TA-mix 6 does not so well as 
expected (at least for n = 32). With increasing paral- 
lelism, fi shrinks and q grows more than proportional. 
This effect of increased blocking and re-processing is 
clearly revealed by the quotient n*/n which has the 

values 0.91 and 0.61 for n = 8 and n = 32. It is 
obvious that our hypothesis drawn from the static 
workload characterisation in 4.3 expecting conflict- 
free workloads for XA-mixes 4 and 6 does not hold. 
Dynamic synchronization and their interpretation is 
much more difficult. 

5.3. Analysis of deadlocks 

MVC uses locks for writers and, hence, is a pessi- 
mistic approach. We distinguish two sources of dead- 
locks: 

-R- and X-requests of different transactions cause 
a cyclic wait situation (CW) blocking all partici- 
pating transactions permanently. 

-Lock conversion is also an important issue. Often, 
simulations of locking protocols tacitly assume 
that all objects are either referenced in R- or in 
X-mode. In real systems, however, as pointed out 
by our ORS, access to an object is very frequently 
performed by issuing a read-reference first and 
then converting it to an update reference later on. 
Such lock conversions (LC) may result in a dead- 
lock, too, as explained by PO] in detail. Running 
level 2 consistency, some of these deadlocks will he 
avoided, however, by risking “inconsistent anal- 
ysis” or similar phenomena for the concerned 
transactions. 

Table 6 gives a summary of the number of dead- 
locks occurred where their causes+yclic wait and 
lock conversion-are separately considered. Dead- 
lock resolution was achieved by rolling back the 
transaction causing the situation. When the LIMIT 
was reached for a particular transaction, the sched- 
uler tried to avoid further rollback of this contlict 
transaction. It was achieved by temporally lowering 
the actual concurrency by retaining new transactions 
until the conflict transaction has finished. Some ex- 
periments in [25] used other cost measures like num- 
ber of locks held for selecting a rollback victim. The 
results obtained were very similar to the presented 
ones. As a side remark, LIMIT = 2 generally pro- 
duced a slightly diminished deadlock rate because 
then the protocol lowered the concurrency more 

Table 6. Rollback freuuencies 

TA-mix I TA-mix 2 TA-mix 3 
n CW LC XD CW LC ED CW LC ZD 

2 7 
I: 

7 0 0 0 0 0 0 
4 22 22 0 0 0 1 1 
8 110 8 118 0 0 

: 
1 0 1 

16 214 3-f 251 3 1 4 
32 339 58 397 ” ” ” 7 6 13 

TA-mix 4 TA-mix 5 TA-mix 6 
n ct+’ LC T;D CW LC XD CW LC ZD 

2 0 0 0 0 0 0 0 7 1 
4 0 0 4 3 I 2 14 16 
8 2 

I: 
2 II 13 24 16 42 58 

16 17 4 21 21 56 77 60 115 175 
32 57 15 72 43 81 124 57 227 284 



frequently but resulting in a reduced effective paral- 
lelism. 

It can be stated that the deadlock frequency grows 
with the degree of parallelism-as expected. In most 
mixes the growth seems to be linear. However, the 
ideal TA-mix 2 is deadlock-free. Except for the 
pathological TA-mix 1, MVC gets com~ratively 
small or moderate deadlock rates computed as the 
number of deadlocks related to the number of 
transactions to be executed, n = 32(16) yields the 
following: 

7% -mix 2 1 TA -mix 3 1 TA -mix 4 

This kind of characterization reveals that in the 
TA -mixes 3-6 between 2 and 14% of the transactions 
had to be reprocessed whereas TA -mix 1 provoked a 
rollback of more than 150%. This means that each 
transaction had 2.5 processing attempts in the aver- 
age. 

Our discussion so far commented the results of 
MVC for themselves and did not focus an the 
selection decision for a CC-algorithm. Apart from 
special cases (the ideal ?“A-mix 2), we do not know 
how good MVC really is. To valuate MVC we must 
figure out how well other algorithms behave with 
critical workloads. Throughput characterized by pure 
factors for e&ctive paraliel~sm and deadlock fre- 
quency is not very helpful for the valuation of a 
CC-method, but in comparison with a number of 
candidate CC-methods is ~~t~~ularly useful for se- 
lecting the appropriate syncbroni~tion protocol. The 
increase of transaction throughput per time unit or, 
in our case, the relative gain of n * and the differewe 
in the deadlock rate compared to other algorithms 
serve as illustrative factors to estimate the quality of 
CC-methods. Therefore, we refer to known results of 
three synchroni~tion protocols [ZO] to compare and 
interpret our own results. IIence, we quote the 

-RX-protocol [24] as a one-version scheme (only 
latest object state for ~~d~rs/~ters); 

-RAC-protocoi [5] as a two-version scheme (latest 
object state and up to one next older state for 
readers); 

-0CGmethod [ 131 {latest object state for readers/ 
writers and, in a sense, up to m private copies for 
writers where only one of them can be serialized); 
hence, it is some sort of a two-version scheme. 

Our MVC”protoco1 is a n-version scheme {rr arbi- 
trary) providing the latest object state for readers/ 
writers and up to n-l old versions for readers. 

As for MVC, deadlock resolution is done for RX 
and RAC by rolling back the transaction causing the 
deadlock and by lowering the degree of concurrency 
as soon 8s a transaction reaches the LIMIT. 

OCC offers mom parameters to observe. In order 

to get a well-tuned method, a number of in- 
vestigations were ~rformed analyzing backward ori- 
ented (BOCC) and fo~ard-oriented OCC (FOCC). 
According to our empirical studies [ZO, 261 it is safe 
to say that BOCC having less tuning facilities delivers 
worse results than FOCC. Hence, we concentrate our 
efforts on FOCC for the synoptical comparison. 

Validation conflicts in CCC correspond to dead- 
locks in locking schemes. Whereas BOCC does not 
alfow any freedom, confiici resomtion in FOCC 
suggests various possibilities: 

Pure ABORT. A validating transaction is aborted 
when a conflict is detected. An immediate restart 
often caused problems similar to livelacks. Even 
delayed restarts could sometimes not prevent thrash- 
ing situations. This conflict resolution method hides 
the danger of cyclic restarts that execution may never 
end. Thus, it is not very useful. 

Pure K&5. A validation conilict is resolved in 
favor of the committing transaction by rolling back 
all conflicting transactions (KILL). It tends to pro- 
duce high rollback rates for long transactions, but it 
will finally end, because the validating transaction 
always wins. 

~~~r~~ seherne. A transition is aborted up to 
LIMIT times, then it is marked golden. For commit- 
ting a golden transaction, KILL is used. As a sup 
porting scheduling measure, the degree of parallelism 
is lowered by blocking all but one golden transaction 
to guarantee the rollback LIMIT for golden trans- 
actions. 

We select the results of pure KILL and of the 
hybrid scheme-referenced as FOCC-K and FOCC- 
II-for our synopti~ai comparison For com- 
pleteness, the figures of the five protocols for PZ* and 
EL) (number of deadi~k$~rollba~ks~ are summarized 
in Tables 7 and 8. For convenience, we refer to a 
graphical synopsis, as shown in Fig. 5. 

TA-mix 1 offers a tough nut for all locking algo- 
rithms, OCC was applied as the FOCC-variant using 
a KILL-strategy which assures that a transaction will 
survive once it has entered its validation phase. Since 
no blocking situations occur, it is always Z = n. Due 
to validation conflicts transactions have to be rolled 
back. With FOCC, these are only in-progress trans- 
actions. We do not definitely know whether or not 
such transa~~ons have processed many references 
before abort. At a low degree of pamlielism a 
conflicting transaction may run comparatively Long 
before it will be finally aborted, whereas the proba- 
bility grows with higher parallelism that it ,will be 
killed sooner. Since OCC always runs with 18 (max. 
concurrency), the highest abort rate can be expected. 
Our factor 4 does not fully express this fact because 
it does not describe the amount of lost work per 
aborted transaction. Here we got n * = 10 for n = 16 
implying q = t.6. For this difficult mix, OCC suc- 
seeded with a better result despite the high share of 
short writers, It is obvious that special measures have 
to be taken for long readers to avoid cyclic restart, 
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Table 7. Synopsis of performance figures for n* 

mix TA-mix I TA-mix 2 
___l--.. 

n RX RAC FOCC-H FOCC-K MVC RX RAC FOCC-H FOCC-K MVC 

2 1.68 1.57 1.54 1.50 1.89 2.00 2.00 2.00 2.00 2.00 
4 2.46 2.16 2.24 2.62 2.72 3.98 4.00 3.95 3.95 4.00 

1: 3.62 5.92 2.91 4.97 4.72 3.80 10.59 6.01 3.67 5.19 14.18 7.90 15.62 1.97 13.65 7.27 15.18 7.92 16.00 8.00 

32 10.05 6.18 6.89 16.32 9.75 - - - - - 

mix TA-mix 3 TA-mix 4 

n RX RAC FOCC-H FOCC-K MVC RX RAC FOCC-H FOCC-K MVC 

2 1.94 1.99 1.87 1.85 1.99 2.00 2.00 I .96 1.97 2.00 
4 3.56 3.71 3.73 3.54 3.92 3.77 3.84 3.45 3.32 3.98 
8 5.93 6.68 6.48 6.67 7.59 6.33 6.75 5.25 6.45 7.81 

16 8.13 9.93 9.62 10.91 14.50 8.40 8.79 7.51 12.13 14.15 
32 11.06 15.15 16.60 18.14 27.04 12.62 14.89 10.89 20.78 19.92 

mix TA-mix 5 TA-mix 6 
- __- 

?I RX RAC FOCC-H FOCC-K MVC RX RAC FOCC-H FOCC-K MVC 

2 1.94 1.97 1.83 1.66 1.99 1.97 1.97 1.89 1.93 1.98 
4 3.69 3.59 2.69 3.25 3.74 3.85 3.78 3.34 3.71 3.89 
8 5.62 5.69 3.86 5.75 5.99 6.99 7.04 5.44 6.66 7.21 

16 7.87 8.50 5.83 8.64 8.74 11.21 11.54 8.60 11.03 12.17 
32 10.71 11.84 9.84 14.78 13.38 18.28 18.29 14.40 15.35 19.47 

TA-mix 2 was ideal for MVC. In general, it should 
not be so easy for the competitor algorithms to cope 
with the very large fraction of average and long 
readers which is no problem with MVC because of 
the multipie versions. Their excellent results seem to 
point to delightful reference patterns which allow for 
low-conflict concurrency despite the presence of 
writers. The outcome of TA-mixes 3 and 4 demon- 
strates a clear advantage of MVC. As it should be 
expected, the ranking of the effective parallelism (n *) 
is determined by the degrees of freedom-from one 
version for RX to n versions for MVC. 

TA-mix 5 produces a comparably low concur- 
rency, slightly better than TA-mix 1. The superiority 
of OCC coincides also here with the poor effective 

parallelism of the remaining candidates, Maybe, 
these situations indicate that the sheer “trial and 
error”-approach of OCC wins even at the cost of 
excessive victim transactions to be re-processed 
whenever the other approaches limit their effective 
parallelism to a low value. The relatively high per- 
centage of writers in TA-mix 6 seem to be a handicap 
for OCC. As for the previous mix, MVC turns out to 
be clearly the best locking approach. 

It may be stated as a preliminary conclusion that 
MVC has done well for all mixes. Having a domi- 
nating share of readers, then such a scheduling 
capability could be expected. But surprisingly, it also 
delivers good values for mixes with a considerable 
fraction of writers (TA -mixes 3 and 6). 

Table 8. Synopsis of rollback frequencies 

mix TA-mix I TA-mix 2 

n Rx RAC FOCC-H FOCC-K MVC RX RAG FOCC-H FOCC-K MVC 

2 2 14 24 16 7 0 0 0 0 0 
4 25 76 75 51 22 0 0 I 1 0 

8 80 154 137 94 118 0 0 6 1 0 
16 175 220 31s 198 251 0 0 17 7 0 
32 220 206 514 436 397 - - - 

mix TA-mix 3 TA-mix 4 

n RX RAC FOCC-H FOCC-K MVC RX RAC FOCC-H FOCC-K MVC 

2 0 0 12 11 0 0 1 15 10 0 
4 16 2 73 28 1 1 1 82 32 0 
8 25 4 121 55 1 15 5 247 ill 2 

16 33 34 192 112 4 4.5 146 420 253 21 
32 56 78 267 245 13 122 126 518 424 72 

mix TA-mix 5 TA-mix 6 

” RX RAC FOCC-H FOCC-K MVC RX RAC FOCC-H FOCC-K MVC 

2 2 5 29 12 0 9 14 21 15 7 
4 2 25 113 34 7 15 44 87 41 16 
8 40 68 280 134 24 59 97 234 127 58 

16 85 176 385 307 77 143 227 400 345 175 
32 125 199 452 558 124 246 354 530 893 284 
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As a final argument, FWC-K must be observed 
with caution. To underline its negative image as a 
scheduling strategy tending to thrashing situations, 
we list the maximum numbers of restarts of a trans- 
action in the various mixes: 

TA*mix 1 T.4 -mix 3 TA -mix 4 TA-mix 6 
.-l____ 

20 1 13 i 16 41 

5. FURTHER ASPECYS OF MVC 

The advantages of MVC are exclusively based on 
the version pool use. To evaluate its overhead, it is 
therefore necessary to investigate various aspects of 
the version pool. 

6. I. Version pool size 

For each object, a chain of versions must be stored 
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covering the interval of the current point in time to 
BOT(TO) (oidest active reader). In Table 9, we have 
listed two measures of version pool occupancy: 

-the maximum number of pages used for versions 
during the simulation; 

-the average pool occupancy for versions. 

The number of versions grows strongly when many 
writers coincide with long readers, as demonstrated 
with TX-mixes 1 and 4 . Either writers or long 
readers atone cause only small version pool sizes 
(see TA-mixes 2 and 6). The increase of the version 
pool is also influenced by n. After a fast growth 
with smaller values of n it seems to reach a cer- 
tain saturation for high degrees of parahelism. The 
average number of versions is often less than half 
the maximum. 
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Table 9. Maximum and average number of versions in the version 
nnnl 

TA-mix 1 TA -mix 2 TA -mix 3 

n max av. max. a”. ma* a”. 

2 502 41.6 8 0.87 47 11.9 
4 870 160.4 9 4.37 135 YJ.8 
8 827 159.2 16 11.22 285 134.2 

989 259.2 25 17.56 707 360.2 
1057 444.0 - - 833 468.8 

TA-mix 4 TA-mix 5 TA-mix 6 

n max av. max a”. max av. 

2 280 45.6 207 53.7 73 2.21 
4 615 200.1 422 its.0 73 5.44 
8 1183 539.0 78.5 276.6 73 17.48 

16 2252 1256.9 1244 4iO.P 94 35.26 
32 2589 1461.9 1122 411.2 137 48.37 

As already mentioned, a ring buffer imple- 
mentation is preferable for the version pool. Then, 
the maximum number of pages needed can be easily 
controlled by transaction aborts. 

6.2. References to the version pool 

Readers obtain part of their pages from the version 
pool. To estimate the impact of version pool refer- 
ences on the overall performance, it is necessary to 
investigate the frequency of such events since each 
reference may involve several physical I/O to the 
version pool. 

The percentage of pages fetched from the version 
pool is plotted in Fig. 6. As expected, it enhances with 
increasing parallelism, but it seems to saturate at a 
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n 

Fig. 6. Percentage of references satisfied by the version pool. 

certain n. Average values are OS-2.5% for TA -mixes 
4-6. This rather small overhead augments the 
effective parallelism of MVC substantially compared 
to the RX-protocol (see Fig. 5). Merely TA -mix 3 
uses up to 7% version pool references. However, this 
amplified reference activity does also exptain its excel- 
lent scheduling results (cf. Fig. 5). On the other hand, 
the demand for version pool pages is low enough to 
be effectively optimized by special implementation 
techniques, for example, by using an extended system 
buffer or a main memory resident index to limit a 
version pool reference to one physical i/O. 

Now we have answered the question concerning the 
overhead of the version pool to be carried by the 
readers. Yet, the versions must be produced before, 
causing a certain effort for the writers. As already 
mentioned, the system buffer is managed under a 
ST~AL~FORCE-policy. FORCE as the critical attri- 
bute responsible for the overhead means the enforced 
propagation of all modified pages at EOT, that is, 
versions are written to the version pool before 
(STEAL) or not later than EOT [27). Hence, we get 
a considerable output overhead for update-intensive 
mixes, above all in case of short writers. The follow- 
ing output activity expressed as percentage of alf 
LOCREFs was observed: 

These costs, however, cannot be attributed to the 
version scheme. In any case, a modified page must 
also be rewitten in a version-free data base (update- 
in-place). On the other hand, the youngest version of 
an object saved in the version pool may be taken as 
its before-image serving as UNDO-information for 
transaction abort. Therefore, the version use in an 
integrated recovery scheme incorporates a substantial 
optimization potential compared to recovery meeh- 
anisms based on page logging for UNDO- 
info~ation. 

Again, with the availability of large system buffers 
a NOSTEA~/N~FORCE-policy can be applied 
which offers the advantage of relying only on REDO- 
information. Then, the entire version pool (or at least 
a considerable part of it) should be integrated in the 
system buffer avoiding all version-related I/O. In such 
a scheme, all versions are kept in main memory for 
their life time; disk storage may be neccessary only in 
overflow situations. 

The issues discussed so far involve more or less 
matters of resource use or access overhead. But an 
important problem has not yet been explored in 
detail. We have stated that MVC-~hedules are seri- 
alizable; nevertheless, the results of reader trans- 
actions exhibit essential differences compared to 
those of other protocols, since reader sometimes refer 
to (slightIy) antiquated versions. In a sense, up-to- 
date evaluation is sacrificed for performance. How 
serious is the problem in practical situations? 

The issue of antiquated versions is outlined by the 
transaction schedule in Fig. 7 which generates the 
serialization order Tr, Tl, 72, T3. Tfie view of Tr is 
fixed to the database state before EOT (Tl) where the 
then current versions A,, l3, and C, hold. Since (short) 
writers permanently change the state of the database, 
the reader’s view gets aider and older. The reader Tr 
refers under the MVC-protocol the versions .A,, &, 
and C,, no matter how long it runs. Note, Tr would 
have got the versions A,, B2 and C, under an Rx- 
protocol (with the serialization order 7’1, TZ, T3, 
Tr ja fact that should be considered carefully. 

In order to quantify the “antiquation” problem, we 
analyze age and frequency of version references. 
Most of the mixes have only a number of references 
of age 1 and a few of age 2. Only two mixes listed in 

transaction 
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Table IO. Number of versions referenced by readers ordered by their 

n TA-mix 3 

age 2 4 8 16 32 

0 28,257 27,830 27,296 26,980 26,530 
1 255 668 1057 1136 1244 
2 0 14 159 364 629 

: 0 0 0 0 0 0 32 0 73 36 

n TA-mix 5 

aze 2 4 8 16 32 

0 22,485 22,168 22,020 22,009 21,948 
1 78 133 171 137 175 
2 0 26 23 
3 ; 100 15 i; 24 
4 6 162 123 22 16 
5 0 7 215 110 39 
6 0 0 0 170 176 

0 0 0 81 162 
0 0 0 7 7 

Table 10 possess a well-marked reference behavior 
indicating the seriousness of the problem. References 
of age 0 are to the latest version whereas those of age 
k lead to antiquated versions whose current version 
is k modi~~ations ahead. The remarkable observation 
is the quite surprising age 8 of versions-certainly in 
rare cases--as proved by TA-mix 5. Despite such 
pathological exceptions, the lion’s share of reader 
references is directed to the latest version. Therefore, 
the “average” age of a version requested by a reader 
is very low, as illustrated in Fig. 8. For example an 
average age of 0.1 indicates that on 10 references a 
reader gets one version of age 1 besides 9 current 
versions. 

7. CONCLUSIONS 

In this paper, we have tried to investigate all 
relevant properties of a multiple version scheme for 
concurrency control. Prime importance was put on its 
performance evaluation in a realistic environment. 
For this task, we designed a trace-driven simulation 
program and used real-life object reference strings 
from sizeable databases rather than database refer- 
ences generated by random numbers. The most im- 

TA - mix 1~0 ,TA- mix 2=O 

/TA-mix 5 
TA-mix 3 

TA-mix 4 
TA-mtx 6 

24 8 16 32 

n 

Fig. 8. Average age of versions for readers. 

portant performance measures introduced were the 
effective parallelism, n *, and the number of dead- 
locks. 

To evaluate the obtained performance figures, we 
compared them to the corresponding ones of RX-, 
RAC- and OCC-protocols. A unified basis-the 
same reference strings and the same configuration 
and scheduling parameters-supported an accurate 
valuation of the algorithms. Further performance- 
relevant aspects such as references to and size of the 
version pool or the “antiquation” problem were also 
considered. 

The effective parallelism is essentially a relative 
throughput measure being good for the direct com- 
parison of candidates. It must be weighted with the 
complementary measure of transaction rollbacks 
caused by deadlocks/validation conflicts because they 
have a negative influence on the transaction’s re- 
sponse time (and may become an inconvenience for 
the user). The performance comparison based on our 
reference strings allows for the following safe conclu- 
sions: 

-MVC is clearly superior in most mixes neglecting 
the pathological TA-mix 1. 

-In cases of a very high percentage of writers 
(TA-mix l), MVC behaves nearly like the RX- 
protocol; 

-RX, RAC and FOCC-H are distinctly inferior in 
all cases; 

-FOCC-K is competitive in the TA-mixes 2, 4 and 
5 w.r.t n* values at the cost of high abort rates. 
MVC also produced the best overall results con- 
cerning deadlocks/validation conflicts; 

-The price to pay for the MVC (storage, anti- 
quation) is relatively low compared to the per- 
formance gain. 

The OCC-algorithms sometimes cause substan- 
tially more conflicts than MVC. Hence, they are too 
optimistic. On the other hand, the RX-scheme is too 
pessimistic and RAC-limited to two versions-does 
not allow the use of the full power of versions, 
obviously. Compared to that, MVC can apply all 
degrees of freedom introduced by the version idea. 

The appropriate selection of the CC-algorithms 
becomes more important with increasing concurrency 
(see Table 7). Since higher degrees of parallelism 
can be expected in future high-performance database 
systems, MVC seems to be a good candidate. With a 
growing share of reader transactions its performance 
gets (relatively) better because all readers are taken 
away from the resource competition. 

MVC does not offer an immediate solution for 
high-performance transaction systems [28] with high 
percentages of short writer transactions (DEBIT- 
CREDIT). Their high performance features mainly 
rely on special synchronization mechanisms for high 
traffic data elements [29,30], asynchronous I/O and 
special log protocols. However, it would permit the 
conflict-free scheduling of long readers in parallel. 



Evaluation of a mull .iple version scheme 91 

Even in DB-sharing systems [31], the use of MVC 
may be advantageous (assuming a clever imple- 
mentation) because old versions are read-only and 
cannot be invalidated. But its implications in such 
systems must be investigated, yet. 

The version concept is not suitable for syn- 
chronizing hot spots or high traffic data. In these 
cases, efficient protocols should be designed to cir- 
cumvent the problem, or better, they should be 
removed by proper database design. 

MVC is no remedy for long writers. Their mini- 
mum conflict serialization is hard for every CC- 
algorithm. Therefore, such transactions should be 
avoided by appropriate application design. 

MVC requires a certain storage overhead. In the 
sketched implementation with an external version 
pool, a small percentage of external version refer- 
ences (N 0.5-2.5) is necessary which, nevertheless, 
may cause performance problems. But in future 
database systems, storage may be sacrificed for ob- 
taining higher degrees of parallelism. Hence, the 
MVC-approach becomes more and more realistic 
with larger memory sizes where the version pool may 
be entirely integrated in the system buffer making 
version references and garbage collection to main 
memory operations. To reduce memory space ver- 

sioning may be based on record entries instead of 
pages. Such an approach, of course, requires efficient 
implementation techniques separating the logging 
from the version concept. With NOSTEAL buffer 
management, UNDO-information becomes super- 
fluous. Page commitment at EOT just generates a 
new version in the buffer (NOFORCE); the necessary 
REDO-information should be collected on an entry 
(not page) basis and should be buffered to reduce 
logging I/O (group commit). 

A final problem is the reference of readers to 
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