KRISYS - A MULTI-LAYERED PROTOTYPE KBMS
SUPPORTING KNOWLEDGE INDEPENDENCE

Nelson Mendonca Mattos

University Kaiserslautern, Department of Computer Science,
P.O. Box 3049, D-6750 Kaiserslautern, West Germany
e-mail: mattos@uklirb.uucp

Abstract

paper discusses architectural issues of Knowledge Base Man-
ent Systems and describes the architecture of KRISYS, a sys-
vhose goal is the effective and efficient management of large,
d knowledge bases. Focal points are primarily the design de-
s and the system’s features: knowledge independence, object-
ation, mechanisms for knowledge organization, data-driven
utation, inheritance mechanisms, reasoning facilities, etc.
rally, some of these issues which we have been combining to
1 a KBMS context, are similar to approaches developed in dif-
, isolated projects. Instead of giving a detailed comparison of
pproaches and those of other projects, we show in this paper
hey can be architecturally combined to build realistic KBMS.
vords: Al architectures, Knowledge Base Management Sys-
Database support for Knowledge-Based Systems

1. Introduction

-hnology has produced a variety of knowledge-based systems
ranging from simple expert systems to complex natural lan-
» understanding systems. When used for large-scale applica-
KS are faced with problems of managing very large volumes
owledge: virtual memory sizes are not large enough to store
nowledge to be handled, and operations on knowledge (i.e. in-
ce) are computationally intolerable when knowledge bases
are maintained on secondary storage devices.

» problems show that the applicability of KS is limited, since
priate systems for the efficient knowledge management do
xist. Approaches combining KS with traditional Database
gement Systems (DBMS) for this purpose have failed for sev-
easons (see [1] for a description of the deficiencies of DB sup-
or KS).

olution to KS problem is to develop a new generation of sys-
aimed at the efficient management of large, shared KB. Anal-
to DBMS, these systems are called Knowledge Base Manage-
Systems (KBMS) [2].

observation has motivated our research efforts to identify im-
nt design issues regarding an architecture for KBMS. Our in-
rations have shown that these issues are strongly influenced
ree classes of requirements. Firstly, KBMS should satisfy the
rements of their applications (i.e. KS or end-users). Secondly,
must support the needs of the KB-designer, who plays a very
tant supporting role in this context. And thirdly, some imple-
ation aspects in terms of data structures and algorithms
d be taken into account, in order to manage the knowledge ef-
tly. Thus, KBMS should provide features obtained from three
ent points of view. So, we believe that KBMS should be archi-
rally divided in three different layers: implementation layer,
eering layer and application layer, which respectively support
of the above classes of requirements.

We feel that the above points are involved with a number of qu
new ideas, which we incorporated in a multi-layered prototyp:
KBMS. Clearly, some of these ideas, which we combined to appl;
a KBMS context, are related to approaches developed in differ
projects [3,4]. However, these projects handle one or more of th
ideas in an isolated manner, not taking into account the pract;
use of them in KBMS. In this paper, we describe our prototypical
chitecture for KBMS, called KRISYS, showing above all how th
and other approaches can be combined in order to build reali;
KBMS. To motivate our ideas, we first review the results of our
vestigation: the KBMS architectural issues that arise when
dressing the above mentioned three classes of requirements.

2. Architectural Issues

Traditionally, knowledge representation systems or KS com
nents responsible for the knowledge management have been

signed just to support what we called the engineering layer. Si
the manner of knowledge organization and access is visible at
external interface of those systems, KS possess information ab
the knowledge organization and retrieval possibilities built i
their logic (i.e. embedded in their programs). Any modification
the knowledge structures therefore requires program modifi
tions. Changing the kind of representational framework used,
example from frames to semantic networks, would be even impo:
ble, since this would mean throwing the entire KS away and imj
menting a new one.

However, with complex KS and very large KB on the horizon, t
dependence on the framework supported by a knowledge repres
tation system promises to be very problematic. Knowledge indep
dence as an analogy to data independence seems to be the key |
swer to this problem. Knowledge representation systems must
characterized not in terms of the representational framework t]
use, but functionally, in terms of what they know about the KS
main.

This idea of abstraction aimed at the independence of knowle
motivated us to introduce another layer (the application layer) o
the engineering layer in the architecture of KBMS. At the object-
straction interface, KS can, therefore, work independently from
specification of the representational framework supported by
engineering layer. In fact, KS are not interested in things like
complexity of frame structures, the variety of links in a semar
network, the properties of inheritance mechanisms or the powe:
reasoning facilities. They are really interested in what they can
or tell the KBMS about the knowledge of their domain, whicl
stored in the KB managed by the KBMS. This motivated us alsc
believe that the KS interface is the one supported by the applicat
layer (object-abstraction interface). The interface for the KB-
signer is, however, a different one. He (in opposition to the KS
concerned with the aspects of the representational framework.
decides, whether a specific information is to be represented a

2.1 The Application Layer

d at knowledge independence, the application layer should
knowledge functionally, in terms of only two basic types of op-
ns supported at this level: one to enable the KS to ask the
S questions to be answered on the basis of the knowledge kept
» KB and another one to permit the KS to tell the KBMS new
ledge to be maintained in the KB. Therefore, at the object-ab-
ion interface the KB can be compared with an abstract data
hat interacts with the end users or KS through a set of "ask"
tell" operations. Thus, the way the knowledge is captured or
red is hidden from the KS. Because of this, no distinction can
de between knowledge that is extensionally stored and that
1. has to be implied (intensionally). Whether just simple re-
U capabilities or inference of some kind is required to answer
stion, is not to be decided by the KS, but in the layer.

functional view of the KB has also been introduced in KRYP-
[3], where ask and tell operations are split in two different in-
es: a terminological Thox, and an assertional Abox. However,
sues supported by KRYPTON do not meet the idea of knowl-
independence. Before making changes in a KB a KRYPTON
has to decide for example, whether the KB's theory of the
‘should imply these changes (tell operation at the Abox) or the
vocabulary should include them (tell operation in the Tbox).
1er words, he has to decide whether these changes should be
sionally represented or extensionally. We argue that such a
on should not be made by the user but in the application layer,
1t the way knowledge is represented can be hidden from the
m's users. We believe that this is the only possible way to view
as an abstract data type. Furthermore, KRYPTON's interface
ot been developed for a KBMS context and consequently is nei-
flexible nor powerful enough to meet the requirements of
S applications. (For example, ask statements are restricted to
> questions).

juery language provided at the object-abstraction interface
naturally permit adequate and flexible ways to select the ap-
ion’s domain knowledge and to cause changes in the KB cor-
nding to the many ways knowledge can be accessed and
red. Furthermore, it must be set-oriented. This permits the KS
ain several "pieces-of-knowledge" with just one operation, re-
g communications overhead between KS and KBMS and offer-
1 enormous optimization potential for the lower layers. Addi-

acteristics Interface Layer
KS or KB
object-
abstraction —
interface
Knowledge o
) Abstraction Application
es, object-
age- oriented —
ing interface
i Knowledge Representation . :
onin - ;
g and Manipulation Engineering
al data object- —
tures supporting
similar interface Search an Access Imol tati
tions Optimization mpiementation

Figure 1: Overall architecture of a KBMS

way knowledge is represented and manipulated).

2.2 The Engineering Layer

The engineering layer focusses on a KBMS from the point of v:
of the KB-designer. Here the KBMS is seen in terms of how
knowledge of an application can be represented, organized, and 1
nipulated. In other words, this layer deals with descriptive, orgs
zational and operational aspects of a knowledge representat
model supported for the KB-designer at the engineering layer’s
terface (object-oriented interface). Concerning the descriptive pt
ciples:

¢ Entities in the application’s world should correspond to exa
one object in the model.

¢ Each object should be composed of attributes expressing
properties of the entities.

¢ Attributes are multiple-valued and should be further descril
(e.g. data type of the attribute values, etc.).

* Objects are described by object types (i.e. classes), which sho
also be objects of the model.

¢ (Classes characterize prototypical instances, i.e., properties
scribed in the classes might be contradicted by particular
stances.

* Objects can be instances of several classes.

¢ Relationships between entities should be expressed as propert
of objects [5].

Concerning the organizational principles, the abstraction conce
[6,7,8], extensively used in Al knowledge representation syste:
are the best candidates:

* Objects are to be grouped into classes (classification), which
turn, should be organized into class hierarchies providing
means for the overall organization of the KB (generalization)

¢ Inheritance must be supported, in order to eliminate unnec
sary definitions. Multiple inheritance should also be allow
and the notion of inheritance should be that of default [9,6].

¢ Similar element objects should be organized into set-element
erarchies (association).

e Aggregation of component objects should be supported, :
might be applied recursively, so that another organizational
mension of the KB can be defined.

Operational issues should primarily support object orientati
This will allow the attributes of the objects to store either extensi
al or intensional data, which are accessed in a uniform way (i.e.
sending object messages). Moreover, object orientation make;
possible to extend the functionality of the layer interface very e:
ly, since it permits the KB-designer to define his own functic
which as attributes of objects can also be directly addressed at
interface by message passing. Reasoning facilities should also
provided. The knowledge representation model should offer alre:
implemented general purpose reasoning functions, not prohibiti
however, that these functions may be substituted by special o
developed by the designer. Mechanisms for checking integrity c
straints are to be provided too. To define constraints this la
should enable the KB-designer to define procedures that are linl
to attributes of objects and are automatically activated before or
ter such attributes are accessed or updated. These procedures
tached to data will then perform the necessary checks, and the
responding actions to keep the KB in a consistent state.

LS supply to the engineering and application layers. For this
n, many of the issues here are related to traditional DB prob-

requisite to identify the specific requirements to be supported
s the investigation of the behavior of KS running on second-
orage environments. In order to pursue this investigation, we
adapted some available KS to work on such environments [10].
bservations may be summarized as follows:

e accesses made at the implementation layer interface (object-
yporting interface) are mainly to tiny granules refering to in-
idual attributes of objects rather then to objects as a whole.

e attributes’ access frequencies differ very much. Dynamic at-
outes (i.e., the specific knowledge of a consultation) are access-
with very high frequencies; static attributes (i.e., the expert
owledge of the KS) on the other hand with very low frequen-
S.

e dynamic knowledge can be kept temporarily, since it only ex-
sses information of a particular consultation.

multi-user environments, the KBMS must maintain as many
sions as the number of users working with the KB for the dy-
mic knowledge. These versions are then accessed individually,
that synchronization should only be controlled for the static
owledge.

each phase of the problem solving process, accesses concen-
te on just some objects of the KB. These objects build a context
ich contains the knowledge needed to infer the specific goal of
it phase. The context needed in each phase can be established
some information that the KS deduces during the preceding
ases (i.e., dynamic knowledge), so that it is possible to deter-
ne the next context needed at the end of a phase. This enables
ynamic preplanning of the accesses to the KB that should be
d at this layer for optimization purposes.

rage structures for the KB should give more priority to the op-
iization of the retrieval operations, since modifications in the
uctures of the KB (e.g. changing object types) are very seldom.

3. The KRISYS-Prototype

3.1 Overview of the System Architecture

YS is architecturally divided in three different modules, which
t the aspects of the previously discussed layers (Figure 1). The
ation layer corresponds to the Query-Processing Manager
re 2). Here, knowledge independence is supported by the
YS Object-Abstraction Language (KOALA), which character-
he object-abstraction interface. To implement the engineering
we choose a Frame-System (KRISYS Frame System KFS)
, in turn, supports the interface to the KB-Designer and to
luery-Processing Manager, i.e., the object-oriented interface.
mplementation layer requirements are fulfilled by the Work-
[lemory and Context Manager (WMCM) and by a DBMS Ker-
VMCM embodies the nearby application locality concept, i.e.,
-eservation of the locality of the application’s object processing

Hitke i lav.©

raycl

,, < Object-abstraction
interface

Query-Processing
Manager

. Object-oriented
interface

<« Object-supporting
interface

Working-Memory

Implementation and Context Manager

DBMS kernel

Figure 2: The KRISYS Architecture

3.2 Query-Processing Manager

The application layer of KRISYS can be better characterized by
description of its object-abstraction interface, the language KOA!
which defines all interactions between a user or application and
system, which occur with two types of operations:

ASK - toask KRISYS, whether an "expression" is true,
retrieving the qualified knowledge,
TELL - to tell KRISYS, that an "expression"is true,

changing the KB appropriately
The Ask-Statement

An Ask-statement contains two parts; a projection and a select
(i.e. qualification) part.

ASKI[<projection>][<selection>]

The last one specifies the expression to be proved, which is stz
tured in accordance to the first-order predicate calculus. The se
tion is evaluated following the model-theoretic approach [11].
other words, ask-statements are evaluated as true or false with
spect to the KB. During evaluation, the Closed World Assumpt
(CWA) [12], the Unique Name Assumption (UNA), and the Dom
Closure Assumption (DCA) are taken as granted. For example,
query (ASK (IS_INSTANCE tweety penguin)) would be true onl
there exists both tweety and penguin as objects of the KB relatec
the abstraction concept of classification.

The logical formulas are built with predicates (e.g. IS_INSTAN
in the above example). These use either constants, variables
functions as their terms. The last one can, in turn, use variable:
constants as terms again, in order to address the objects of the]
KOALA supports functions and predicates to be applied to obje
(schemas), attributes (slots), attribute values (slot values) and
tribute descriptions (aspects). Some important object predice
are those used to express the abstraction concepts of classificati
instantiation (IS_ INSTANCE) generalization/specialization (
SUBCLASS) and association (IS_ELEMENT, IS_SUBSET). '
next example shows a query which asks whether or not elephan
a specialization of mammal and an element of the
animals_from_africa:

(ASK (AND (IS_SUBCLASS elephant mammal)
(IS_ELEMENT elephant animals_from_africa)))

To manipulate attributes, KOALA offers functions to select all s
of an object, only the inherited ones, the inherited ones from a
ticular object, the slots defined for an object (i.e. not inherited),
instance_slots, its own_slots, its standard_slots or its wus
defined_slots. These functions have as their result a set of sl
which are to be interpreted as the components of the specified ob;
(abstraction concept of aggregation). If someone would like to ¢

(IS_IN nutriment (INHERITED_SLOTS camel
(SUPERS mammal))))

ions about slot values can be expressed by a lot of predicates,
1 use functions to access the slot value itself (e.g. SLOTVALUE
name> <schema_name>). The equality predicate can be used
for example, to express that a slot value is equal to a specific

(EQUAL milk (SLOTVALUE nutriment camel)))

rical comparison predicates are also provided. Furthermore,
other functions, it is possible to evaluate arithmetic expres-
such as, sum, average, minimum and maximum value of a set
mbers or even to count the number of elements of a set.

yute description predicates allow the application to formulate
ions about slot value restrictions, cardinality specifications,
or example, the query

(IS_POSSIBLE_VALUE fly (ASPECTVAL
POSSIBLE_VALUE
form_of locomotion mammal)))

s, whether the value fly is allowed in the slot

of_locomotion of the object mammal.

-ientation is achieved by using variables in the logical formu-
ariables express either objects, attributes, attribute values or
ute descriptions of the KB. During evaluation they are instan-
| with all values, which satisfy the logical formulas. Because of
CA, formulas, which contain variables that cannot be instan-
, are assigned ’false’. To ask whether there exists any bird
annot fly, one can use variables to create the following ques-

(EXIST ?X (AND (IS_INSTANCE ?X bird)
(NOT(IS_IN fly (SLOTVALUE
form_of locomotion 7X))))))

bles can also be used to construct questions involving more
one object (roughly analogous to a database join). The user can
obuild queries combining variables that represent different
s (i.e. objects, attributes, attribute values or attribute descrip-
. For example, to know whether there is any object in the KB
nas stored a specific value in any of its attributes, someone
d pose the question

(EXIST ?X 7Y (AND (IS_SCHEMA ?7X)
(IS_IN ?Y (ALL_SLOTS ?7X))
(EQUAL specific_value
(SLOTVALUE ?Y ?X)))))

lently, the user is also interested to see the instances, which
v his logical formulas (e.g. to identify the dogs descending from
ime parents), in addition to the boolean value of these formu-
e can specify this in the projection part of the ask-statement.
xample, if someone would like to know which mammals can
, he should ask

(?X) (AND (IS_INSTANCE ?X mammal)
(IS_IN swim (SLOTVALUE
form_of locomotion ?X))))

rojection also enables the user to express exactly which parts
accessed information (objects, attributes etc.) he would like to
'his can be achieved by using specific projection clauses or by
ning different variables (e.g. variables that represent objects
those that represent attributes). For example, if someone
5 to see the dogs stored in a KB together with the value of the
hey have in common with cats, one would ask KRISYS the fol-

g query:

Recursive queries may be expressed using the PATH predic:
with which a special class of recursion equations, called generali
transitive closure (GTC) [13], can be specified. Unfortunately,
to space limitations it is not possible to discuss these aspects he
(For a detailed description see [1]).

The Tell-Statement

The tell-statement takes a sentence and asserts that it is true. ’
effect is to change the KB into one whose contents imply that s
tence. Naturally, it can also occur that the contents of the KB
already imply the sentence asserted. In this case, no changes wil
made, since they are not required. For example, if the KS asse
that penguin is a subclass of bird, expressing "(TEF
(IS_DIRECT_SUBCLASS penguin bird))" two situations can occ
Either the KB already contains this information, requiring
changes, or the KB does not contain it and consequently chan
must be made. Here, many things can happen. If neither bird

penguin exist as objects in the KB, both will be created and rela
to each other by the abstraction concept of generalization. If o
one of them exists, the other one will then be created and relate
the first one as specified above. And if both of them exist only

generalization relationship will be built.

TELL<assertion>[WITH<selection>]

The sentences to be asserted are specified in the assertion par
the tell-statement. An assertion is syntactically similar to the se
tion part (see ask-statement), however, much more restrictive. I
for example, not possible to specify formulas combined with log
connectors, in order to avoid ambiguities (note, that if someone
serts p v q, it is impossible to know whether p, q or both are tr
Nevertheless, several assertions can be specified, which will ther
interpreted independently, i.e., KRISYS will make each one tru

(TELL (IS_DIRECT_SUBCLASS penguin bird)
(IS_DIRECT_INSTANCE tweety penguin)
(EQUAL frankfurt_zoo (SLOTVALUE address tweety))

If the same assertions should be made valid for several objects, a
can specify this requirement in just one tell-statement by us
variables to represent these objects. The variables would then be
stantiated during the evaluation of the selection part, which has
same syntax and works just like the selection of the ask-stateme
After this evaluation, the assertions will then be applied for each
stance of the variables that satisfy the selection. The following
ample shows a query expressing the assertion that every anii
that lives in water (here represented as elements of the set wa
animal) can swim:

(TELL (IS_IN swim (SLOTVALUE locomotion ?X))
WHERE (IS_ELEMENT ?X water_animal)).

Another example for the use of variables shows the following qu
which expresses that every owner of a dog of the KB should alsc
an object of the KB:

(TELL (IS_SCHEMA ?7X)
WHERE (FOR ALL ?Y WITH (IS_INSTANCE ?Y dog)
(IS_IN ?X (SLOTVALUE owner ?Y)))).

Summarizing this chapter, we can say that the object-abstract
interface is completely specified by the above two operations. "T
takes a sentence and asserts that it is true, changing the KB i
one whose contents imply the assertion. "Ask" takes a sentence ¢
checks on the basis of the current contents of the KB whether i
true or not. Schematically, they can be described as

TELL : KB x sentence
ASK : KB x sentence

> KB Sentence is true
> T/F Is sentence true °

idden from the user. The KB is characterized as an abstract
type, specified only by these two operations rather than by a
n implementation structure.

3.3 The Frame-System

100se a frame system [4] to implement our engineering layer,
se we believe that it offers the necessary framework to repre-
he descriptive, organizational and operational aspects of the
in knowledge of any KS.

t-Oriented Representation

> KRISYS Frame-System (KFS) the three aspects mentioned
- are incorporated in its basic concept: the schema. A schema
symbolic representation of a real world entity. It is composed
hema name and of a set of attributes. Attributes can be of two

ts, used to describe the descriptive and organizational aspects
he schema, and

thods, used to describe its operational aspects.

fore, KF'S could be named object oriented. It allows both at-
ive characteristics and procedural properties of the real world
es to be integrated into a schema.

ns in KF'S occur by sending messages to the objects, which can,
n, communicate with other objects by message passing. This
pt supports the important principle of data abstraction. That
order to request the methods of some objects to be performed,
sumptions have to be made about the implementation and in-
| representation of the objects (i.e. slots and methods).

and methods have the same structure. Both possess name,
, type and a schema-name, that specifies where the attribute
efined (origin). The type indicates whether an attribute repre-
characteristics of the schema itself, or of its instances. Char-
stics of a schema are described by the types OWNSLOT and
METHOD, whereas the instance ones by INSTANCESLOT
NSTANCEMETHOD, respectively.

iated with the attributes there can be aspects, which are used
scribe the attribute more exactly. Five aspects are predefined
'S for slots: possible-values, cardinality, comment, default and
ns. Figure 3 shows the structure of the schema elephant. Since
tributes shown in the example describe characteristics of ele-
> itself, they have type OWNSLOT or OWNMETHOD (the
ing of the slots INSTANCE-OF and ELEMENT-OF will be de-
d later).

phant
I\STANCE_OF mammal OWNSLOT GLOBAL
LEMENT_OF savanna-animal OWNSLOT GLOBAL

rm-of-locomotion (walk swim) OWNSLOT animal
POSSIBLE_VALUES (walk fly swim)
CARDINALITY [1,3]
DEFAULT (walk)

abitat (savanna) OWNSLOT animal
POSSIBLE_VALUES INSTANCE_OF habitat-class)

CARDINALITY [O, o]
COMMENT (This slot contains the places, where this
animal is found in the nature)
at (<code>) OWNMETHOD animal
PARAMETER (food)

Figure 3: Example Definition of the Schema Elephant

sSlots, that are automatiCally activated wnen tnese slots are acce
ed. This concept of data-oriented computation is very useful to r
resent intensional data or to check complex integrity constrai
For example, if someone wants to represent some informat
whose value changes with respect to other data (e.g. the exact
of a person, which changes every day), he needs a mechanism t
generates the extensional value of this information automatica
each time this information is accessed. This can be realized in K
by using demons.

Demons are stored in a KFS schema (like any other), which I
however, the predefined schema DEMON as its most superclass.
an instance of DEMON this schema inherits the method attribu
GET, PUT, ADD and RETRACT, where the code for the respect
demons are stored (represented by schema D1 in Figure 4).

The linkage between slot and corresponding demons is done by s
ing in the demons aspect of the slot (S1) the schema name of the
spective demons (D1). Whenever an access to the slot is made K
checks if there is a demons aspect defined in this slot, activatin
by sending a message to the schema specified there, demanding
evaluation of the corresponding demon. That is, the method sp
fied in GET will be invoked if a get-access has been issued to K
the method PUT is invoked by issuing a put-access etc. By not s
ing the demon-code directly in the aspect of the slot, as is done
many systems, KFS allows many slots to use the same dem
without having to introduce redundancy in the representation. K
additionally allows the KB-designer to specify when the den
should be activated (i.e. before or after the access to the slot). T
flexibility allows the use of demons for many different purposes.
mons applied to check integrity constraints should be activated
fore updating the value of a slot, whereas those used to trigger
tions when particular slots are accessed should be activated a
the access itself.

schema-x

Sl <S1-value> OWNSLOT <S1-origin>
POSSIBLE-VALUES (...)

DEMONS D1

D1
INSTANCE_OF (DEMON)
GET <get-code) OWNMETHOD DEMON
PUT <put-code> OWNMETHOD DEMON
ADD <add-code> OWNMETHOD DEMON
RETRACT <retract-code> OWNMETHOD DEMON

DEMON

get-slot-value s
(schema-x, S1) schema -X - —>G T
PUT
Demon D ADD

RETRACT

Figure 4: Activation of Demons

Knowledge Organization

In order to enable the KB-designer to structure the KB adequat:
KF'S supports various abstraction concepts. These are represen
as relationships between objects specified by predefined sl
which are contained within every schema. The abstraction conc
of generalization is represented by the slots SUBCLASS_OF :
HAS_SUBCLASSES. INSTANCE_OF and HAS_INSTANCES

used to specify the classification relationship. The association c

any special slot for its representation.

lating objects to another, hierarchies are built, where a partic-
schema can play the role of a class (i.e. object type), an in-
e, a set and/or an element. Since a schema is able to reflect an
1ce and a class as well, we need two different slot and method

to know whether a slot represents characteristics of itself
N\SLOT and OWNMETHOD) or of its instances (INSTANC-
)T and INSTANCEMETHOD).

itance

f the advantages of organizing the schemas into abstraction
rchies are the built-in reasoning facilities they provide [6]. By
ng objects with abstraction relationships, special "automatic"
ning facilities are supported as part of each modification and
val operation. The most usual and important of these reason-
cilities is the one built-in the is-a hierarchy i.e. inheritance. In
only instanceslots and instancemethods are inherited, since
wnslots and ownmethods represent characteristics of their
1as. Between schemas linked with association relationships no
itance occurs. Here, as well as over aggregation relationships,
kinds of built-in reasoning facilities are provided. For a de-
' description of these facilities see [6].

nin,

also supports general reasoning facilities. Rules in KFS are
sented as schemas, which are also organized in special hierar-
having two predefined schemas as superclasses. One of these
1as specifies the structure of the rules, i.e. this schema
ES) contains some instanceslots (condition, action, etc.) which
herited by each rule. In order to construct a rule base, the KB-
ner has only to store the particular contents of the condition,
1, etc. in the respective slot of each rule. The other top level
12 (RULE-SETS) contains methods corresponding to the stan-
inference strategies, which are then inherited by each set of

ticular rule of KF'S can, therefore, be used in both reasoning
ions (i.e. forward-reasoning and backward-reasoning) without
g to be stored redundantly. The reasoning direction of the
are dynamically defined when the KS requests the activation
> of the inference strategies. Since these are implemented as
ods, the activation of reasoning mechanisms is made by send-
message to a rule set. This will then activate its corresponding
bd (forward-reasoning or backward-reasoning) evaluating
of its rule elements.

narizing this chapter, we can argue that KFS supports all is-
1eeded at the engineering layer. Descriptive aspects are satis-
y the rich declarative part of our frame model, i.e. the struc-
f schemas, slots, slot values and aspects. Organizational as-
are supported by the abstraction hierarchies and inheritance.
1tional requirements are met by allowing the KB-designer to
y his own methods (object orientation), by supporting at-
d procedures (data-oriented computation) and by offering rea-
g mechanisms.

3.4 Working-Memory and Context Manager

ready mentioned, the goal of this component of KRISYS is to
le a framework for the exploitation of the application’s locali-
is, therefore, desirable to have a mechanism that enables re-
n of DBMS calls and the reduction of the path length when ac-
1g the objects of the KB, allowing the application to reference
s almost directly. This is reached by storing needed objects
rarily in a special main memory structure called working-

to the stored objects.

The approach used to support locality, is to dynamically extract
context (see 2.3) needed in each phase of the application’s prob]
solving process from the DBS. Therefore, during changes of proc
ing phases the old context would be discarded from the worki
memory and the new one loaded into it. Since the application’s
cesses will then be concentrated on the objects of the loaded contt
only a few DBS calls will be made during the next processing phz
Due to the set-oriented specification of the required objects,

DBS can use its optimization potential, reducing I/O and tran:
overheads. Furthermore, the tiny granules of the application’s
cesses will not bring any inefficiency, since the path length when
cessing the objects is now very short. (Details about the inter
structure and implementation aspects of the working-memory
provided by [1]).

duration of consultation ratio to main
(CPU-sec) memory approac
main mamory approach 146 1
direct coupling 28105 ~ 170
coupling with application 2946 ~18
buffer
WMCM 643 ~4

Figure 5: Performance Comparison of Different
Coupling Approaches between KF'S andDBS

The performance of WMCM has been compared with the per
mance of other coupling approaches between KF'S and DBS (Fig
5). In this case we use a main memory-based form (i.e. when

whole KB is stored in main memory) as basis for this comparisi
Coupling KF'S and DBS directly seems to be the most inefficient
ternative, due to the long path length (from application to DB-b
er) by the application’s very tiny access granules. This problen
eliminated by using an application buffer, which uses LRU as a
cation/deallocation strategy, to keep the most recently used obje
This approach needs, however, to perform very many DBS cz
since individual objects are frequently being extracted from

DBS and stored into it. This is particularly critical after change
processing phases, when most of the needed objects are not foun
the buffer. We solved this problem by a set-oriented fetch, as

scribed above, which accomplishes an efficiency very close to

main memory approach. Indicative performance figures of a par
ular example as illustrated in Figure 5 are derived in [10].

3.5 DBMS Kernel

Due to space limitations it is not possible to discuss the aspect:
the DBMS kernel and the mapping of frames with it in suffici
depth.

The DBMS kernel architecture chosen for KRISYS [14, 15,16] +
developed for the support of the so called non-standard appl:
tions. For this reason, our kernel, named PRIMA, offers neut
yet powerful mechanisms for managing KB of all types of KS e
ciently: storage techniques for a variety of object sizes, flexible r
resentation and access techniques, basic integrity features, lock
and recovery mechanisms, etc. [17]. PRIMA is a PRototype Im;
mentation of the MAD model. MAD provides dynamic definit
and handling of objects, based on direct and symmetric mans

orocess are found in [18,19, 20].

3.6 Summarizing Example

s chapter, we illustrate the control flow through the KRISYS
s by giving a simplified example of the operations needed to
a KS query at each of the system interfaces (we consider the
ing-Memory as been empty at the beginning of an evalua-
Since a complete description is too space-consuming, we re-
ourselves to essential properties expressing the flavor of the
1al operations.

ree structure of Figure 6 indicates the calling hierarchy need-
- the evaluation of an ASK-statement (where control opera-
te. are dropped for simplicity reasons). Exploitation of infor-
n encountered in the Working-Memory would save (expen-
calls to the DBMS kernel interface (with accesses to the
S buffer or even to the disks). Perfect locality preservation
| avoid any kernel calls for repeated object references.

rammal) (IS_ELEMENT ?X water_animal)))

N

getelements(water_animal) getschema(whale)

ments_of getobject(V1)...getobject(Vm) getobject(whale)|

animal)
local processing exploiting
the Working-Memory
LECT ...
OM ...
IERE ...

n of an ASK-statement

presented the design of our prototype, named KRISYS. We h
advocated the division of KBMS in three different layers, which
spectively support the requirements of the application, the ne
of the KB-designer and the requirements of an efficient mans
ment of the KB. The main philosophy of the system is the ide:
abstraction aimed at the independence of knowledge. At the s
tem interface, knowledge is seen not in terms of the flexible rej
sentational framework supported by the engineering layer
functionally, in terms of the application’s beliefs about its dom:
In order to achieve this functional view of the KB, it is necess
to restrict the communication between application and KBMS
ASK and TELL operations, however, providing:

* multiple ways to select the application’s domain knowledge.
¢ user defined projections,

¢ flexible forms to cause changes in the KB,

* set-orientation, and

* recursion.

A second very important philosophy is the effective support of
needs of the KB-designer. Clearly, this philosophy has also b
the goal of most existing knowledge representation systems wk
try to support these needs by focusing on the improvement of
expressiveness (i.e. descriptive aspects) of their representat
model. However, in a KBMS context expressiveness is just on
the three aspects to be considered at the engineering layer. He
organizational and operational aspects are equally as importan
descriptive ones. Because of this, an effective support of the ne
of the KB-designer is to be achieved by a mixed knowledge reg
sentation framework offering:

* object-orientation,

¢ data-driven computation,

* mechanisms for knowledge organization (i.e. all abstract
concepts),

¢ inheritance and other built-in facilities, and

* reasoning mechanisms,

all of them uniformly integrated with a very rich descriptive p:

A number of concepts used in the KRISYS implementation pay
tention to performance requirements. Most important is
framework provided by the implementation layer for the explo
tion of the application locality. A single-user version of KRISY
now complete. KRISYS is to be considered a research vehicle fc
variety of KS. It is intended, therefore, to run as a tool for build
KS and as a generic system, aimed at the effective and effici
management of large knowledge bases.

Acknowledgement

I should like to thank T. Harder and B. Mitschang for the helj
comments on the revision of this paper, and H. Neu and I. Lit
for preparing the manuscript.

References

[1] Mattos, N.M.: KRISYS - A Multi-layered Protot
KBMS Supporting Knowledge Independence, Resea
Report ZRI No. 2/88, University of Kaiserslautern, 1€

[2] Mylopoulos, J.: On Knowledge Base Management £
tems, in: [21], pp. 3-8.
[3] Brachman, R.J., Fikes, R.E., Levesque, H.J.: Kryptor

Functional Approach to Knowledge Representation,
Computer, Vol. 16, No. 10, 1983, pp. 67-73.

[4] Fikes, R., Kehler, T.: The Role of Frame-based Repres
tation in Rsoning, in: Commications of ACM, Vol. 28,
9, September 1985, pp. 904-920.

[5] Borgida, A.: Survey of Conceptual Modeling of Infor:
tion Systems, in: [21], pp. 461-470.

Schrefl, M., Tjoa, A.M., Wagner, R.R.: Comparison-Crite-
ria for Semantic Data Models, in: Proc. IEEE 1st Int. Conf.
on Data Engineering, Los Angeles, 1984, pp. 120-125.
Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.): On
Conceptual Modelling (Perspectives from Artificial Intel-
ligence, Databases, and Programming Languages), Topics
in Information Systems, Springer, New York, 1984.
Borgida, A., Mylopoulos, J., Wong, H.K.T.: Generaliza-
tion/Specialization as a Basis for Software Specification,
in: [8], pp. 87-114.

Harder, T., Mattos, N., Puppe, P.: On Coupling Database
and Expert Systems (in German), in: State of the Art, Vol.
1, No. 3, 1987, pp. 23-34.

Gallaire, H., Minker, dJ., Nicolas, J.-M.: Logic and Data-
bases: A Deductive Approach, in: ACM Comp. Surveys,
Vol. 16, No. 2, June 1984, pp. 153-185.

Reiter, R.: On Closed World Databases, in: Logic and Da-
tabases, (eds. Gallaire, H. and Minker, J.), Plenum, New
York, pp. 56-76.

Dayal, U., Smith, J.M.: PROBE: A Knowledge-Oriented
Database Management System, in: [21], pp. 227-257.
Harder, T., Reuter, A.: Architecture of Database Systems
for Non-Standard Applications (in German), in: Proc. of
the GI-Conf. on Database Systems for Office, Engineering
and Science Environments, 1985, pp. 253-286.

Dadam, P., et al.: A DBMS Prototype to Support Extended
NF2-Relations: An Integrated View on Flat Tables and
Hierarchies, in: Proc. ACM SIGMOD Conf., Washington,
D.C., 1986, pp. 356-367.

Paul, H.-B., Schek, H.-J., Scholl, M.H., Weikum, G., Dep-
pisch, U.: Architecture and Implementation of the Darm-
stadt Database Kernel System, in: ACM SIGMOD Conf.,
San Francisco, 1987, pp. 196-207.

Harder, T., Meyer-Wegener, K., Mitschang, B., Sikeler,
A.: PRIMA - A DBMS Prototype Supporting Engineering
Applications, in: Proc. 13th VLDB Conf., Brighton, 1987,
pp- 433-442.

Mitschang, B.: A Molecule-Atom Data Model for Non-
Standard Applications - requirements, data-model design,
and implementation concepts (in german), PhD Thesis,
University of Kaiserslautern, 1988.

Mattos, N.M.: Mapping Frames with the MAD model (in
German), Research Report No. 164/86, Univ. Kaiserslaut-
ern, 1986.

Harder, T., Mattos, N., Mitschang, B.: Mapping Frames
with New Data Models (in German), in: Proc. GWAI'87,
Springer, 1987, pp. 396-405.

Brodie, M.L., Mylopoulos, J. (eds.): On Knowledge Base
Management Systems, Springer, New York, 1986.

