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HANDLING HOT SPOT DATA IN DB-SHARING 
SYSTEMS 

(Received 7 May 1987; in revised form 26 Abvember 1987) 

Ak&ra&--Un-line transaction systems with high performance demands need a variety of concurrency 
control methods used for s~chro~~ng data access of even a single transaction. Simple protocols based 
on strict two-phase locking would not meet their performance goals, This is particularly true for usage 
patterns of special data elements known as “hot spots”. 

fn this paper, we review various solutions for concurrency controf on aggregate data, where the 
operations to be synchronized commute-at least for certain value ranges, In particular, the escrow 
mechanism introduced for centralized DBMS is discussed and extended. Our investigations focus on the 
escrow m~hanism for a data sharing ~viro~ent where transactions running on multiple, inde~ndent 
processors must be efficiently synchronized without sacrificing their serializability. First of all, we propose 
the use of global escrow services, which may be called asynchronously. Such an optimistic attitude seems 
to be appropriate, since rejections of escrow operations typically are rare events. The performance of the 
proposed scheme may be further improved be refining it to a hierarchical escrow scheme with a global 
escrow and distributed local escrows. Both approaches may be favorably integrated either in a centralized 
locking scheme or in a primary copy authority scheme for DB-sharing. 

1. INTRODUCTION 

The transaction concept provides a framework in 
which to execute a unit of work meaningful for the 
application environment in an “all or nothing” fash- 
ion despite the presence of failures. It allows for 
multi-user access to the shared database, thereby 
ensuring its semantic and physical integrity [l]. 
Nowadays, a database management system (DBMS) 
is expected to offer the full set of transaction services 
to the application programmer. 

Business applications typicaily consist of a large 
number of transaction types, namely reading and 
updating record sets of varying size, frequency of 
reference, and usage. Because of such a diversity, 
transaction processing using a single method of con- 
currency control e.g. strict two-phase locking [2], 
would cause serious drawbacks, at least for special 
resource usage patterns or high traffic situations. This 
is especially true for large on-line transaction applica- 
tions with demanding “high performance” require- 
ments. To meet their typical needs, the use ofa variety 
of methods of concurrency control by a single trans- 
action is reasonable [3f. Fast Path, for example, 
provides three methods of concurrency control to 
optimize access to’ very active data items sometimes 
called “high traliic data elements” as well as appiica- 
tion journal data (historical data) and to handle less 
frequently accessed data. This variety of methods was 
primarily designed to support the execution of short 
transactions with only a few data references [4]. 
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Longer transactions may require even more methods 
tailored to their usage modes and reference patterns. 

Banking applications as defined by the ET1 bench- 
mark [4] currently represent one of the most time- 
critical workioads for high performance transaction 
systems (HPTS). Their dominant transaction type 
(called DEBIT-CREDIT transaction [5]) may serve 
as an example to study some of the ~ncurrency 
control requirements, especially for DB-sharing sys- 
tems [6] executing in the order of 1KTPS of that type 
175. As far as concurrency control is concerned, we 
need to synchronize one read/write access to a very 
large ACCOUNT file, two further read/write accesses 
to Fairly small files calIed TELLER and BRANCH, 
and a final write access to a sequentiai HISTORY file 
for every transaction. Accessing an arbitrary record 
from ACCOUNT (out of I@) is not critical and may 
be performed by using standard R-X protocols. 
TELLER and BRANCH updates (concerning about 
IO3 and lQZ records respectively) are used to keep 
aggregate information such as “total cash paid”, 
primarily for consistency reasons. These frequent 
modifications require special concurrency control 
methods, because strict two-phase locking protocols 
would cause extremely high lock contention and long 
processing delays due to the strict serialization needs. 
The particutar reference behavior of the transactions 
and the relatively few data elements accessed provoke 
the problem of concurrency control for high traffic 
data elements. Another problem is created by “high 
speed” sequential insertion” Since every transaction 
desires to insert a record at the end of the HISTORY 
file (chained in LIFO manner to the other records of 
a given account number), a “hot spot” for free 
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placement administration and record insertion must 
be resolved. (In the sequel, we will use the popular 
term “hot spot” for high traffic as well as hot spot 
data elements). Although record locking may relieve 
the problem to a certain degree, very high transaction 
rates are dependent on special mechanisms to avoid 
jam-like situations. 

We are going to explore solutions for concurrency 
control to help alleviate contention of the type illus- 
trated by the DEBIT-CREDIT transaction. The best 
way in which to attack this problem would be its 
avoidance by an appropriate DB-schema design [7]. 
Although highly recommendable, it may not be 
achievable at any rate, since such an approach is 
sometimes in conflict with other design goals. In this 
case, suitable concurrency control solutions are man- 
datory. 

For our investigation, we assume a data sharing 
environment where transactions running on multiple, 
independent processors must be synchronized with- 
out sacrificing serializability, that is, level-3 con- 
sistency is guaranteed. Of course, recoverability is 
implied by these requirements. To approach the 
problem, we start to investigate the escrow mechanism 
[8] designed for centralized DBMS in detail. The 
main topic of our paper is an extension and opti- 
mization of the escrow mechanism for DB-sharing. 
We conclude with a summary of our results. 

2. SOLUTIONS TO HOT SPOT 
SYNCHRONIZATION 

The ET1 benchmark exemplified that aggregate 
information about other entities in the database may 
be anticipated in practical applications. Such “redun- 
dant” information typically appears in fields of 
record types having only a small number of occur- 
rences. Since these fields often serve for some book- 
keeping function, they usually have to be modified 
with extreme frequency. Typical examples of such 
aggregate field quantities are: 

l “quantity on hand” for stock-room management, 
l “total cash received” for teller applications, 
l “current number of seats available” for flight 

reservation. 

All information kept in those fields could be de- 
rived from the remaining data, but because of fre- 
quency and cost of such functions it is obviously 
impractical in large databases. 

To observe consistency level-3 defined in [9], seri- 
alizability has to be assured for all read and write 
accesses of a transaction to all elements of the 
database, that is, the result of the transaction is 
equivalent to its execution in some serial schedule. 
Hence, as soon as a transaction desires to see or 
modify the actual value of a data field, it has to be 
synchronized with all other concurrent transaction on 
the resp. field, because a read does not commute with 
any update operation. Therefore, such “strict” oper- 

ations applied to high traffic data would drastically 
lower the degree of overall parallelism in a trans- 
action system. 

Fortunately, normal transactions are not interested 
in the actual and precise values of those fields. 
Usually, they only need to be confirmed that the 
actual field value A meets some condition, e.g. 
L G A < U. For example, 

l QOH is used to prohibit negative stock quantities 
caused by normal transactions and may serve as 
a trigger to order new items of a particular kind 
as soon as a limit L is reached, 

l some fields may represent repositories for the 
accumulated sums of money transfers by a specific 
teller or branch, essentially used for verification of 
cash requests (enough money available?) or for 
auditing and consistency checking by special pro- 
grams as part of given business procedures, 

l seat reservation does not require to modify the 
actual value of A immediately, but only the assur- 
ance that eventually x seats (X <A) will be re- 
served on behalf of the corresponding request. 

These hot spot applications have the following 
properties in common: 

l all fields have numerical data types (this property 
could be generalized to special types which allow 
for commuting operations); 

l read operations on the actual field value can be 
replaced by a test or verify function on a typically 
very large key range; 

l update operations are incremental (-x, +y ) such 
that they commute; a preceding range test ensures 
their proper application. 

A key observation derived from these properties is 
that tailored synchronization mechanisms allow for 
much more parallelism on such hot spots without 
sacrificing serializability of transactions. For central- 
ized DBMS, a special implementation and some 
design proposals are well known. 

2.1. The fast path approach 

A first method was developed and implemented 
for Main Storage Databases in the Fast Path feature 
of IMSjVS introduced in 1976 [S]. Performance- 
critical transaction processing was supported by two 
new operations to be invoked by the transaction 
program: 

VERIFY field camp valuel; 
CHANGE field inc/dec value2. 

Using VERIFY, the programmer can test during 
transaction execution, whether or not a range condi- 
tion is satisfied, for example, for QOH. The corre- 
sponding field is neither locked nor updated by this 
operation. Depending on the test result, the pro- 
grammer may decide how to proceed. Updates of 
those fields are prepared by the transaction using a 
so-called intention list. During commit processing, all 
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CHANGE operations were executed thereby locking 
the fields, testing their values again, and applying the 
updates if the conditions still hold. Otherwise, the 
transaction is aborted. An example application could 
be sketched as follows: 

VERIFY QOH > L + x 
normal transaction processing; 

VERIFY QOH < U 
only, if range checking required; 

CHANGE QOH:=QOH - x 
commit processing. 

Note, this approach for handling hot spot data is 
not transparent to the application program; it has to 
distinguish between “normal” and “special” updates. 
Another important property of this concept is that 
VERIFY does not make any guarantee as to whether 
or not the later modification will finally succeed. 

22. Reuter’s method 

The Fast Path implementation was the starting- 
point of a design proposal by Reuter described in [lo] 
which aimed at an expansion of the original ap- 
proach. In addition to its regular functions, the 
centralized concurrency control component (C4, e.g. 
lock manager) provides two new operations. Their 
basic functions are: 

l TEST access: a test operation evaluates the cur- 
rent field value as to whether or not it is contained 
in a closed user-specified interval [L, V]. Since a 
number of concurrent updates on the correspond- 
ing field may not be committed while the test 
predicate is evaluated, C4 keeps an uncertainty 
j~ter~a~ [LV, UV] for the current field value I’. It 
calculates the truth value of the predicate to be 
evaluated according to given rules regarding this 
fuzziness, that is, [LV, VI’] must be completely 
contained in [L, c’] for a TRUE result. Otherwise, 
if [LV, UV] overlaps either L or U or even both, 
the predicate is not satisfied by V. TEST is more 
powerful than VERIFY, since closed intervals can 
be specified directly and since it may be combined 
with MODIFY. 

l Modify access: a modify operation increments or 
decrements the current field value V (subject to a 
positive TEST) on behalf of a transaction T 
without prohibiting modify operations of other 
transactions while Tis uncommitted. A later abort 
of T causes an inverse operation, which is unique 
and without side-effects to concurrent modifi- 
cations of other transactions. A MODIFY later 
aborted may have had only some indirect 
influence on test operations of other transactions, 
since it temporarily increased the uncertainty in- 
terval thereby potentially provoking some un- 
successful tests or wait situations. 

An uncertainty interval reflects the range of possi- 
ble outcomes for a value at a given point in time when 
any, some or all uncommitted transaction would be 
aborted. The current value V contains all 
modifications of committed and uncommitted trans- 
actions up-to-date, whereas LV and UV are calcu- 
lated to reflect the worst cases of the outcome of 
uncommitted transactions. Hence, if all transactions 
are committed, LV = V = UV holds which is the 
actual value A (as assumed below with a starting 
A = 20). Since handling uncertainty intervals is im- 
portant for the following, we try to explain the 
problem by using a short example: 

Table I. Handling an uncertainty interval 

T, 

-5 

corn 

T2 

-3 

corn 

T, 

f4 

coin 

T4 

-4 

abort 

LV V vv 

20 20 20 

15 15 20 

12 12 20 

12 16 24 

12 16 19 

I6 16 19 

10 10 19 

10 IO 16 

16 16 16 

It is important to realize that the actual value .A can 
only be determined when all transactions are commit- 
ted (A = I’). 

Obviously, TEST and MODIFY should be unin- 
terruptable by concurrent modify operations when 
the field is actually updated. Therefore. they are 
usually meant to be executed together in a 
TEST&MODIFY request, which could be described 
in its effect, for example, in the following form: 

if TEST (QOH + x, IL, trl) 

then MODIFY QOH - x. 

MODIFY applies its increment immediately to the 
aggregate field value V. Since a transaction’s in- 
crement remains “provisional” until EOT, it expands 
the range of uncertainty of V. However, this uncer- 
tainty only concerns testing transactions in typically 
rare cases where the range boundaries are ap- 
proached by the uncertainty interval After successful 
MODIFY the update of V itself is guaranteed by the 
system. leaving the transaction the unilateral right to 
abort until EOT. As opposed to that procedure, 
VERIFY of Fast Path permits several transactions to 
check the current field value concurrently, which may 
turn out to be an old copy when the actual CHANGE 
is performed as part of commit processing. Hence, a 
second (implicit) test has to be applied which may 
result in a system-enforced abort. 

2.3. The escrow parudigm 

A further extension and generalization of the par- 
ticular synchronization method on aggregate field 
values was proposed in [S] as the General Escrow 
Transactional Method. For single incremental oper- 
ations on aggregate field values discussed so far, it 



158 THEO HARDER 

represents an almost identical solution compared to 
Reuter’s method, as will be seen below. To illustrate 
the underlying paradigm, we try to present a short 
summary of the abstract concept. Its basic ideas are 
the following: 

(1) aggregate field quantities requiring range re- 
strictions and involving commutable, in- 
cremental changes ( + , - ) are designated to be 
of escrow type (some further types may be added 
to this class as well); 

(2) before an escrow request of a transaction is 
accepted by the escrow component, that is, 
before it returns a “done” message, it checks 
whether or not it will be eventually able to 
successfully perform this request. Accepting a 
request implies the guarantee that the update can 
be propagated to the field value at any time in the 
future, in any order, and with any subset of 
updates for which this guarantee has already been 
made. Note, this guarantee includes the assur- 
ance that an update of an accepted escrow 
request may or may not be eventually per- 
formed, whichever is appropriate; 

(3) to make the acceptance of an escrow request 
crash-resistant, an appropriate escrow log is 
created by the escrow; 

(4) when a transaction eventually commits or 
aborts, the associated escrow log is used to 
propagate the new field value or its correspond- 
ing entries are discarded. 

This abstract specification tries to avoid any refer- 
ence to a conceivable implementation. Compared to 
the proposals discussed earlier, this description illus- 
trates the idea more clearly that the escrow equipped 
with global “expert” knowledge concerning state and 
accepted operations on the corresponding field, may 
act as a trustworthy mediator for the concurrent 
requests on the field value among transactions. No 
direct reference to the resp. field (neither read nor 
write) is allowed. Updates of committed transactions 
are guaranteed to be eventually propagated by the 
escrow. It should be pointed out that neither the 
method nor the time nor the propagation is specified. 
Hence, synchronous or asynchronous write oper- 
ations could be used (not necessarily before or at 
EOT). 

The principal difference to the approaches dis- 
cussed so far, is the separation of the reservation of 
a requested quantity as the result of a positive test 
and the use of this quantity. At first, the programmer 
asks the escrow to put a quantity “in escrow” for 
later use. Then he can use this quantity “in escrow” 
whenever appropriate. Hence, the separation of the 
request and use actions offers the advantage of 
reserving the entire eventually needed quantity at a 
time and of requesting it in portions when they are 
used. Hence, the escrowed quantity may be used at 
once, processed by multiple use requests, or may even 
be only partially used. (A real world example is the 

reservation of travel expenses and the taking of one 
or more advances on these travel expenses). Of 
course, the quantity put “in escrow” cannot be 
exceeded by the sum of all use requests. Quantities or 
parts of them not used are released from the “in 
escrow” state (escrow pool) at the end of the re- 
questing transaction. When a transaction aborts, all 
its requested quantities are released. 

The syntactical form taken from [8] will help to 
illustrate how the escrow paradigm is reflected at the 
programmer interface. It clarifies the test and use 
operations on escrow fields of the aggregate type. An 
escrow request has the form: 

if ESCROW [field = Fl, 
quantity = Cl, test = (condition)] 

then “continue with normal processing” 

else “perform exception handling”. 

Note, a test parameter is part of the escrow inter- 
face. Hence, the user is requested to specify a range 
condition for the test. In order to satisfy the test 
condition, Cl is added/subtracted to the F l-value 
(depending on whether a quantity is added, e.g. 
deposit of money, or removed, e.g. withdrawal of 
money) before the test is performed. A positive test 
puts the requested quantity “in escrow” for safe and 
unrestricted use by the transaction. To use a reserved 
quantity, the following operation may be applied one 
or several times: 

USE (field = Fl, quantity = C2). 

Both constructs describe the escrow interface accord- 
ing to [8] as seen by the transaction program. 

3. PROPOSAL FOR AN ESCROW 
MECHANISM 

An important observation is the fact that the given 
interface for escrow requests might interfere with 
responsibilities of the escrow. It implies that the 
programmer specifies a range test for the actual field 
value to ensure its consistency. (We feel that the range 
test is used to check an integrity constraint on the 
field value in most cases). An integrity constraint 
specified “manually”, however, causes an unneces- 
sary dependency of its correctness on the transaction 
program. What happens if incorrect or contradictory 
conditions w.r.t. globally defined ranges are used by 
individual transaction programs, e.g. QOH = - lOO? 

A key idea in the context of DBMS is the system 
enforced control of integrity constraints. In order to 
avoid contradicting or inconsistent specifications of 
conditions on escrow fields, such globally valid in- 
tegrity constraints should be exclusively controlled by 
the escrow itself, and should not be dictated by the 
individual programmer. Hence, the globally valid 
integrity constraint should be part of the field 
definition and publicly accessible in the database 
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schema. As a consequence, the test option in the 
ESCROW command is not needed anymore. 

3.1. A refined escrow mechanism 

This observation leads to a simplification of the 
ESCROW command. In a typical escrow request we 
only need to specify the quantity to be put in escrow 
which may be expressed by the “grantable” option. 
This option should be sufficient for (almost) all uses. 
Therefore, we propose the following standard form 
of an escrow request: 

if ESCROW (field = Fl, grantable = Cl) 

then “continue with normal processing” 

else “perform exception handling”. 

The escrow accepts this request if it can safely 
guarantee C 1 quantities given the current uncertainty 
interval. Otherwise, a message indicating the cause of 
rejection is returned upon which the transaction may 
retry later. 

For exceptional cases, where the programmer de- 
sires to control the range of the current value more 
closely, we suggest the use of a special “restrict” 
option which is entirely programmer-controlled. The 

escrow will check and satisfy this private “integrity 
constraint” as long as it does not violate the global 
integrity constraint. This extra service will cause 
additional overhead; therefore, it should be only used 
in cases where it is really needed. The corresponding 
form of such an escrow request with “manual” 
integrity control could be: 

if ESCROWR [field = Fl, 
grantable = Cl, 
restrict = (condition)] 

then “continue with normal processing” 

else “perform exception handling”. 

The escrow request is accepted if C 1 quantities can 
be granted without violating the restrict condition 
and if, in turn, the restrict condition does not violate 
the global integrity constraint of the escrow field. In 

case of a rejection, the transaction may relax the 
restrict condition or retry later. We assume that this 
kind of manual control is not very important in a 
database context. Moreover, it seems to be rather 

meaningless in highly concurrent situations (1KTPS). 
Therefore, we do not elaborate on the related prob- 
lems and consequences in detail. 

The USE operation may be taken in its proposed 
form. To make a generalized escrow mechanism 
available, it would be desirable to have a function for 
releasing (part of) quantities “in escrow”, at least for 
its usage in longer transactions. A programmer might 
request a certain quantity to put “in escrow” before 
he actually knows his real demand, which may be 
dependent on other field values to be accessed. When 
he detects that this request was too optimistic, he 
should have a convenient way to return/remove 

quantities not needed before EOT. On the other 
hand, a request which turns out to be too pessimistic 
could be easily corrected by another escrow request. 
When a transaction requires multiple escrow request 
for its operation, it may happen that some of them 
are granted before one is rejected. For these situ- 
ations, it is advantageous to endow a transaction with 
some mechanism to react more flexibly. Hence, the 
return of such quantities without aborting the trans- 
action is another use of a RELEASE operation. 
Therefore, we propose a simple extension of the 
following form: 

RELEASE (field = Fl, quantity = C3). 

A transaction can give back only granted quan- 
tities up to the granted amount. However, in some 
situations it would be useful to distinguish between 
“already used” and “not used” quantities. Since we 
don’t want to burden the escrow interface by such a 
distinction, RELEASE is used to return quantities 
(including both kinds). 

In short performance-critical transactions, typi- 
cally one USE operation might be expected per 
escrow type referenced, since only a simple “unit of 
work” is performed. Therefore, a natural way of 

programming would be to put the resp. quantity “in 
escrow” and to immediately use it, e.g. modify QOH. 
Such a combined escrow request is conveniently 
expressed as follows: 

if ESCROW (field = QOH, grantable = C) 

then USE (field = QOH, quantity = C) 

else ABORT. 

The escrow will honor this request when QOH > = C 
holds before “accept”. 

The most important use of the escrow method is 
for synchronizing incremental operations on aggre- 
gate field values, by exploiting their commutivity 
property. Its benefit comes from the fact that in most 

cases further updates to such fields can be performed 
while the first one (and other accepted ones) still 
remains pending. Note, the refined escrow mech- 
anism not only increases data integrity and flexible 
operation, but also facilitates the use of the 
underlying concept in a distributed environment 
(see Section 4). 

The price to pay is a special treatment of escrow 
requests at the DB-programming interface. Sufficient 
(semantic) information has to be made available for 
the escrow whereas operations on other data just use 
(syntactic) R-X lock protocols. Therefore, removing 
a hot spot detected in an operational system by use 
of the escrow mechanism requires an adjustment of 
the application programs. 

After this discussion, it becomes apparent that the 
refined escrow method is more flexible for general 
usage, but not very different in flavor from Fast Path 

and Reuter’s Method for a single USE request on an 
aggregate field. O’Neil claims in [8] that one slight 
difference concerns the way the test is performed. 
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Escrow tests will report to the user a probable failure 
when the test result is only “possibly true” 
(depending on the behavior of uncommitted trans- 
actions). Reuter’s method attempts to let the re- 
questing transaction wait until the uncertainty has 
been resolved which may cause deadlock situations 
where escrow fields are involved. Again, this seems to 
be a minor issue. 

However, there are some deeper differences in the 
various approaches. As mentioned earlier, Reuters 
method allows for regular read and write accesses to 
an aggregate field, which must be synchronized to 
guarantee serializability. Such accesses to escrow type 
fields may be harder to achieve if the method is used 
in its generalized form. Longer transactions and 
multiple USE requests, do not seem to easily fit 
together with additional R-X lock protocols on 
escrow fields in practical applications. Since Reuter 
focuses exclusively on short transactions similar to 
the DEBIT-CREDIT type, it may be acceptable to 
lower parallelism on those fields (to one) in order to 
get an actual view of their committed values. On the 
other hand, the generalized escrow method tends to 
be general enough to hold more of some quantity “in 
escrow” than will be used immediately (advance 
request on travel expenses). This problem raises the 
question of long term escrow transactions which is 
not discussed further. In such applications, it does 
not seem to be reasonable to provide regular read and 
write access to escrow fields, since fluctuation of their 
values makes them “fuzzy” for most of the time. The 
exact value of those fields is usually needed once a 
session, once a day, or even once a month (auditing 
purposes). Therefore, special access functions could 
be provided. 

3.2. Further use of the escrow approach 

As pointed out in [8] the escrow method properly 
generalized is not restricted to the control of special 
operations on aggregate fields when its power to 
control and allocate resources is fully utilized. Some 
examples will help to explain its conceivable uses. 

An escrow could handle fields containing extremal 
values as well as aggregate values. For example, a 
MIN or a MAX value of a collection of frequently 
changing values is easily maintained by the same 
principle; it could be checked and modified if neces- 
sary, even under the uncertainty created by the 
presence of uncommitted transactions. 

D. Gawlick suggested that the key property of the 
escrow concept (the guarantee of eventual propaga- 
tion of accepted requests) could further be exploited 
to solve resource allocation problems among sets of 
on-line transactions more effectively. His illustrative 
example is on seat reservation for a flight, where 
customers either book a number of window seats, 
aisle seats or “don’t-care” seats. If we have the 
freedom to delegate the reservation of these seats to 
an escrow instead of booking them immediately, 
some flexibility might be gained to optimize resource 

allocation. In this case, the escrow method uses the 
fact that the order in which the requests are accepted 
may be different from the order in which allocation 
is performed. 

4. A HIERARCHICAL ESCROW MECHANISM 
FOR DB-SHARING 

Thus far, we have described the escrow mechanism 
and proposed a change of its interface, including an 
extension of its use. Originally designed for central- 
ized DBMS, it may not lend itself smoothly to 
distributed applications-at least when frequent es- 
crow services may be required everywhere in the 
distributed system. Especially, high performance 
transaction systems based upon DB-sharing architec- 
tures would benefit from the escrow idea represented 
so far only to a limited degree, since hot spot 
references to a single field may occur from all par- 
ticipating systems. Therefore, we are going to refine 
and adjust the escrow mechanism. 

4.1. Properties of DB-sharing 

In the following we will investigate the use of the 
escrow mechanism in high performance transaction 
systems where multiple DBMS share the database at 
the disk level-usually called DB-sharing. AMOEBA 
[6] represents a particular implementation of this type 
of coupled system architecture. Major reasons for 
system coupling for DB-applications are availability 
and performance. Since the number of processor 
nodes influences the performance of some kinds of 
cooperation, we assume that a DB-sharing complex 
typically consists of less than 10 and not of hundreds 
or even more processors. 

Such architectures require the cooperation of “in- 
dependent” DBMS running on multiple computers. 
Since every system has access to all data, there is no 
need for data partitioning among the DBMS. As a 
consequence, a DBMS is able to execute an entire 
transaction locally, that is, there is no need for 
function shipping or invocation of “remote” sub- 
transactions. On the other hand, effective load par- 
titioning is mandatory to help balance the usage of 
system resources. These properties of data sharing 
strongly influence the performance of concurrency 
control algorithms, since a share of remote data and 
lock requests has to be anticipated and since only 
local ones are desirable. 

Every system is assumed to have its own local lock 
manager, which has to communicate with other local 
or global lock managers via messages across a high 
bandwidth network. The message system is typically 
much faster than the channels to the disks. Every 
system also has its own system buffer which implies 
the need to cope with fully replicated data; the shared 
disk pool is just the hardcopy of some recent state of 
the replicated database. A local log file is kept for 
transaction and node (crash) recovery whereas ap- 
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propriate redundancy for media recovery is main- 
tained globally. 

We assume that the typical workload consists of 
short transactions similar to the DEBIT_CREDIT 
type. Hot spot synchronization does not allow for a 
straightforward implementation using R-X protocols 
as this would cause far more serious drawbacks than 
compared to a centralized system. Not only the strict 
serialization of transactions on a hot spot would have 
to be taken into account, but also the problems of 
buffer invalidation and exchange of actual pages, 
which would degrade response time. Hot spot 
modification would presumably enforce a frequent 
fluctuation of the page containing the hot spot data 
among the various system buffers. A FORCE-to-disk 
solution [l] is inappropriate for such cases, but a 
solution where the hot spot page is permanently 
traveling around via the communication network is 
equally impractical (bottleneck because of update 
frequency). 

4.2. A global escrow mech~~sm for Do-sbari~g 

Standard lock and update propagation protocols 
would provoke thrashing situations for hot spot 
pages, combined with a synchronization bottleneck. 
Therefore, some special handling for hot spot 
modification is mandatory in DB-sharing systems. 
The escrow idea seems to be a good starting-point for 
investigating an “urgently needed” solution for a 
DB-sharing complex. 

A straightforward take-over of the escrow concept 
is possible, at least in principle. For every escrow type 
field, a global escrow is designated and allocated 
somewhere in the DB-sharing environment. Such a 
scheme could easily be combined either with a cen- 
tralized lock manager (CLM) or with a primary copy 
authority (PCA) approach [ 111, since individual fields 
could be assigned to one escrow or another. If all 
escrow type fields are assigned to a single global 
escrow, the scheme resembles that of a CLM. Of 
course, the set of fields could also be partitioned 
appropriately to reflect load partitioning and allo- 
cated to multiple global lock managers at various 
processor nodes. Hence, this approach would support 
the idea of PCA. In any case, requests of transaction 
running on the node of the corresponding global 
escrow could be treated as in a centralized DBMS. 

If the global escrow resides on a different node, a 
“long” request has to be taken into account for every 
hot spot access (TEST&USE) of a transaction T. In 
addition, COMMIT or ABORT of T must be re- 
ported to the escrow (soon) after the corresponding 
event. Usually this message is not time-critical which 
allows for buffering or piggybacking with other mes- 
sages. Nevertheless, long requests are considered to 
be very expensive and sensitive to the overall per- 
formance of a HPTS: 

l the duration of a long request is fully contained in 
the response time of T, because it synchronously 

waits for the answer (activation/deactivation of 
participating processes on sender/receiver sides, 
delay of message transfer by e.g. buffered trans- 
fers, message handling/queuing and transmission); 

l the resulting time delay extends the allocation of 
T’s resources thereby obstructing or blocking 
other transactions, e.g. lock wait. 

Therefore, long requests should be avoided as far 
as possible. For example, two long requests for hot 
spot modification of a DEBIT-CREDIT transaction 
would be intolerable in many applications. The 
CLM-approach combined with a global escrow seems 
to possess only a limited potential to optimize locality 
of requests using the concept of sole interest [I 11, 
since hot spot access and sole interest embody con- 
tradictory usage patterns. Global escrows integrated 
in a PCA-scheme exhibit a greater potential to reduce 
long requests to a hot spot element, since PCA- 
partitions are assumed to be designed in accordance 
to load partitioning in order to facilitate locality of 
requests. Hence, for a range of application, certain 
advantages may be anticipated by such a scheme as 
compared to a centralized approach. 

Note, optimization considerations such as the idea 
of an optimistic attitude or asynchronous escrow calls 
could be taken into account equally well in both 
approaches. If we assume that escrow requests are 
mostly successful, the following optimization ap- 
proach would be promising: 

l a transaction asynchronously calls the global es- 
crow (TEST&USE) whenever a hot spot element 
has to be accessed and continues its work. Since 
typical transactions are short they may already 
have finished before the escrow answer arrives. 
Commit processing, however, must be delayed 
until the outcome of all escrow requests is known. 
If positive, it can immediately commit; otherwise, 
it is forced to abort. When violation of an integrity 
constraint is the cause of rejecting the escrow 
request, an instantaneous repetition of the trans- 
action would not be very helpful. 

Since high performance requirements dictate group 
commit in many cases implying some delay for most 
transactions, buffering of escrow messages at one site 
could be regarded as well to avoid congestion of 
communication traffic. Such delays cause no trouble 
for concurrent transactions when the remaining data 
items of a transaction are low-usage elements. 

4.3. Why do we need a distributed escrow mechanism? 

The concept of global escrows (combined with 
CLM or PCA) introduces a number of important 
improvements in contrast to R-X locking discussed 
above. Page invalidation and frequent page traveling 
are totally eliminated. (The corresponding page could 
remain at the escrow’s site). Lock contention on hot 
spots is avoided in most cases. Although important, 
these improvements are considered to be insufficient 
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in cases where a substantial fraction of the hot spot 
requests cannot be performed locally, and when the 
optimistic variant is not feasible. Note, since many 
transactions have to access the same hot spot, it is not 
easy to achieve locality of requests for reasons of load 
balance, etc. On the other hand, if two hot spots of 
a transaction are allocated on two processor nodes, 
perfect locality would be impossible. Therefore, we 
investigate a hierarchically distributed escrow mech- 
anism as an alternative solution for DB-sharing. 

A distributed escrow mechanism which attempts to 
provide local requests in most cases, no matter how 
transactions and data are allocated, would exhance 
performance and simplify load balancing, Since it 
incorporates a kind of location independence for hot 
spots, load partitioning and load control will be 
greatly facilitated as far as hot spot processing is 
concerned. Without such a scheme, loading par- 
titioning and balancing is strictly dictated by “keep- 
ing locality of such references”. If these restrictions 
can simply be removed from the load distribution 
decisions, more flexible and more effective policies 
may be found. 

For these reasons, we are going to develop a 
suitable distributed scheme. Here is a sketch of the 
ideas to fit the escrow mechanism to DB-sharing 
environments: 

l since an escrow is a trustworthy mediator guaran- 
teeing that accepted requests will be eventually 
propagated at some future point in time, we can 
avoid modifying the corresponding page for every 
single request; 

l given some local escrow capability, quantities on 
aggregate fields could be put “in escrow” locally 
and a collection of local updates to the hot spot 
in question could be accepted without referring to 
the underlying page (owned by the global escrow); 
l from time to time, bulk propagation of in- 

cremental updates to the resp. page could be 
issued; 

l since distributed and concurrent modifications of 
the hot spot data are performed, some global 
coordination is necessary. Although, for example 
token schemes to represent current ownership are 
conceivable, we consider the idea of having a 
permanent global owner for every escrow type 
field as more natural and effective. Hence, we 
propose a hierarchical escrow mechanism where 
the global escrow distributes “ranges” for which 
the local escrows can safely handle requests with- 
out communication, and coordinates the bulk 
propagation of the local escrows. 

4.4. A hierarchial escrow scheme 

In the following, we are going to discuss the idea 
of a hierarchial escrow mechanism in detail. We 
propose a two-level application of the escrow idea 
permitting a high degree of local decisions on escrow 

requests in typical applications. At the first level, the 
global escrow guarantees that it is able to “handle” 
the quantities granted to its local escrows in the 
approp~ate form when required. At the second level, 
the local escrows use this guarantee to satisfy requests 
of local customers directly. 

Incremental operations on aggregate field values 
are commutable. Range tests are usually only neces- 
sary to prevent boundary violations. In most cases, 
however, these tests are not critical since ranges are 
typically broad (e.g. 0 6 QOH < MAXCAP) or “un- 
limited” for practical purposes (e.g. an event counter 
[3]). Given these prerequisites, the following key ob- 
servation allows for a proper distribution of escrow 
tests: 

o there exists a total ordering of all elements of the 
type. Then, we may partition a given range into 
disjoint subranges. A test that is satisfied by a 
subrange is obviously also satisfied by the full 
range; 

l for simplicity, assume an integer-valued aggre- 
gation type with boundaries [L, U]. With 

we can find some subrange partitioning: 

If a request can be satisfied by referring to an isolated 
subrange, say fMz + 1, M,], we can check it without 
touching the full range [L, V]. This observation al- 
lows us to distribute quantities to local escrow which 
may independently grant them to their customers: 

l fortunately, we need not apply the subrange distri- 
bution directly which would have only very iim- 
ited use. Every test condition not completely 
contained in the subrange could not have been 
checked and had to be passed onto the global 
escrow. The usual escrow request does not con- 
tain the restrict option, asks only for a quantity 
and does not care where it is taken from [L, U]. 
Therefore, it is sufficient to hand out an amount 
of quantities C to local escrows, e.g. 
(M3 - M, - I), but not range information. Since 
all quantities granted by the global escrow are 
safe, the local escrow produces safe accept oper- 
ations as well, as long as it does not violate the 
rules, that is, observe the absolute amount. 

ofor the actual value A, always L < A G U holds. 
A -L quantities may be used “to be given 
away”, that is, they are decremented, whereas 
U - A quantities can be “received”, that is, they 
are added. Decrementable quantities are denoted 
by C- and incrementable ones by C+. Both 
represent ranges in the discussed sense. Hence, we 
may apply our distribution idea to both sepa- 
rately. Then, increments and decrements may be 
treated and compensated locally within the given 
quantities; 
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Fig. 1. Quantities drawn from a value range are distributed to local escrows 

orestrict conditions (expected in rare cases) are 
always passed to the global escrow which may 
have some spare quantities and safe (pessimistic) 
range boundaries, e.g. the information about all 
distributed subranges (see [L, UL] and [LU, U] in 
Fig. 1). 

Figure 1 illustrates the abstract idea of distributing 

subranges of an aggregate field to local escrows. 
Note, for their test and use operations it is sufficient 
to deal with quantities only-we make the distinction 
between C+ and C- to reflect the need of increment 
and decrement operations. Therefore, these quan- 
tities (subranges) are interchangeable when assigned 
to a local escrow (LE). Each LE may use C+ and C - 
to build its own (absolute) value range which allows 
for keeping uncertainty intervals locally (see below). 
The global escrow (GE) keeps the subranges [L, UL] 
and [LU, U] (including L = UL and/or LU = U) 

reserved as spare quantities. Restrict conditions fall- 
ing into these subranges are directly satisfiable by the 
global escrow. 

The idea of using subranges and of distributing 

quantities must be refined depending on the specific 
application. To clarify the issue, let us discuss con- 
ceivable distributions for our three application exam- 
ples when a global and three local escrows are 
involved: 

(1) Teller applications 

The range of cash is assumed to be [0, co] and the 

actual cash A = 50 K. The upper limit means the 

bank (teller) is allowed to accept unlimited deposits. 
Note, this mechanism also offers some help to control 
the amount of deposits. An initial quantity distribu- 
tion could be as follows: 

C;=20K and Ci=rc, for GE 

C; = IOK and C,! = io for LE,(2’ = 1,2, 3). 

(2) Flight reservation 

Let us assume the range of available seats is 
[0,300]. If no seats are booked at the beginning, then 
A = 300 and all C,+ become 0. Then, a conceivable 
initial distribution for C; could be 60 for GE and 80 
for each LE. 

(3) Stock management 

Let the given situation be 0, 1000 with A =: 700 
implying that the increments and decrements, are 
limited. Since we expect frequent little requests, but 
few larger deliveries we may assign the GE to handle 
these deliveries when the current situation of an LE 

prohibits local acceptance (not enough C’). Hence, 
the following initial distribution may be appropriate: 

C; = 100 and C: = 270 for GE 

C; = 200 and C,? = 10 for LE,(i = 1, I!, 3), 

The last example may help to make clear that local 
increments and decrements are used to handle uncer- 
tainty intervals locally within the bounds of the given 
C + and C quantities. For example, LE, handles its 
value range [0, C,- + CT] and the corresponding un- 
certainty interval as follows: 

Table 2. Uncertaintv interval handled bv a local e~crcw 

T, T2 T3 T4 T5 LV v c’v 
200 200 200 

-50 150 150 200 
-30 I20 I20 200 
corn 120 I20 170 

fl0 I20 130 I80 
-40 80 90 180 

abort 130 140 IX0 
corn 140 140 I80 

f20 140 160 200 
corn 140 I60 160 

abort 140 140 I40 

LE, has Cm = 140 and C+ = 70 available after the 
following sequence of committed requests: ~- 30, 

+10, -40. 
Based on these general observations, the design of 

a hierarchial escrow scheme may be pursued Its 
algorithmic description would require a considerable 
refinement of the environment expected, e.g. a refined 
system model for DB-sharing which would ex’ceed 
our framework of discussion. Instead, we are going 
to present the guidelines and goals of a protocol for 
the cooperation of local and global escrows. Since 
requests to escrows are application-dependent, that 
is, they vary in frequency, amount of quantities and 
site of request, it is impossible to determine limits 
assigned to local escrows in a general way. A re- 
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sponsible person, e.g. the database administrator, has 
to distribute the initial values; a suitably designed 
algorithm should quickly react to changes of request 
patterns, etc.: 

(a) Distribution of appropriate ranges only 

It does not make sense to distribute subranges of 
every escrow type field. Appropriate ranges are large 
enough that local escrows can work for a while 
without the need of communication to the global 
escrow. There are no general rules as to what “appro- 
priate” means, since the average amount of quantities 
requested is application-dependent. For example, 
when the full range contains 5 quantities you should 
not try to distribute them among 3 local escrows. 

(6) Local escrow requests 

A transaction sends a request for a quantity C to 
its local escrow. If available, the request is accepted 
and the result is immediately returned to the 
transaction. 

(c) Global escrow requests 

If the available quantities are not sufficient, the 
global escrow is asked for sufficient quantities 
[ASK(min + )]. Both parties understand that more 
than the minimum quantities should be delivered- 
the actual quantities are subject to availability and 
other distribution considerations, e.g. at the very first 
request a large start quantity is transferred to a local 
escrow. 

For global escrow requests, the optimistic idea is 
applicable in principle as discussed in sub-section 4.2. 
However, the programming interface gets much more 
complicated. Therefore, we don’t want to elaborate 
this idea. 

(d) Distribution of quantities 

The global escrow grants some quantities to the 
requesting local escrow as long as it has some to 
distribute. Otherwise, it rejects the request which 
implies that the local escrow also has to reject the 
transaction’s request given its local situation has not 
changed. 

Quantities of committed transactions are added 
locally, where increments and decrements may com- 
pensate each other. As soon as the sum becomes too 
large, it is transferred to the global escrow which may 
propagate a “bulk” update of the stored field value. 
Since such a transfer has reduced the locally available 
quantities, it should invoke a supply of new 
quantities. 

(e) Redistribution of quantities 

The global escrow may collect some information 
concerning the activity of its local escrows, in order 
to adapt its distribution policy to their needs. (A very 
simple scheme would be the distribution of uniform 
subranges with or without some capacity for later 
use). In any case, it may happen that some local 

escrow has exhausted its share while others still have 
unused quantities. Therefore, it seems necessary to 
give the global escrow a revoke option for (part of) 
granted quantities. It sends a REVOKE(max-) to a 
local escrow which tries to satisfy this request by 
giving up to ‘max’ quantities back depending on its 
individual situation. 

cf) Threshold to protect against thrashing and 
starvation 

When the actual aggregate value approaches the L 
or U limit, it seems reasonable that all requests are 
directly accepted by the global escrow, in order to use 
marginal quantities otherwise distributed more 
efficiently. The global escrow may enforce such a 
processing mode (as a special option) by withholding 
requested quantities as soon as a (fuzzy) threshold is 
approached. Then, the local escrows are advised to 
pass all local requests to the global escrow (and to 
give their residual quantities back). New quantities 
will allow for changing back to the local escrow mode 
(Step d). Hence, the hierarchical scheme behaves like 
a purely global escrow scheme for only a critical 
margin of quantities. 

4.5. Special actions of the global escrows 

The following aspects are discussed for the distrib- 
uted scheme. Similar solutions may be applied to the 
“centralized” scheme. 

As explained above, only the global escrow is able 
to check (absolute) restrict conditions, because an 
amount of quantities is a relative unit taken from 
somewhere within a range. Since the global escrow 
knows the sum of the granted and returned quan- 
tities, it is able to calculate an uncertainty interval for 
the current situation. Of course, the uncertainty 
interval will be usually larger than in a centralized 
situation. On the other hand, a high performance 
transaction system based on a centralized system 
could also produce large uncertainty intervals when 
parallelism is high. 

If the restrict predicate can be satisfied, the corre- 
sponding request is accepted. Otherwise, an appropri- 
ate reject message is delivered. If this simple solution 
is not satisfactory, a special (costly) action could be 
taken by the global escrow to shrink its current 
uncertainty interval, e.g. by using the REVOKE 
function. Once again, such manual tests of a single 
transaction (which do not correspond to global in- 
tegrity constraints) are not a prime issue of a DBMS 
(they are not assumed to be treated as first class 
citizens). Nevertheless, their result would be very 
sensitive to other multi-user operations, even with a 
centralized escrow mechanism (e.g. in the wake of 
1000 transactions per set). 

As mentioned earlier, the actual value A of an 
escrow type field is needed in rare cases, e.g. for 
inventory control, usually at specific and preplanned 
points in time. Such read accesses imply serializability 
of the “special” transaction, that is, all transactions 
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contributed to the actual value A must preceded it in 
the serialization order. Since all these transactions 
have modified A, they must have been committed 
before. The global escrow can enforce this kind of 
(partial) system quiescence by revoking all quantities 
in a broadcast action. In such situations, escrow 
requests should be rejected with a special notification. 
Another solution would be the blocking of the re- 
questing transactions which, however, may provoke 
deadlocks and requires resolution measures for the 
escrow, too. 

4.6. Some aspects of recovery 

We don’t want to discuss aspects of fault-tolerance 
in detail. However, the prime goal of using escrow, 
namely preventing hot spot data to act as a concur- 
rency control bottleneck, would be compromised if a 
logging bottleneck were introduced, that is, to apply 
(extra) synchronous I/O at commit for transaction- 
related escrow information to a log. A solution to this 
problem can be sketched as follows: 

l escrow use in a centralized DBMS requires escrow 
information to be added to the transaction’s com- 
mit record which must be written anyway. At 
restart, the actual values (A) of escrow type fields 
are computed using the corresponding log entries. 
Of course, escrow type fields should be saved 
periodically, including all contributions of all 
committed transactions so far. Such checkpoints 
will limit the restart overhead; 

l a global escrow scheme (sub-section 4.2) must 
take into account crashes of non-escrow nodes as 
well as the escrow node. Of course, transaction 
commit should not be made dependent on atomic 
propagation of updates or log information on the 
transaction site and the escrow site. Such a solu- 
tion would require a distributed two-phase com- 
mit protocol for every transaction. Therefore, a 
better approach can be designed as follows: a 
transaction proceeds as in the case of a centralized 
DBMS, collecting and adding escrow information 
(delta-values on escrow type fields) to the trans- 
action’s commit record. The global escrow is 
forced to periodically checkpoint the values of 
escrow type fields. Restart of a non-escrow node 
delivers a list of winners (committed transactions) 
to the global escrow which updates its uncertainty 
intervals, thereby removing the losers’ requests of 
that particular node. Restart of an escrow node 
requires the most recent checkpoint information 
(local), and from each participating node a list of 
committed transactions not reflected on the check- 
point (aggregated values are sufficient) as well as 
a list of in-doubt transactions. Hence, the global 
escrow is able to reconstruct the current states of 
the uncertainty intervals; 

l a hierarchial scheme basically adheres to the same 
principles as the global scheme with checkpointing 
and local delta logging in the commit records. 

Furthermore, if local escrows perform some kind 
of checkpointing, it should be possible to handle 
node crashes locally, that is, to reconstruct the 
uncertainty intervals of a local escrow during 
restart. 

In any case, adding of escrow-re!ated log activity 
(extra I/O) to the critical transaction path is avoided. 
Even more efficient recovery schemes appear to be 
possible for our purpose when safe RAM becomes 
available [ 121. 

5. CONCLUSIONS 

We have presented a discussion of hot spot syn- 
chronization in DB-sharing systems for incremental 
operations on aggregate field values. The focus of this 
paper has primarily been the escrow concept for 
which we proposed a modification of its interface and 
an extension to optimize its use in data sharing 
environments. 

Hot spot values would imply strict serialization in 
time for all accessing transactions when “standard 
concurrency control” is applied, e.g. two-phase lock- 
ing. Fortunately, special operations on these fields 
don’t require such an “encapsulation” to ensure 
serializability of transactions. In most cases, the 
escrow mechanism allows for removing typical 
operations on aggregate field values from syn- 
chronization protocols without violating the 
serializability requirement. 

The concept of global escrow may be directly 
integrated in a synchronization concept for DB- 
sharing. When locking is used, it is applicable either 
as part of the CLM or the PCA approach. Compared 
to R-X protocols, it obtains the following 
properties/benefits: 

l synchronization bottlenecks are removed; 
l page thrashing of hot spot pages is prevented; 
l one external escrow request per hot spot access is 

necessary, if the transaction does not run at the 
escrow site; 

l asynchronous escrow requests seem to be a power- 
ful concept to reduce response time, since their 
acceptance is very likely in most cases; 

l a COMMIT/ABORT message is required for the 
escrow; it is, however, not time-critical. 

Locality of escrow requests may be greatly im- 
proved by using a hierarchial escrow concept: 

l although more complex, it permits local syn- 
chronization in typical escrow applications; 

l it facilitates load balancing, since hot spots be- 
come “location independent”; 
l it may be combined with centralized escrow re- 

quests handled by the global escrow; 
l remote escrow requests allow for asynchronous 

calls as well; 
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