
Abstract

Complex objects to support non-standard database applications

require the use of substantial computing resources because their

powerful operations and their related integrity constraints must

be performed and maintained in an interactive environment. Since

the exploitation of parallelism within such operations seems to be

promising, we investigate the principal approaches for processing

a query on complex objects (molecules) in parallel. A number of

arguments favor methods based on inter-molecule parallelism as

against intra-molecule parallelism. Retrieval of molecules may be

optimized by multiple storage structures and access paths. Hence,

maintenance of such storage redundancy seems to be another good

application area to explore the use of parallelism. Deferred update

seems to be a bad idea, whereas concurrent update strategies

incorporate salient application features. For performance reasons,

we have chosen a multiprocessor system sharing an instruction

addressable common memory which is used for buffer

management, synchronization, and logging/ recovery. Activation of

concurrent requests is supported by a nested transaction concept

which allows a safe and effective execution control within parallel

actions of an operation.

1. Introduction

Non-standard database applications such as 3D-modeling for

workpieces or VLSI chip design [1] require adequate modeling

facilities for their application objects for various reasons. If the

object representation is adjusted to the needs of a particular

application area, the intended object handling (e.g. composition or

transformation of objects) may be performed in a natural and

smooth way, thereby saving a lot of ponderous deviation steps.

Data models supporting such applications embody some degree of

object orientation (towards the application objects). The notion of

complex objects is used to indicate that such objects have an

internal structure (structured components) maintained by the

database management system (DBMS) and that access is provided

to the object as a whole as well as to its components (structural

object orientation). To enhance integrity control and semantic

expressiveness, more object properties beyond the structural

relationships have to be specified and preserved by the data model

(behavioural object orientation). Such a rich data model supports

appropriate forms of data abstraction and encapsulation (e.g.

ADTs) which relieve the application from the burden of

maintaining intricate object representations and checking

complex integrity constraints.

On the other hand, DBMS requests using such a high-level object-

oriented DBMS interface (incorporated by a set of powerful ADTs)

imply very long execution path lengths since all aspects of complex

object handling have to be performed inside the DBMS. When

applying processing concepts known from conventional DBMS,

serious performance problems may occur in terms of response

time, e.g. in an interactive construction environment. Although an

operation is decomposed into a tree of suboperations (Fig. 1b), the

classical DBMS processing strategy observes a synchronous

activation of each suboperation and its strictly serial execution.

Only some conventional systems deviate marginally from this

processing strategy by using low-level parallelism for certain

house-keeping tasks, e.g. writing modified pages to disk. In

general, however, concurrent execution on behalf of a user

operation is not achieved [2].

The use of intra-transaction parallelism for higher-level

operations was investigated in a number of database machine

projects [3]. These approaches focus on the exploitation of

parallelism in the framework of the relational model. Complex

relational queries are transformed into an operator tree of

relational operations in which subtrees are executed concurrently

(evaluation of subqueries on different relations) [4]. Other

approaches utilize special storage allocation schemes by

distributing relations across multiple disks. Parallelism is

achieved by evaluating the same subquery on the various

partitions of a relation [5, 6].

We are going to investigate possible strategies to exploit

parallelism when processing complex objects. In order to be

specific, we have to identify our concepts and solutions in the

framework of a particular data model and a system design

facilitating the use of parallelism. Therefore, we refer to the

molecule-atom data model (MAD model [7]) which is implemented

by an NDBS kernel system called PRIMA [8]. We use the term

NDBS to describe a database management system tailored to the

support of non-standard applications.

For this purpose, we introduce the essential concepts of an NDBS

architecture and a model of NDBS operations. We focus on the

principal ways to process a query on complex objects in parallel.

Furthermore, we consider the use of parallelism when redundant

storage structures kept for performance reasons have to be

maintained. In order to achieve a safe and effective execution

control for parallel actions, we tailor the concept of nested

transactions to our distributed processing strategies in a server

complex carrying the PRIMA code. Finally, we conclude with a

summary of our design proposals.

2. A Model of NDBS Operations

In order to describe our concepts of supporting parallelism in the

framework of NDBS processing, we introduce a multi-layered

Parallelism in Processing Queries on Complex Objects

T. Härder H. Schöning A. Sikeler

University Kaiserslautern, Department of Computer Science,

P.O. Box 3049, D-6750 Kaiserslautern, West Germany

facilitate the decomposition of operations and, as a consequence,

foster concurrent processing. On the other hand, our architecture

as shown in Fig. 1a reflects a high degree of data independence

maintained by explicit interfaces among layers.

The overall architecture consists of a so-called NDBS kernel and a

number of different application layers, which map particular

applications to the data model interface of the kernel. Our kernel

which is considered application-independent is divided into three

layers:

The storage system provides a powerful interface between main

memory and disk. It maintains a database buffer and enables

access to sets of pages organized in segments [8].

The access system manages storage structures for basic objects

called atoms and their related access paths. For performance

reasons, multiple access paths and redundant storage struc-

tures may be defined for atoms.

The data system dynamically builds the objects available at the

data model interface. In our case, the kernel interface is charac-

terized by the MAD model and its language called MQL (mole-

cule query language) [7]. Hence, the data system performs com-

position and decomposition of complex (structured) objects

called molecules.

The application layer uses the complex objects and tailors them to

(even more complex) objects according to the application model of

a given application. This mapping is specific for each application

area (e.g. 3D-CAD, VLSI design, geographic information

management). Hence, for each application area a different

application layer exists which provides a tailored interface (e.g. in

form of a set of ADT operations) for the corresponding application.

The NDBS architecture as exhibited in Fig. 1a lends itself to a

workstation-server environment in a smooth and natural way. The

application and the corresponding application layer are dedicated

to a workstation, whereas the NDBS kernel is assigned either to a

single server processor or to a server complex consisting of

multiple processors. This architectural subdivision is strongly

facilitated by the properties of the MAD model: Sets of molecules

which consist of sets of heterogeneous atoms may be specified as

processing units.

Thus far, we have sketched the static mapping of NDBS objects

and operations organized in hierarchical layers. The dynamic

processing of user operations may be explained by a tree of

suboperations as illustrated in Fig. 1b. This operation tree reflects

underlying layer which are decomposed, in turn, into more

elementary operations: “Each call to a subroutine is an example of

a primitive at one level of implementation invoking a set of

primitives at a lower level of control [9]”.

In conventional DBMS, all operations in such an operation tree are

called synchronously and are executed serially (left-most depth-

first traversal). Given an appropriate run-time environment,

operations at a certain level may be called in parallel, i.e. the

corresponding subtrees as shown in Fig. 1b are executed

(traversed) concurrently. In principle, such a decomposition and

parallel execution is conceivable at every level of operation.

However, certain prerequisites such as sufficient operation

granules are necessary for successful application of concurrency in

processing a user operation. In this paper, we want to focus on

concepts to exploit parallelism within the NDBS kernel, that is,

how concurrent and asynchronous actions should be organized in

the server complex carrying the NDBS kernel code.

2.1 The Data System Interface

In order to describe the concepts for achieving parallelism in

sufficient detail, we have to refine our view of the kernel

architecture and the interfaces involved. It is obvious that the data

model plays the major role and determines many essential factors

which enable reasonable parallelism: sufficiently large data

granules, set orientation of request, dynamic construction of

objects (result sets), flexible selection of processing sequences, etc.

In our system, the data model interface is embodied by the MAD

model and its language MQL which is similar to the well-known

SQL language. Here, we cannot introduce this model with all its

complex details, but only illustrate the most important concepts

necessary for our discussion. In the MAD model, atoms are used as

a kind of basic element (or building block) in order to represent

entities of the real world. In a similar way to tuples in the

relational model, they consist of an arbitrary number of attributes.

The attributes' data types can, however, be chosen from a richer

selection than in the relational model, i.e. apart from the

conventional types the type concept includes

• the structured types RECORD and ARRAY,

• the repeating group types SET and LIST, both yielding a pow-

erful structuring capability at the attribute level as well as

• the special types IDENTIFIER (serving as surrogates) for iden-

tification purposes and REF_TO for the connection of atoms.

Atoms are grouped to atom types. Relationships between atoms

are expressed by so-called links and are defined as link types

between atom types. Link types are treated in a symmetric way,

i.e. links may be used in either direction in the same manner. Such

link types directly map all types of relationships (1:1, 1:n, n:m).

The flexibility of the data model is greatly increased by this direct

and symmetric mapping. Link types are represented by a pair of

REF_TO attributes (reference and “back-reference”) one in either

involved atom type. For example, a link type may be specified as

follows:

• FIDs: SET_OF (REF_TO(Face.EIDs)) in an atom type Edge

• EIDs: SET_OF (REF_TO(Edge.FIDs)) in an atom type Face.

In the database, all atoms connected by links form meshed

structures (atom networks) as illustrated in Fig. 2.:

application
application

data model level DML operations

insert record
modify B*-tree

read/write page

disk

ADT operations
. . .

. . .

a) architecture of an NDBS

application
layer

data
system

access
system

storage
system

P
R
I
M
A

b)

NDBS
kernel

model level

for a user operation
control flow

Figure 1: Model of operation

Molecules are defined dynamically by using MQL statements and

have to be derived at run-time. Each molecule belongs to a

molecule type (which is specified in the FROM clause). The type

description establishes a connected, directed and acyclic type

graph (cycles occur when recursive types are specified), in that a

starting point (i.e. root atom type) and all participating atom and

link types (for short “-”) are specified. A particular example of a

molecule type is Face-Edge-Point. Such a molecule type

determines both the molecule structure as well as the molecule set

which groups all molecules with the same structure. At the

conceptual level, the dynamic construction of molecules proceeds

in a straight-forward manner using the molecule type description

as a template: For each atom belonging to the root atom type all

children, grandchildren and so on are connected to the molecule

structure, terminating after all leaves of the molecule structure

are reached. Connecting children to the molecule structure means

performing the hierarchical join which is supported by the link

concept. Hence, for each root atom a single molecule is constructed.

Fig. 2b shows the result of a molecule construction for Face-Edge-

Point molecules, where the set of molecules was restricted.

Furthermore, it illustrates the most important properties of the

MAD interface

An MQL request handles a set of molecules.

The molecules as complex objects consist of sets of atoms of dif-

ferent type, i.e., they are embodied by sets of interrelated heter-

ogeneous record structures.

Molecule construction is dynamic and allows symmetric use of

the atom networks (e.g. Point-Edge (Fig. 2c)).

The access system provides an atom-oriented interface which

allows for direct and navigational retrieval as well as for the

manipulation of atoms. To satisfy the retrieval requirements of the

data system, it supports direct access to a single atom as well as

atom-by-atom access to either homogeneous or heterogeneous

atom sets.

Manipulation operations (insert, modify, and delete) and direct

access operate on single atoms identified by their logical address

(or surrogate) which is used to implement the IDENTIFIER

attribute as well as the REF_TO attributes. Performing

manipulation operations, the access system is responsible for the

automatic maintenance of the referential integrity defined by the

REF_TO attributes. Thus, a manipulation operation on such an

attribute requires implicit manipulation operations on other

atoms in order to adjust the appropriate back references. These

operations however, are triggered by a special consistency

manager (section 3.3).

Different kinds of scan operations are introduced as a concept to

manage a dynamically defined set of atoms, to hold a current

position in such a set, and to successively deliver single atoms.

Some scan operations, however, are added in order to optimize

retrieval access. Therefore, they may depend on the existence of a

certain storage structure (defined by the database administrator):

• The atom-type scan delivers all atoms in a system-defined order

utilizing the basic storage structure which exists for each atom

type.

• The access-path scan provides appropriate means for fast value-

dependent access based on different access path structures such

as B-trees, grid files, and R-trees.

• The sort scan processes all atoms following a specified sort cri-

terion also utilizing the basic storage structure of an atom type.

However, sorting an entire atom type is expensive and time con-

suming. Therefore, a sort scan may be supported by an addition-

al storage structure, namely the sort order.

• The atom-cluster scan speeds up the construction of frequently

used molecules by allocating all atoms of a corresponding mole-

cule in physical contiguity using a tailored storage structure as

a so-called atom cluster. For example, in Fig. 2 each Face atom

and all its associated Edge and Point atoms may be organized to

form an atom cluster (Fig. 3). On a logical level, an atom cluster

corresponds to a molecule. It is described by a special so-called

characteristic atom which consists of references to all atoms be-

longing to the molecule. This characteristic atom together with

all the referenced atoms is mapped onto a single physical record

which in turn is stored in a set of pages.

The underlying concept is to make storage redundancy available

outside the access system by offering appropriate retrieval

operations (i.e. the choice of several different scans for a particular

access decision by the optimizer of the data system), whereas in

the case of update operations storage redundancy has to be hidden

by the access system. As a consequence, maintaining storage

redundancy in an efficient way is a major task of the access system.

However, sequential update of all storage structures existing for a

corresponding atom results in a lack of efficiency which is not

acceptable. Therefore, exploiting parallelism seems to be a natural

way to speed up a single manipulation operation.

1 2 3 4

342423141312

123 124 134 234

Tetrahedra o

Face

Edge

Point

1 3

4 2

SELECT ALL

FROM Face-Edge-Point

WHERE Face.No < 4;

Face

Edge

Point

Edge

PointSELECT ALL

FROM Point - Edge

WHERE Point.No = 134;

Figure 2:

13

123 134

3

3423

234

1

1413

124 134 123 124

12

2

2423

234

341413

134

 from a sample geometric object
Dynamic construction of molecules

2.3 Activation of Concurrent Requests

Before we start to evaluate our concepts for achieving parallelism

to perform data system and access system functions, we briefly

sketch the process (run-time) environment of our DBMS kernel

PRIMA. In order to provide suitable computing resources, PRIMA

is mapped to a multi-processor system, i.e., the kernel code is

executed on shared (or overlapping) data which requires

synchronization of concurrent accesses. Due to the frequency of

references (issued from concurrent tasks) accessibility of data and

synchronization of access must be solved efficiently.

In a so-called DB-distribution architecture [10] every (loosely

coupled) processor handles a partition of the database; such a

static data subdivision and allocation is obviously in conflict with

our processing requirements. Therefore, DB-sharing architectures

[11] where multiple DBMS share the database at the disk level

seem to be much more flexible and appropriate for our purpose. In

a loosely coupled system, however, each DBMS has its own system

buffer creating the need to cope with fully replicated data; e.g.

modification of a page in a buffer makes all copies of this page in

other buffers obsolete (buffer invalidation problem). Furthermore,

the lack of common memory enforces message-based

communication for inter-process cooperation (e.g. concurrency

control) which seems to be by far too slow for our type of

application. As a consequence, use of shared memory for critical

functions is mandatory for performance reasons. Hence, we have

designed our system to run on a server complex where instruction-

addressable common memory [12] is available for buffer

management, synchronization, and logging/recovery. Such an

architecture (sometimes called closely coupled) avoids buffer

invalidation (only one buffer) and provides memory-based message

exchange as well as instruction-based synchronization primitives

for shared data accesses (e.g. a “compare and swap” instruction).

Fig. 4 gives a short illustration of the major architectural issues.

Our experimental system for the server complex consists of up to

five processors with sufficient private memory, the common

memory, an attachment to a file processor, and a high-bandwidth

communication system for coupling the server processors to

workstations carrying the application layers and the

corresponding applications..

Each instance of PRIMA (running on a particular processor) is

subdivided into a number of processes. Each process may initiate

an arbitrary number of tasks which serve as run-units for the

execution of single requests. Cooperation among processes is

performed by establishing some kind of client-server relationship;

the calling task in the client process issues a request to the server

process where a task acts upon the request and returns an answer

to the caller. In our model, a client invokes a server

asynchronously, i.e. it can proceed after the invocation, and hence,

Edge

Point

12 23 24

123 124 234

characteristic
atom

a) logical view

b) physical record

Figure 3: Example of an atom cluster

address
structure

c) mapping onto a set of pages

application
e.g. CAD modeling

application
e.g. VLSI design

application
layer

application
layer

• • •

PRIMA PRIMA

• • •

common memoryfile
server

• • •

work-
stations

server
complex

Figure 4: Run-time environment of PRIMA

