
infarm. Sysrenrs Vol. 13, No. 2, pp. 155-166, 1988
Printed in Great Britain. All rights reserved

03~4379/~8 53.00 + 0.00
Copyright C 1988 Pergamon Press pk.

HANDLING HOT SPOT DATA IN DB-SHARING
SYSTEMS

(Received 7 May 1987; in revised form 26 Abvember 1987)

Ak&ra&--Un-line transaction systems with high performance demands need a variety of concurrency
control methods used for s~chro~~ng data access of even a single transaction. Simple protocols based
on strict two-phase locking would not meet their performance goals, This is particularly true for usage
patterns of special data elements known as “hot spots”.

fn this paper, we review various solutions for concurrency controf on aggregate data, where the
operations to be synchronized commute-at least for certain value ranges, In particular, the escrow
mechanism introduced for centralized DBMS is discussed and extended. Our investigations focus on the
escrow m~hanism for a data sharing ~viro~ent where transactions running on multiple, inde~ndent
processors must be efficiently synchronized without sacrificing their serializability. First of all, we propose
the use of global escrow services, which may be called asynchronously. Such an optimistic attitude seems
to be appropriate, since rejections of escrow operations typically are rare events. The performance of the
proposed scheme may be further improved be refining it to a hierarchical escrow scheme with a global
escrow and distributed local escrows. Both approaches may be favorably integrated either in a centralized
locking scheme or in a primary copy authority scheme for DB-sharing.

1. INTRODUCTION

The transaction concept provides a framework in
which to execute a unit of work meaningful for the
application environment in an “all or nothing” fash-
ion despite the presence of failures. It allows for
multi-user access to the shared database, thereby
ensuring its semantic and physical integrity [l].
Nowadays, a database management system (DBMS)
is expected to offer the full set of transaction services
to the application programmer.

Business applications typicaily consist of a large
number of transaction types, namely reading and
updating record sets of varying size, frequency of
reference, and usage. Because of such a diversity,
transaction processing using a single method of con-
currency control e.g. strict two-phase locking [2],
would cause serious drawbacks, at least for special
resource usage patterns or high traffic situations. This
is especially true for large on-line transaction applica-
tions with demanding “high performance” require-
ments. To meet their typical needs, the use ofa variety
of methods of concurrency control by a single trans-
action is reasonable [3f. Fast Path, for example,
provides three methods of concurrency control to
optimize access to’ very active data items sometimes
called “high traliic data elements” as well as appiica-
tion journal data (historical data) and to handle less
frequently accessed data. This variety of methods was
primarily designed to support the execution of short
transactions with only a few data references [4].

TPermanent address: Department of Computer Science,
University of Kaiserslautem, Postfach 3049, D-6750
Kaiserslautern, West Germany.

Longer transactions may require even more methods
tailored to their usage modes and reference patterns.

Banking applications as defined by the ET1 bench-
mark [4] currently represent one of the most time-
critical workioads for high performance transaction
systems (HPTS). Their dominant transaction type
(called DEBIT-CREDIT transaction [5]) may serve
as an example to study some of the ~ncurrency
control requirements, especially for DB-sharing sys-
tems [6] executing in the order of 1KTPS of that type
175. As far as concurrency control is concerned, we
need to synchronize one read/write access to a very
large ACCOUNT file, two further read/write accesses
to Fairly small files calIed TELLER and BRANCH,
and a final write access to a sequentiai HISTORY file
for every transaction. Accessing an arbitrary record
from ACCOUNT (out of I@) is not critical and may
be performed by using standard R-X protocols.
TELLER and BRANCH updates (concerning about
IO3 and lQZ records respectively) are used to keep
aggregate information such as “total cash paid”,
primarily for consistency reasons. These frequent
modifications require special concurrency control
methods, because strict two-phase locking protocols
would cause extremely high lock contention and long
processing delays due to the strict serialization needs.
The particutar reference behavior of the transactions
and the relatively few data elements accessed provoke
the problem of concurrency control for high traffic
data elements. Another problem is created by “high
speed” sequential insertion” Since every transaction
desires to insert a record at the end of the HISTORY
file (chained in LIFO manner to the other records of
a given account number), a “hot spot” for free

155

156 THEO HARDER

placement administration and record insertion must
be resolved. (In the sequel, we will use the popular
term “hot spot” for high traffic as well as hot spot
data elements). Although record locking may relieve
the problem to a certain degree, very high transaction
rates are dependent on special mechanisms to avoid
jam-like situations.

We are going to explore solutions for concurrency
control to help alleviate contention of the type illus-
trated by the DEBIT-CREDIT transaction. The best
way in which to attack this problem would be its
avoidance by an appropriate DB-schema design [7].
Although highly recommendable, it may not be
achievable at any rate, since such an approach is
sometimes in conflict with other design goals. In this
case, suitable concurrency control solutions are man-
datory.

For our investigation, we assume a data sharing
environment where transactions running on multiple,
independent processors must be synchronized with-
out sacrificing serializability, that is, level-3 con-
sistency is guaranteed. Of course, recoverability is
implied by these requirements. To approach the
problem, we start to investigate the escrow mechanism
[8] designed for centralized DBMS in detail. The
main topic of our paper is an extension and opti-
mization of the escrow mechanism for DB-sharing.
We conclude with a summary of our results.

2. SOLUTIONS TO HOT SPOT
SYNCHRONIZATION

The ET1 benchmark exemplified that aggregate
information about other entities in the database may
be anticipated in practical applications. Such “redun-
dant” information typically appears in fields of
record types having only a small number of occur-
rences. Since these fields often serve for some book-
keeping function, they usually have to be modified
with extreme frequency. Typical examples of such
aggregate field quantities are:

l “quantity on hand” for stock-room management,
l “total cash received” for teller applications,
l “current number of seats available” for flight

reservation.

All information kept in those fields could be de-
rived from the remaining data, but because of fre-
quency and cost of such functions it is obviously
impractical in large databases.

To observe consistency level-3 defined in [9], seri-
alizability has to be assured for all read and write
accesses of a transaction to all elements of the
database, that is, the result of the transaction is
equivalent to its execution in some serial schedule.
Hence, as soon as a transaction desires to see or
modify the actual value of a data field, it has to be
synchronized with all other concurrent transaction on
the resp. field, because a read does not commute with
any update operation. Therefore, such “strict” oper-

ations applied to high traffic data would drastically
lower the degree of overall parallelism in a trans-
action system.

Fortunately, normal transactions are not interested
in the actual and precise values of those fields.
Usually, they only need to be confirmed that the
actual field value A meets some condition, e.g.
L G A < U. For example,

l QOH is used to prohibit negative stock quantities
caused by normal transactions and may serve as
a trigger to order new items of a particular kind
as soon as a limit L is reached,

l some fields may represent repositories for the
accumulated sums of money transfers by a specific
teller or branch, essentially used for verification of
cash requests (enough money available?) or for
auditing and consistency checking by special pro-
grams as part of given business procedures,

l seat reservation does not require to modify the
actual value of A immediately, but only the assur-
ance that eventually x seats (X <A) will be re-
served on behalf of the corresponding request.

These hot spot applications have the following
properties in common:

l all fields have numerical data types (this property
could be generalized to special types which allow
for commuting operations);

l read operations on the actual field value can be
replaced by a test or verify function on a typically
very large key range;

l update operations are incremental (-x, +y) such
that they commute; a preceding range test ensures
their proper application.

A key observation derived from these properties is
that tailored synchronization mechanisms allow for
much more parallelism on such hot spots without
sacrificing serializability of transactions. For central-
ized DBMS, a special implementation and some
design proposals are well known.

2.1. The fast path approach

A first method was developed and implemented
for Main Storage Databases in the Fast Path feature
of IMSjVS introduced in 1976 [S]. Performance-
critical transaction processing was supported by two
new operations to be invoked by the transaction
program:

VERIFY field camp valuel;
CHANGE field inc/dec value2.

Using VERIFY, the programmer can test during
transaction execution, whether or not a range condi-
tion is satisfied, for example, for QOH. The corre-
sponding field is neither locked nor updated by this
operation. Depending on the test result, the pro-
grammer may decide how to proceed. Updates of
those fields are prepared by the transaction using a
so-called intention list. During commit processing, all

Handling hot spot data in DB-sharing systems 157

CHANGE operations were executed thereby locking
the fields, testing their values again, and applying the
updates if the conditions still hold. Otherwise, the
transaction is aborted. An example application could
be sketched as follows:

VERIFY QOH > L + x
normal transaction processing;

VERIFY QOH < U
only, if range checking required;

CHANGE QOH:=QOH - x
commit processing.

Note, this approach for handling hot spot data is
not transparent to the application program; it has to
distinguish between “normal” and “special” updates.
Another important property of this concept is that
VERIFY does not make any guarantee as to whether
or not the later modification will finally succeed.

22. Reuter’s method

The Fast Path implementation was the starting-
point of a design proposal by Reuter described in [lo]
which aimed at an expansion of the original ap-
proach. In addition to its regular functions, the
centralized concurrency control component (C4, e.g.
lock manager) provides two new operations. Their
basic functions are:

l TEST access: a test operation evaluates the cur-
rent field value as to whether or not it is contained
in a closed user-specified interval [L, V]. Since a
number of concurrent updates on the correspond-
ing field may not be committed while the test
predicate is evaluated, C4 keeps an uncertainty
j~ter~a~ [LV, UV] for the current field value I’. It
calculates the truth value of the predicate to be
evaluated according to given rules regarding this
fuzziness, that is, [LV, VI’] must be completely
contained in [L, c’] for a TRUE result. Otherwise,
if [LV, UV] overlaps either L or U or even both,
the predicate is not satisfied by V. TEST is more
powerful than VERIFY, since closed intervals can
be specified directly and since it may be combined
with MODIFY.

l Modify access: a modify operation increments or
decrements the current field value V (subject to a
positive TEST) on behalf of a transaction T
without prohibiting modify operations of other
transactions while Tis uncommitted. A later abort
of T causes an inverse operation, which is unique
and without side-effects to concurrent modifi-
cations of other transactions. A MODIFY later
aborted may have had only some indirect
influence on test operations of other transactions,
since it temporarily increased the uncertainty in-
terval thereby potentially provoking some un-
successful tests or wait situations.

An uncertainty interval reflects the range of possi-
ble outcomes for a value at a given point in time when
any, some or all uncommitted transaction would be
aborted. The current value V contains all
modifications of committed and uncommitted trans-
actions up-to-date, whereas LV and UV are calcu-
lated to reflect the worst cases of the outcome of
uncommitted transactions. Hence, if all transactions
are committed, LV = V = UV holds which is the
actual value A (as assumed below with a starting
A = 20). Since handling uncertainty intervals is im-
portant for the following, we try to explain the
problem by using a short example:

Table I. Handling an uncertainty interval

T,

-5

corn

T2

-3

corn

T,

f4

coin

T4

-4

abort

LV V vv

20 20 20

15 15 20

12 12 20

12 16 24

12 16 19

I6 16 19

10 10 19

10 IO 16

16 16 16

It is important to realize that the actual value .A can
only be determined when all transactions are commit-
ted (A = I’).

Obviously, TEST and MODIFY should be unin-
terruptable by concurrent modify operations when
the field is actually updated. Therefore. they are
usually meant to be executed together in a
TEST&MODIFY request, which could be described
in its effect, for example, in the following form:

if TEST (QOH + x, IL, trl)

then MODIFY QOH - x.

MODIFY applies its increment immediately to the
aggregate field value V. Since a transaction’s in-
crement remains “provisional” until EOT, it expands
the range of uncertainty of V. However, this uncer-
tainty only concerns testing transactions in typically
rare cases where the range boundaries are ap-
proached by the uncertainty interval After successful
MODIFY the update of V itself is guaranteed by the
system. leaving the transaction the unilateral right to
abort until EOT. As opposed to that procedure,
VERIFY of Fast Path permits several transactions to
check the current field value concurrently, which may
turn out to be an old copy when the actual CHANGE
is performed as part of commit processing. Hence, a
second (implicit) test has to be applied which may
result in a system-enforced abort.

2.3. The escrow parudigm

A further extension and generalization of the par-
ticular synchronization method on aggregate field
values was proposed in [S] as the General Escrow
Transactional Method. For single incremental oper-
ations on aggregate field values discussed so far, it

158 THEO HARDER

represents an almost identical solution compared to
Reuter’s method, as will be seen below. To illustrate
the underlying paradigm, we try to present a short
summary of the abstract concept. Its basic ideas are
the following:

(1) aggregate field quantities requiring range re-
strictions and involving commutable, in-
cremental changes (+ , -) are designated to be
of escrow type (some further types may be added
to this class as well);

(2) before an escrow request of a transaction is
accepted by the escrow component, that is,
before it returns a “done” message, it checks
whether or not it will be eventually able to
successfully perform this request. Accepting a
request implies the guarantee that the update can
be propagated to the field value at any time in the
future, in any order, and with any subset of
updates for which this guarantee has already been
made. Note, this guarantee includes the assur-
ance that an update of an accepted escrow
request may or may not be eventually per-
formed, whichever is appropriate;

(3) to make the acceptance of an escrow request
crash-resistant, an appropriate escrow log is
created by the escrow;

(4) when a transaction eventually commits or
aborts, the associated escrow log is used to
propagate the new field value or its correspond-
ing entries are discarded.

This abstract specification tries to avoid any refer-
ence to a conceivable implementation. Compared to
the proposals discussed earlier, this description illus-
trates the idea more clearly that the escrow equipped
with global “expert” knowledge concerning state and
accepted operations on the corresponding field, may
act as a trustworthy mediator for the concurrent
requests on the field value among transactions. No
direct reference to the resp. field (neither read nor
write) is allowed. Updates of committed transactions
are guaranteed to be eventually propagated by the
escrow. It should be pointed out that neither the
method nor the time nor the propagation is specified.
Hence, synchronous or asynchronous write oper-
ations could be used (not necessarily before or at
EOT).

The principal difference to the approaches dis-
cussed so far, is the separation of the reservation of
a requested quantity as the result of a positive test
and the use of this quantity. At first, the programmer
asks the escrow to put a quantity “in escrow” for
later use. Then he can use this quantity “in escrow”
whenever appropriate. Hence, the separation of the
request and use actions offers the advantage of
reserving the entire eventually needed quantity at a
time and of requesting it in portions when they are
used. Hence, the escrowed quantity may be used at
once, processed by multiple use requests, or may even
be only partially used. (A real world example is the

reservation of travel expenses and the taking of one
or more advances on these travel expenses). Of
course, the quantity put “in escrow” cannot be
exceeded by the sum of all use requests. Quantities or
parts of them not used are released from the “in
escrow” state (escrow pool) at the end of the re-
questing transaction. When a transaction aborts, all
its requested quantities are released.

The syntactical form taken from [8] will help to
illustrate how the escrow paradigm is reflected at the
programmer interface. It clarifies the test and use
operations on escrow fields of the aggregate type. An
escrow request has the form:

if ESCROW [field = Fl,
quantity = Cl, test = (condition)]

then “continue with normal processing”

else “perform exception handling”.

Note, a test parameter is part of the escrow inter-
face. Hence, the user is requested to specify a range
condition for the test. In order to satisfy the test
condition, Cl is added/subtracted to the F l-value
(depending on whether a quantity is added, e.g.
deposit of money, or removed, e.g. withdrawal of
money) before the test is performed. A positive test
puts the requested quantity “in escrow” for safe and
unrestricted use by the transaction. To use a reserved
quantity, the following operation may be applied one
or several times:

USE (field = Fl, quantity = C2).

Both constructs describe the escrow interface accord-
ing to [8] as seen by the transaction program.

3. PROPOSAL FOR AN ESCROW
MECHANISM

An important observation is the fact that the given
interface for escrow requests might interfere with
responsibilities of the escrow. It implies that the
programmer specifies a range test for the actual field
value to ensure its consistency. (We feel that the range
test is used to check an integrity constraint on the
field value in most cases). An integrity constraint
specified “manually”, however, causes an unneces-
sary dependency of its correctness on the transaction
program. What happens if incorrect or contradictory
conditions w.r.t. globally defined ranges are used by
individual transaction programs, e.g. QOH = - lOO?

A key idea in the context of DBMS is the system
enforced control of integrity constraints. In order to
avoid contradicting or inconsistent specifications of
conditions on escrow fields, such globally valid in-
tegrity constraints should be exclusively controlled by
the escrow itself, and should not be dictated by the
individual programmer. Hence, the globally valid
integrity constraint should be part of the field
definition and publicly accessible in the database

Handling hot spot data in DB-sharing systems 159

schema. As a consequence, the test option in the
ESCROW command is not needed anymore.

3.1. A refined escrow mechanism

This observation leads to a simplification of the
ESCROW command. In a typical escrow request we
only need to specify the quantity to be put in escrow
which may be expressed by the “grantable” option.
This option should be sufficient for (almost) all uses.
Therefore, we propose the following standard form
of an escrow request:

if ESCROW (field = Fl, grantable = Cl)

then “continue with normal processing”

else “perform exception handling”.

The escrow accepts this request if it can safely
guarantee C 1 quantities given the current uncertainty
interval. Otherwise, a message indicating the cause of
rejection is returned upon which the transaction may
retry later.

For exceptional cases, where the programmer de-
sires to control the range of the current value more
closely, we suggest the use of a special “restrict”
option which is entirely programmer-controlled. The

escrow will check and satisfy this private “integrity
constraint” as long as it does not violate the global
integrity constraint. This extra service will cause
additional overhead; therefore, it should be only used
in cases where it is really needed. The corresponding
form of such an escrow request with “manual”
integrity control could be:

if ESCROWR [field = Fl,
grantable = Cl,
restrict = (condition)]

then “continue with normal processing”

else “perform exception handling”.

The escrow request is accepted if C 1 quantities can
be granted without violating the restrict condition
and if, in turn, the restrict condition does not violate
the global integrity constraint of the escrow field. In

case of a rejection, the transaction may relax the
restrict condition or retry later. We assume that this
kind of manual control is not very important in a
database context. Moreover, it seems to be rather

meaningless in highly concurrent situations (1KTPS).
Therefore, we do not elaborate on the related prob-
lems and consequences in detail.

The USE operation may be taken in its proposed
form. To make a generalized escrow mechanism
available, it would be desirable to have a function for
releasing (part of) quantities “in escrow”, at least for
its usage in longer transactions. A programmer might
request a certain quantity to put “in escrow” before
he actually knows his real demand, which may be
dependent on other field values to be accessed. When
he detects that this request was too optimistic, he
should have a convenient way to return/remove

quantities not needed before EOT. On the other
hand, a request which turns out to be too pessimistic
could be easily corrected by another escrow request.
When a transaction requires multiple escrow request
for its operation, it may happen that some of them
are granted before one is rejected. For these situ-
ations, it is advantageous to endow a transaction with
some mechanism to react more flexibly. Hence, the
return of such quantities without aborting the trans-
action is another use of a RELEASE operation.
Therefore, we propose a simple extension of the
following form:

RELEASE (field = Fl, quantity = C3).

A transaction can give back only granted quan-
tities up to the granted amount. However, in some
situations it would be useful to distinguish between
“already used” and “not used” quantities. Since we
don’t want to burden the escrow interface by such a
distinction, RELEASE is used to return quantities
(including both kinds).

In short performance-critical transactions, typi-
cally one USE operation might be expected per
escrow type referenced, since only a simple “unit of
work” is performed. Therefore, a natural way of

programming would be to put the resp. quantity “in
escrow” and to immediately use it, e.g. modify QOH.
Such a combined escrow request is conveniently
expressed as follows:

if ESCROW (field = QOH, grantable = C)

then USE (field = QOH, quantity = C)

else ABORT.

The escrow will honor this request when QOH > = C
holds before “accept”.

The most important use of the escrow method is
for synchronizing incremental operations on aggre-
gate field values, by exploiting their commutivity
property. Its benefit comes from the fact that in most

cases further updates to such fields can be performed
while the first one (and other accepted ones) still
remains pending. Note, the refined escrow mech-
anism not only increases data integrity and flexible
operation, but also facilitates the use of the
underlying concept in a distributed environment
(see Section 4).

The price to pay is a special treatment of escrow
requests at the DB-programming interface. Sufficient
(semantic) information has to be made available for
the escrow whereas operations on other data just use
(syntactic) R-X lock protocols. Therefore, removing
a hot spot detected in an operational system by use
of the escrow mechanism requires an adjustment of
the application programs.

After this discussion, it becomes apparent that the
refined escrow method is more flexible for general
usage, but not very different in flavor from Fast Path

and Reuter’s Method for a single USE request on an
aggregate field. O’Neil claims in [8] that one slight
difference concerns the way the test is performed.

160 THEO HORDER

Escrow tests will report to the user a probable failure
when the test result is only “possibly true”
(depending on the behavior of uncommitted trans-
actions). Reuter’s method attempts to let the re-
questing transaction wait until the uncertainty has
been resolved which may cause deadlock situations
where escrow fields are involved. Again, this seems to
be a minor issue.

However, there are some deeper differences in the
various approaches. As mentioned earlier, Reuters
method allows for regular read and write accesses to
an aggregate field, which must be synchronized to
guarantee serializability. Such accesses to escrow type
fields may be harder to achieve if the method is used
in its generalized form. Longer transactions and
multiple USE requests, do not seem to easily fit
together with additional R-X lock protocols on
escrow fields in practical applications. Since Reuter
focuses exclusively on short transactions similar to
the DEBIT-CREDIT type, it may be acceptable to
lower parallelism on those fields (to one) in order to
get an actual view of their committed values. On the
other hand, the generalized escrow method tends to
be general enough to hold more of some quantity “in
escrow” than will be used immediately (advance
request on travel expenses). This problem raises the
question of long term escrow transactions which is
not discussed further. In such applications, it does
not seem to be reasonable to provide regular read and
write access to escrow fields, since fluctuation of their
values makes them “fuzzy” for most of the time. The
exact value of those fields is usually needed once a
session, once a day, or even once a month (auditing
purposes). Therefore, special access functions could
be provided.

3.2. Further use of the escrow approach

As pointed out in [8] the escrow method properly
generalized is not restricted to the control of special
operations on aggregate fields when its power to
control and allocate resources is fully utilized. Some
examples will help to explain its conceivable uses.

An escrow could handle fields containing extremal
values as well as aggregate values. For example, a
MIN or a MAX value of a collection of frequently
changing values is easily maintained by the same
principle; it could be checked and modified if neces-
sary, even under the uncertainty created by the
presence of uncommitted transactions.

D. Gawlick suggested that the key property of the
escrow concept (the guarantee of eventual propaga-
tion of accepted requests) could further be exploited
to solve resource allocation problems among sets of
on-line transactions more effectively. His illustrative
example is on seat reservation for a flight, where
customers either book a number of window seats,
aisle seats or “don’t-care” seats. If we have the
freedom to delegate the reservation of these seats to
an escrow instead of booking them immediately,
some flexibility might be gained to optimize resource

allocation. In this case, the escrow method uses the
fact that the order in which the requests are accepted
may be different from the order in which allocation
is performed.

4. A HIERARCHICAL ESCROW MECHANISM
FOR DB-SHARING

Thus far, we have described the escrow mechanism
and proposed a change of its interface, including an
extension of its use. Originally designed for central-
ized DBMS, it may not lend itself smoothly to
distributed applications-at least when frequent es-
crow services may be required everywhere in the
distributed system. Especially, high performance
transaction systems based upon DB-sharing architec-
tures would benefit from the escrow idea represented
so far only to a limited degree, since hot spot
references to a single field may occur from all par-
ticipating systems. Therefore, we are going to refine
and adjust the escrow mechanism.

4.1. Properties of DB-sharing

In the following we will investigate the use of the
escrow mechanism in high performance transaction
systems where multiple DBMS share the database at
the disk level-usually called DB-sharing. AMOEBA
[6] represents a particular implementation of this type
of coupled system architecture. Major reasons for
system coupling for DB-applications are availability
and performance. Since the number of processor
nodes influences the performance of some kinds of
cooperation, we assume that a DB-sharing complex
typically consists of less than 10 and not of hundreds
or even more processors.

Such architectures require the cooperation of “in-
dependent” DBMS running on multiple computers.
Since every system has access to all data, there is no
need for data partitioning among the DBMS. As a
consequence, a DBMS is able to execute an entire
transaction locally, that is, there is no need for
function shipping or invocation of “remote” sub-
transactions. On the other hand, effective load par-
titioning is mandatory to help balance the usage of
system resources. These properties of data sharing
strongly influence the performance of concurrency
control algorithms, since a share of remote data and
lock requests has to be anticipated and since only
local ones are desirable.

Every system is assumed to have its own local lock
manager, which has to communicate with other local
or global lock managers via messages across a high
bandwidth network. The message system is typically
much faster than the channels to the disks. Every
system also has its own system buffer which implies
the need to cope with fully replicated data; the shared
disk pool is just the hardcopy of some recent state of
the replicated database. A local log file is kept for
transaction and node (crash) recovery whereas ap-

Handling hot spot data in DB-sharing systems 161

propriate redundancy for media recovery is main-
tained globally.

We assume that the typical workload consists of
short transactions similar to the DEBIT_CREDIT
type. Hot spot synchronization does not allow for a
straightforward implementation using R-X protocols
as this would cause far more serious drawbacks than
compared to a centralized system. Not only the strict
serialization of transactions on a hot spot would have
to be taken into account, but also the problems of
buffer invalidation and exchange of actual pages,
which would degrade response time. Hot spot
modification would presumably enforce a frequent
fluctuation of the page containing the hot spot data
among the various system buffers. A FORCE-to-disk
solution [l] is inappropriate for such cases, but a
solution where the hot spot page is permanently
traveling around via the communication network is
equally impractical (bottleneck because of update
frequency).

4.2. A global escrow mech~~sm for Do-sbari~g

Standard lock and update propagation protocols
would provoke thrashing situations for hot spot
pages, combined with a synchronization bottleneck.
Therefore, some special handling for hot spot
modification is mandatory in DB-sharing systems.
The escrow idea seems to be a good starting-point for
investigating an “urgently needed” solution for a
DB-sharing complex.

A straightforward take-over of the escrow concept
is possible, at least in principle. For every escrow type
field, a global escrow is designated and allocated
somewhere in the DB-sharing environment. Such a
scheme could easily be combined either with a cen-
tralized lock manager (CLM) or with a primary copy
authority (PCA) approach [111, since individual fields
could be assigned to one escrow or another. If all
escrow type fields are assigned to a single global
escrow, the scheme resembles that of a CLM. Of
course, the set of fields could also be partitioned
appropriately to reflect load partitioning and allo-
cated to multiple global lock managers at various
processor nodes. Hence, this approach would support
the idea of PCA. In any case, requests of transaction
running on the node of the corresponding global
escrow could be treated as in a centralized DBMS.

If the global escrow resides on a different node, a
“long” request has to be taken into account for every
hot spot access (TEST&USE) of a transaction T. In
addition, COMMIT or ABORT of T must be re-
ported to the escrow (soon) after the corresponding
event. Usually this message is not time-critical which
allows for buffering or piggybacking with other mes-
sages. Nevertheless, long requests are considered to
be very expensive and sensitive to the overall per-
formance of a HPTS:

l the duration of a long request is fully contained in
the response time of T, because it synchronously

waits for the answer (activation/deactivation of
participating processes on sender/receiver sides,
delay of message transfer by e.g. buffered trans-
fers, message handling/queuing and transmission);

l the resulting time delay extends the allocation of
T’s resources thereby obstructing or blocking
other transactions, e.g. lock wait.

Therefore, long requests should be avoided as far
as possible. For example, two long requests for hot
spot modification of a DEBIT-CREDIT transaction
would be intolerable in many applications. The
CLM-approach combined with a global escrow seems
to possess only a limited potential to optimize locality
of requests using the concept of sole interest [I 11,
since hot spot access and sole interest embody con-
tradictory usage patterns. Global escrows integrated
in a PCA-scheme exhibit a greater potential to reduce
long requests to a hot spot element, since PCA-
partitions are assumed to be designed in accordance
to load partitioning in order to facilitate locality of
requests. Hence, for a range of application, certain
advantages may be anticipated by such a scheme as
compared to a centralized approach.

Note, optimization considerations such as the idea
of an optimistic attitude or asynchronous escrow calls
could be taken into account equally well in both
approaches. If we assume that escrow requests are
mostly successful, the following optimization ap-
proach would be promising:

l a transaction asynchronously calls the global es-
crow (TEST&USE) whenever a hot spot element
has to be accessed and continues its work. Since
typical transactions are short they may already
have finished before the escrow answer arrives.
Commit processing, however, must be delayed
until the outcome of all escrow requests is known.
If positive, it can immediately commit; otherwise,
it is forced to abort. When violation of an integrity
constraint is the cause of rejecting the escrow
request, an instantaneous repetition of the trans-
action would not be very helpful.

Since high performance requirements dictate group
commit in many cases implying some delay for most
transactions, buffering of escrow messages at one site
could be regarded as well to avoid congestion of
communication traffic. Such delays cause no trouble
for concurrent transactions when the remaining data
items of a transaction are low-usage elements.

4.3. Why do we need a distributed escrow mechanism?

The concept of global escrows (combined with
CLM or PCA) introduces a number of important
improvements in contrast to R-X locking discussed
above. Page invalidation and frequent page traveling
are totally eliminated. (The corresponding page could
remain at the escrow’s site). Lock contention on hot
spots is avoided in most cases. Although important,
these improvements are considered to be insufficient

162 THEO H&RDER

in cases where a substantial fraction of the hot spot
requests cannot be performed locally, and when the
optimistic variant is not feasible. Note, since many
transactions have to access the same hot spot, it is not
easy to achieve locality of requests for reasons of load
balance, etc. On the other hand, if two hot spots of
a transaction are allocated on two processor nodes,
perfect locality would be impossible. Therefore, we
investigate a hierarchically distributed escrow mech-
anism as an alternative solution for DB-sharing.

A distributed escrow mechanism which attempts to
provide local requests in most cases, no matter how
transactions and data are allocated, would exhance
performance and simplify load balancing, Since it
incorporates a kind of location independence for hot
spots, load partitioning and load control will be
greatly facilitated as far as hot spot processing is
concerned. Without such a scheme, loading par-
titioning and balancing is strictly dictated by “keep-
ing locality of such references”. If these restrictions
can simply be removed from the load distribution
decisions, more flexible and more effective policies
may be found.

For these reasons, we are going to develop a
suitable distributed scheme. Here is a sketch of the
ideas to fit the escrow mechanism to DB-sharing
environments:

l since an escrow is a trustworthy mediator guaran-
teeing that accepted requests will be eventually
propagated at some future point in time, we can
avoid modifying the corresponding page for every
single request;

l given some local escrow capability, quantities on
aggregate fields could be put “in escrow” locally
and a collection of local updates to the hot spot
in question could be accepted without referring to
the underlying page (owned by the global escrow);
l from time to time, bulk propagation of in-

cremental updates to the resp. page could be
issued;

l since distributed and concurrent modifications of
the hot spot data are performed, some global
coordination is necessary. Although, for example
token schemes to represent current ownership are
conceivable, we consider the idea of having a
permanent global owner for every escrow type
field as more natural and effective. Hence, we
propose a hierarchical escrow mechanism where
the global escrow distributes “ranges” for which
the local escrows can safely handle requests with-
out communication, and coordinates the bulk
propagation of the local escrows.

4.4. A hierarchial escrow scheme

In the following, we are going to discuss the idea
of a hierarchial escrow mechanism in detail. We
propose a two-level application of the escrow idea
permitting a high degree of local decisions on escrow

requests in typical applications. At the first level, the
global escrow guarantees that it is able to “handle”
the quantities granted to its local escrows in the
approp~ate form when required. At the second level,
the local escrows use this guarantee to satisfy requests
of local customers directly.

Incremental operations on aggregate field values
are commutable. Range tests are usually only neces-
sary to prevent boundary violations. In most cases,
however, these tests are not critical since ranges are
typically broad (e.g. 0 6 QOH < MAXCAP) or “un-
limited” for practical purposes (e.g. an event counter
[3]). Given these prerequisites, the following key ob-
servation allows for a proper distribution of escrow
tests:

o there exists a total ordering of all elements of the
type. Then, we may partition a given range into
disjoint subranges. A test that is satisfied by a
subrange is obviously also satisfied by the full
range;

l for simplicity, assume an integer-valued aggre-
gation type with boundaries [L, U]. With

we can find some subrange partitioning:

If a request can be satisfied by referring to an isolated
subrange, say fMz + 1, M,], we can check it without
touching the full range [L, V]. This observation al-
lows us to distribute quantities to local escrow which
may independently grant them to their customers:

l fortunately, we need not apply the subrange distri-
bution directly which would have only very iim-
ited use. Every test condition not completely
contained in the subrange could not have been
checked and had to be passed onto the global
escrow. The usual escrow request does not con-
tain the restrict option, asks only for a quantity
and does not care where it is taken from [L, U].
Therefore, it is sufficient to hand out an amount
of quantities C to local escrows, e.g.
(M3 - M, - I), but not range information. Since
all quantities granted by the global escrow are
safe, the local escrow produces safe accept oper-
ations as well, as long as it does not violate the
rules, that is, observe the absolute amount.

ofor the actual value A, always L < A G U holds.
A -L quantities may be used “to be given
away”, that is, they are decremented, whereas
U - A quantities can be “received”, that is, they
are added. Decrementable quantities are denoted
by C- and incrementable ones by C+. Both
represent ranges in the discussed sense. Hence, we
may apply our distribution idea to both sepa-
rately. Then, increments and decrements may be
treated and compensated locally within the given
quantities;

Handling hot spot data in DB-sharing systems 163

Fig. 1. Quantities drawn from a value range are distributed to local escrows

orestrict conditions (expected in rare cases) are
always passed to the global escrow which may
have some spare quantities and safe (pessimistic)
range boundaries, e.g. the information about all
distributed subranges (see [L, UL] and [LU, U] in
Fig. 1).

Figure 1 illustrates the abstract idea of distributing

subranges of an aggregate field to local escrows.
Note, for their test and use operations it is sufficient
to deal with quantities only-we make the distinction
between C+ and C- to reflect the need of increment
and decrement operations. Therefore, these quan-
tities (subranges) are interchangeable when assigned
to a local escrow (LE). Each LE may use C+ and C -
to build its own (absolute) value range which allows
for keeping uncertainty intervals locally (see below).
The global escrow (GE) keeps the subranges [L, UL]
and [LU, U] (including L = UL and/or LU = U)

reserved as spare quantities. Restrict conditions fall-
ing into these subranges are directly satisfiable by the
global escrow.

The idea of using subranges and of distributing

quantities must be refined depending on the specific
application. To clarify the issue, let us discuss con-
ceivable distributions for our three application exam-
ples when a global and three local escrows are
involved:

(1) Teller applications

The range of cash is assumed to be [0, co] and the

actual cash A = 50 K. The upper limit means the

bank (teller) is allowed to accept unlimited deposits.
Note, this mechanism also offers some help to control
the amount of deposits. An initial quantity distribu-
tion could be as follows:

C;=20K and Ci=rc, for GE

C; = IOK and C,! = io for LE,(2’ = 1,2, 3).

(2) Flight reservation

Let us assume the range of available seats is
[0,300]. If no seats are booked at the beginning, then
A = 300 and all C,+ become 0. Then, a conceivable
initial distribution for C; could be 60 for GE and 80
for each LE.

(3) Stock management

Let the given situation be 0, 1000 with A =: 700
implying that the increments and decrements, are
limited. Since we expect frequent little requests, but
few larger deliveries we may assign the GE to handle
these deliveries when the current situation of an LE

prohibits local acceptance (not enough C’). Hence,
the following initial distribution may be appropriate:

C; = 100 and C: = 270 for GE

C; = 200 and C,? = 10 for LE,(i = 1, I!, 3),

The last example may help to make clear that local
increments and decrements are used to handle uncer-
tainty intervals locally within the bounds of the given
C + and C quantities. For example, LE, handles its
value range [0, C,- + CT] and the corresponding un-
certainty interval as follows:

Table 2. Uncertaintv interval handled bv a local e~crcw

T, T2 T3 T4 T5 LV v c’v
200 200 200

-50 150 150 200
-30 I20 I20 200
corn 120 I20 170

fl0 I20 130 I80
-40 80 90 180

abort 130 140 IX0
corn 140 140 I80

f20 140 160 200
corn 140 I60 160

abort 140 140 I40

LE, has Cm = 140 and C+ = 70 available after the
following sequence of committed requests: ~- 30,

+10, -40.
Based on these general observations, the design of

a hierarchial escrow scheme may be pursued Its
algorithmic description would require a considerable
refinement of the environment expected, e.g. a refined
system model for DB-sharing which would ex’ceed
our framework of discussion. Instead, we are going
to present the guidelines and goals of a protocol for
the cooperation of local and global escrows. Since
requests to escrows are application-dependent, that
is, they vary in frequency, amount of quantities and
site of request, it is impossible to determine limits
assigned to local escrows in a general way. A re-

164 THEO HORDER

sponsible person, e.g. the database administrator, has
to distribute the initial values; a suitably designed
algorithm should quickly react to changes of request
patterns, etc.:

(a) Distribution of appropriate ranges only

It does not make sense to distribute subranges of
every escrow type field. Appropriate ranges are large
enough that local escrows can work for a while
without the need of communication to the global
escrow. There are no general rules as to what “appro-
priate” means, since the average amount of quantities
requested is application-dependent. For example,
when the full range contains 5 quantities you should
not try to distribute them among 3 local escrows.

(6) Local escrow requests

A transaction sends a request for a quantity C to
its local escrow. If available, the request is accepted
and the result is immediately returned to the
transaction.

(c) Global escrow requests

If the available quantities are not sufficient, the
global escrow is asked for sufficient quantities
[ASK(min +)]. Both parties understand that more
than the minimum quantities should be delivered-
the actual quantities are subject to availability and
other distribution considerations, e.g. at the very first
request a large start quantity is transferred to a local
escrow.

For global escrow requests, the optimistic idea is
applicable in principle as discussed in sub-section 4.2.
However, the programming interface gets much more
complicated. Therefore, we don’t want to elaborate
this idea.

(d) Distribution of quantities

The global escrow grants some quantities to the
requesting local escrow as long as it has some to
distribute. Otherwise, it rejects the request which
implies that the local escrow also has to reject the
transaction’s request given its local situation has not
changed.

Quantities of committed transactions are added
locally, where increments and decrements may com-
pensate each other. As soon as the sum becomes too
large, it is transferred to the global escrow which may
propagate a “bulk” update of the stored field value.
Since such a transfer has reduced the locally available
quantities, it should invoke a supply of new
quantities.

(e) Redistribution of quantities

The global escrow may collect some information
concerning the activity of its local escrows, in order
to adapt its distribution policy to their needs. (A very
simple scheme would be the distribution of uniform
subranges with or without some capacity for later
use). In any case, it may happen that some local

escrow has exhausted its share while others still have
unused quantities. Therefore, it seems necessary to
give the global escrow a revoke option for (part of)
granted quantities. It sends a REVOKE(max-) to a
local escrow which tries to satisfy this request by
giving up to ‘max’ quantities back depending on its
individual situation.

cf) Threshold to protect against thrashing and
starvation

When the actual aggregate value approaches the L
or U limit, it seems reasonable that all requests are
directly accepted by the global escrow, in order to use
marginal quantities otherwise distributed more
efficiently. The global escrow may enforce such a
processing mode (as a special option) by withholding
requested quantities as soon as a (fuzzy) threshold is
approached. Then, the local escrows are advised to
pass all local requests to the global escrow (and to
give their residual quantities back). New quantities
will allow for changing back to the local escrow mode
(Step d). Hence, the hierarchical scheme behaves like
a purely global escrow scheme for only a critical
margin of quantities.

4.5. Special actions of the global escrows

The following aspects are discussed for the distrib-
uted scheme. Similar solutions may be applied to the
“centralized” scheme.

As explained above, only the global escrow is able
to check (absolute) restrict conditions, because an
amount of quantities is a relative unit taken from
somewhere within a range. Since the global escrow
knows the sum of the granted and returned quan-
tities, it is able to calculate an uncertainty interval for
the current situation. Of course, the uncertainty
interval will be usually larger than in a centralized
situation. On the other hand, a high performance
transaction system based on a centralized system
could also produce large uncertainty intervals when
parallelism is high.

If the restrict predicate can be satisfied, the corre-
sponding request is accepted. Otherwise, an appropri-
ate reject message is delivered. If this simple solution
is not satisfactory, a special (costly) action could be
taken by the global escrow to shrink its current
uncertainty interval, e.g. by using the REVOKE
function. Once again, such manual tests of a single
transaction (which do not correspond to global in-
tegrity constraints) are not a prime issue of a DBMS
(they are not assumed to be treated as first class
citizens). Nevertheless, their result would be very
sensitive to other multi-user operations, even with a
centralized escrow mechanism (e.g. in the wake of
1000 transactions per set).

As mentioned earlier, the actual value A of an
escrow type field is needed in rare cases, e.g. for
inventory control, usually at specific and preplanned
points in time. Such read accesses imply serializability
of the “special” transaction, that is, all transactions

Handling hot spot data in DB-sharing systems 165

contributed to the actual value A must preceded it in
the serialization order. Since all these transactions
have modified A, they must have been committed
before. The global escrow can enforce this kind of
(partial) system quiescence by revoking all quantities
in a broadcast action. In such situations, escrow
requests should be rejected with a special notification.
Another solution would be the blocking of the re-
questing transactions which, however, may provoke
deadlocks and requires resolution measures for the
escrow, too.

4.6. Some aspects of recovery

We don’t want to discuss aspects of fault-tolerance
in detail. However, the prime goal of using escrow,
namely preventing hot spot data to act as a concur-
rency control bottleneck, would be compromised if a
logging bottleneck were introduced, that is, to apply
(extra) synchronous I/O at commit for transaction-
related escrow information to a log. A solution to this
problem can be sketched as follows:

l escrow use in a centralized DBMS requires escrow
information to be added to the transaction’s com-
mit record which must be written anyway. At
restart, the actual values (A) of escrow type fields
are computed using the corresponding log entries.
Of course, escrow type fields should be saved
periodically, including all contributions of all
committed transactions so far. Such checkpoints
will limit the restart overhead;

l a global escrow scheme (sub-section 4.2) must
take into account crashes of non-escrow nodes as
well as the escrow node. Of course, transaction
commit should not be made dependent on atomic
propagation of updates or log information on the
transaction site and the escrow site. Such a solu-
tion would require a distributed two-phase com-
mit protocol for every transaction. Therefore, a
better approach can be designed as follows: a
transaction proceeds as in the case of a centralized
DBMS, collecting and adding escrow information
(delta-values on escrow type fields) to the trans-
action’s commit record. The global escrow is
forced to periodically checkpoint the values of
escrow type fields. Restart of a non-escrow node
delivers a list of winners (committed transactions)
to the global escrow which updates its uncertainty
intervals, thereby removing the losers’ requests of
that particular node. Restart of an escrow node
requires the most recent checkpoint information
(local), and from each participating node a list of
committed transactions not reflected on the check-
point (aggregated values are sufficient) as well as
a list of in-doubt transactions. Hence, the global
escrow is able to reconstruct the current states of
the uncertainty intervals;

l a hierarchial scheme basically adheres to the same
principles as the global scheme with checkpointing
and local delta logging in the commit records.

Furthermore, if local escrows perform some kind
of checkpointing, it should be possible to handle
node crashes locally, that is, to reconstruct the
uncertainty intervals of a local escrow during
restart.

In any case, adding of escrow-re!ated log activity
(extra I/O) to the critical transaction path is avoided.
Even more efficient recovery schemes appear to be
possible for our purpose when safe RAM becomes
available [121.

5. CONCLUSIONS

We have presented a discussion of hot spot syn-
chronization in DB-sharing systems for incremental
operations on aggregate field values. The focus of this
paper has primarily been the escrow concept for
which we proposed a modification of its interface and
an extension to optimize its use in data sharing
environments.

Hot spot values would imply strict serialization in
time for all accessing transactions when “standard
concurrency control” is applied, e.g. two-phase lock-
ing. Fortunately, special operations on these fields
don’t require such an “encapsulation” to ensure
serializability of transactions. In most cases, the
escrow mechanism allows for removing typical
operations on aggregate field values from syn-
chronization protocols without violating the
serializability requirement.

The concept of global escrow may be directly
integrated in a synchronization concept for DB-
sharing. When locking is used, it is applicable either
as part of the CLM or the PCA approach. Compared
to R-X protocols, it obtains the following
properties/benefits:

l synchronization bottlenecks are removed;
l page thrashing of hot spot pages is prevented;
l one external escrow request per hot spot access is

necessary, if the transaction does not run at the
escrow site;

l asynchronous escrow requests seem to be a power-
ful concept to reduce response time, since their
acceptance is very likely in most cases;

l a COMMIT/ABORT message is required for the
escrow; it is, however, not time-critical.

Locality of escrow requests may be greatly im-
proved by using a hierarchial escrow concept:

l although more complex, it permits local syn-
chronization in typical escrow applications;

l it facilitates load balancing, since hot spots be-
come “location independent”;
l it may be combined with centralized escrow re-

quests handled by the global escrow;
l remote escrow requests allow for asynchronous

calls as well;

166 THEO HARDER

l smooth transitions seem to be achievable from Graham R. M. and Seegmueller G.), pp. 393481.
distributed ooeration to centralized operation Springer, Berlin (1978).

I

when the “escrow situation” makes it advisable. [3] D. Gawlick and D. Kinkade. Varieties of concurrency
control in IMS-VS. Tandem Research Rent TR85.6

These benefits of the escrow concept may be ob-
tained for DB-sharing. Other (future) application
areas like distributed transactions, nested trans-
actions or multi-step conversational transactions may
take advantage of the escrow paradigm as well (even
for operations on some “more general” data types).
In any case, reduced lock contention and improved
overall parallelism may be anticipated.

(1985).
[4] Anon et al. A measure of transaction processing power.

Datamarion (April, 1985).
(51 D. Gawlick. Processing “hot spots” in high perfor-

mance systems. Proc. IEEE Spring Compuf. Conf.,
pp. 249-251. San Francisco (February, 1985).

[6] K. Shoens. The AMOEBA project. Proc. IEEE Spring
Compur. Co& pp. 102-105. San Francisco (February,
1985).

[7] J. Gray, B. Good, D. Gawlick, P. Holman and H.
Sammer. One thousand transactions per second. Proc.
IEEE Spring Comput. Conf., pp. 96101. San Francisco
(February, 1985).

Acknowledgements-D. Gawlick provided helpful informa-
tion on the use of concurrency control methods for hot
spots. Many of the discussed concepts were derived from
problems and solutions described in his papers, as well as
papers of P. O’Neil and A. Reuter. I. Narang, J. Palmer and
K. Rothermel have read an earlier version of this paper and
have contributed to clarify and improve the representation
of important issues. The helpful comments of the referees
are gratefully acknowledged.

[8] P. E. O’Neil. The escrow transactional method. Proc.
Znt. Workshop on High Performance Transaction Sys-
terns, Asilomar, CA (September, 1985).

[P] J. N. Gray, R. A. Lorie, F. Futzolu and I. L. Traiger.
Granularity of locks and degrees of consistency in a
shared data base. Proc. ZFIP Working Conf. on Mod-
eiling of Database Management Systems, 365-394.
Freudenstadt, Germany (1976).

REFERENCES
[lo] A. Reuter. Concurrency on high-traffic data elements.

Proc. Conf. on Principles of Database Systems. 83-93.
Los Angeles, CA (March, 1982).

[1] T. Haerder and A. Reuter. Principles of transaction- [11] A. Reuter and K. Shoens. Synchronization in a data
oriented database recovery. ACM Comput. Surv. lq4), sharing environment. IBM Technical Rem. San Jose.
287-318 (1983). CA (1584).

_ I

[2] J. N. Gray. Notes on database operating systems.
Operating Systems-An Adoanced Course, Lecture

[12] G. Copeland, R. Krishnamurthy and M. Smith. Recou-

Notes in Computer Science 60 (Edited by Bayer R.,
ery using safe RAM. Technical Rept, MCC, Austin, TX
(1986).

