
Abstract

This paper discusses architectural issues of Knowledge Base Man-

agement Systems and describes the architecture of KRISYS, a sys-

tem whose goal is the effective and efficient management of large,

shared knowledge bases. Focal points are primarily the design de-

cisions and the system’s features: knowledge independence, object-

orientation, mechanisms for knowledge organization, data-driven

computation, inheritance mechanisms, reasoning facilities, etc.

Naturally, some of these issues which we have been combining to

use in a KBMS context, are similar to approaches developed in dif-

ferent isolated projects. Instead of giving a detailed comparison of

our approaches and those of other projects, we show in this paper

how they can be architecturally combined to build realistic KBMS.

Key words: AI architectures, Knowledge Base Management Sys-

tems, Database support for Knowledge-Based Systems

1. Introduction

AI technology has produced a variety of knowledge-based systems

(KS) ranging from simple expert systems to complex natural lan-

guage understanding systems. When used for large-scale applica-

tions, KS are faced with problems of managing very large volumes

of knowledge: virtual memory sizes are not large enough to store

the knowledge to be handled, and operations on knowledge (i.e. in-

ference) are computationally intolerable when knowledge bases

(KB) are maintained on secondary storage devices.

These problems show that the applicability of KS is limited, since

appropriate systems for the efficient knowledge management  do

not exist. Approaches combining KS with traditional Database

Management Systems (DBMS) for this purpose have failed for sev-

eral reasons (see [1] for a description of the deficiencies of DB sup-

port for KS).

The solution to KS problem is to develop a new generation of sys-

tems, aimed at the efficient  management of large, shared KB. Anal-

ogous to DBMS, these systems are called Knowledge Base Manage-

ment Systems (KBMS) [2].

Such observation has motivated our research efforts to identify im-

portant design issues  regarding an architecture for KBMS. Our in-

vestigations have shown that these issues are strongly influenced

by three classes of requirements. Firstly, KBMS should satisfy the

requirements of their applications (i.e. KS or end-users). Secondly,

they must support the needs of the KB-designer, who plays a very

important supporting role in this context. And thirdly, some imple-

mentation aspects in terms of data structures and algorithms

should be taken into account, in order to manage the knowledge ef-

ficiently. Thus, KBMS should provide features obtained from three

different points of view. So, we believe that KBMS should be archi-

tecturally divided in three different layers: implementation layer,

engineering layer and application layer, which respectively support

each of the above classes of requirements.

We feel that the above points are involved with a number of quite

new ideas, which we incorporated in a multi-layered prototypical

KBMS. Clearly, some of these ideas, which we combined to apply in

a KBMS context, are related to approaches developed in different

projects [3,4]. However, these projects handle one or more of these

ideas in an isolated manner, not taking into account the practical

use of them in KBMS. In this paper, we describe our prototypical ar-

chitecture for KBMS, called KRISYS, showing above all how these

and other approaches can be combined in order to build realistic

KBMS. To motivate our ideas, we first review the results of our in-

vestigation: the KBMS architectural issues that arise when ad-

dressing the above mentioned three classes of requirements.

2.  Architectural Issues

Traditionally, knowledge representation systems or KS compo-

nents responsible for the knowledge management have been de-

signed just to support what we called the engineering layer. Since

the manner of knowledge organization and access is visible at the

external interface of those systems, KS possess information about

the knowledge organization and retrieval possibilities built into

their logic (i.e. embedded in their programs). Any modification in

the knowledge structures therefore requires program modifica-

tions. Changing the kind of representational framework used, for

example from frames to semantic networks, would be even impossi-

ble, since this would mean throwing the entire KS away and imple-

menting a new one.

However, with complex KS and very large KB on the horizon, this

dependence on the framework supported by a knowledge represen-

tation system promises to be very problematic. Knowledge indepen-

dence as an analogy to data independence seems to be the key an-

swer to this problem. Knowledge representation systems must be

characterized not in terms of the representational framework they

use, but functionally, in terms of what they know about the KS do-

main.

This idea of abstraction aimed at the independence of knowledge

motivated us to introduce another layer (the application layer) over

the engineering layer in the architecture of KBMS. At the object-ab-

straction interface, KS can, therefore, work independently from the

specification of the representational framework supported by the

engineering layer. In fact, KS are not interested in things like the

complexity of frame structures, the variety of links in a semantic

network, the properties of inheritance mechanisms or the power of

reasoning facilities. They are really interested in what they can ask

or tell the KBMS about the knowledge of their domain, which is

stored in the KB managed by the KBMS. This motivated us also to

believe that the KS interface is the one supported by the application

layer (object-abstraction interface). The interface for the KB-de-

signer is, however, a different one. He (in opposition to the KS) is

concerned with the aspects of the representational framework. He

decides, whether a specific information is to be represented as a
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2.1 The Application Layer

Aimed at knowledge independence, the application layer should

treat knowledge functionally, in terms of only two basic types of op-

erations supported at this level: one to enable the KS to ask the

KBMS questions to be answered on the basis of the knowledge kept

in the KB and another one to permit the KS to tell the KBMS new

knowledge to be maintained in the KB. Therefore, at the object-ab-

straction interface the KB can be compared with  an  abstract  data

type that interacts with the end users or KS through a set of "ask"

and "tell" operations. Thus, the way the knowledge is captured or

changed is hidden from the KS. Because of this, no distinction can

be made between knowledge that  is  extensionally  stored  and  that

which  has  to  be  implied (intensionally). Whether just simple re-

trieval capabilities or inference of some kind is required to answer

a question, is not to be decided by the KS, but in the layer.

This functional view of the KB has also been introduced in KRYP-

TON [3], where ask and tell operations are split in two different in-

terfaces: a terminological Tbox, and an assertional Abox. However,

the issues supported by KRYPTON do not meet the idea of knowl-

edge independence. Before making changes in a KB a KRYPTON

user has to decide for example, whether the KB`s theory of the

world should imply these changes (tell operation at the Abox) or the

KB`s vocabulary should include them (tell operation in the Tbox).

In other words, he has to decide whether these changes should be

intensionally represented or extensionally. We argue that such a

decision should not be made by the user but in the application layer,

so that the way knowledge is represented can be hidden from the

system`s users. We believe that this is the only possible way to view

a KB as an abstract data type. Furthermore, KRYPTON`s interface

has not been developed for a KBMS context and consequently is nei-

ther flexible nor powerful enough to meet the requirements of

KBMS applications. (For example, ask statements are restricted to

yes/no questions).

The query language provided at the object-abstraction interface

must naturally permit adequate and flexible ways to select the ap-

plication’s domain knowledge and to cause changes in the KB cor-

responding to the many ways knowledge can be accessed and

changed. Furthermore, it must be set-oriented. This permits the KS

to obtain several "pieces-of-knowledge" with just one operation, re-

ducing communications overhead between KS and KBMS and offer-

ing an enormous optimization potential for the lower layers. Addi-

way knowledge is represented and manipulated).

2.2  The Engineering Layer

The  engineering layer focusses on a KBMS from the point of view

of the KB-designer. Here the KBMS is seen in terms of how the

knowledge of an application can be represented, organized, and ma-

nipulated. In other words, this layer deals with descriptive, organi-

zational and operational aspects of a knowledge representation

model supported for the KB-designer at the engineering layer’s in-

terface (object-oriented interface). Concerning the descriptive prin-

ciples:

• Entities in the application’s world should correspond to exactly

one object in the model.

• Each object should be composed of attributes expressing the

properties of the entities.

• Attributes are multiple-valued and should be further described

(e.g. data type of the attribute values, etc.).

• Objects are described by object types (i.e. classes), which should

also be objects of the model.

• Classes characterize prototypical instances, i.e., properties de-

scribed in the classes might be contradicted by particular in-

stances.

• Objects can be instances of several classes.

• Relationships between entities should be expressed as properties

of objects [5].

Concerning the organizational principles, the abstraction concepts

[6,7,8], extensively used in AI knowledge representation systems,

are the best candidates:

• Objects are to be grouped into classes (classification), which, in

turn, should be organized into class hierarchies providing the

means for the overall organization of the KB (generalization).

• Inheritance must be supported, in order to eliminate unneces-

sary definitions. Multiple inheritance should also be allowed,

and the notion of inheritance should be that of default [9,6].

• Similar element objects should be organized into set-element hi-

erarchies (association).

• Aggregation of component objects should be supported, and

might be applied recursively, so that another organizational di-

mension of the KB can be defined.

Operational issues should primarily support object orientation.

This will allow the attributes of the objects to store either extension-

al or intensional data, which are accessed in a uniform way (i.e. by

sending object messages). Moreover, object orientation makes it

possible to extend the functionality of the layer interface very easi-

ly, since it permits the KB-designer to define his own functions,

which as attributes of objects can also be directly addressed at the

interface by message passing. Reasoning facilities should also be

provided. The knowledge representation model should offer already

implemented general purpose reasoning functions, not prohibiting,

however, that these functions may be substituted by special ones

developed by the designer. Mechanisms for checking integrity con-

straints are to be provided too. To define constraints this layer

should enable the KB-designer to define procedures that are linked

to attributes of objects and are automatically activated before or af-

ter such attributes are accessed or updated. These procedures at-

tached to data will then perform the necessary checks, and the cor-

responding actions to keep the KB in a consistent state.
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and its supply to the  engineering and application layers. For this

reason, many of the issues here are related to traditional DB prob-

lems.

A prerequisite to identify the specific requirements to be supported

here is the investigation of  the behavior of KS running on second-

ary storage environments. In order to pursue this investigation, we

have adapted some available KS to work on such environments [10].

Our observations may be summarized as follows:

The accesses made at the implementation layer interface (object-

supporting interface) are mainly to tiny granules refering to in-

dividual attributes of objects rather then to objects as a whole.

The attributes’ access frequencies differ very much. Dynamic at-

tributes (i.e., the specific knowledge of a consultation) are access-

ed with very high frequencies; static attributes (i.e., the expert

knowledge of the KS) on the other hand with very low frequen-

cies.

The dynamic knowledge can be kept temporarily, since it only ex-

presses information of a particular consultation.

In multi-user environments, the KBMS must maintain as many

versions as the number of users working with the KB for the dy-

namic knowledge. These versions are then accessed individually,

so that synchronization should only be controlled for the static

knowledge.

In each phase of the problem solving process, accesses concen-

trate on just some objects of the KB. These objects build a context

which contains the knowledge needed to infer the specific goal of

that phase. The context needed in each phase can be established

by some information that the KS deduces during the preceding

phases (i.e., dynamic knowledge), so that it is possible to deter-

mine the next context needed at the end of a phase. This enables

a dynamic preplanning of the accesses to the KB  that should be

used at this layer for optimization purposes.

Storage structures for the KB should give more priority to the op-

timization of the retrieval operations, since modifications in the

structures of the KB (e.g. changing object types) are very seldom.

3.  The KRISYS-Prototype

3.1  Overview of the System Architecture

KRISYS is architecturally divided in three different modules, which

reflect the aspects of the previously discussed layers (Figure 1). The

application layer corresponds to the Query-Processing Manager

(Figure  2).  Here,   knowledge   independence  is  supported  by   the

KRISYS Object-Abstraction Language (KOALA), which character-

izes the object-abstraction interface. To implement the engineering

layer we choose a  Frame-System (KRISYS  Frame System KFS)

which, in turn, supports the   interface to the KB-Designer and to

the Query-Processing Manager, i.e., the object-oriented interface.

The implementation layer requirements are fulfilled by the Work-

ing-Memory and Context Manager (WMCM) and by a DBMS Ker-

nel. WMCM embodies the nearby application locality concept, i.e.,

the preservation of the locality of the application’s object processing

3.2 Query-Processing Manager

The application layer of KRISYS can be better characterized by the

description of its object-abstraction interface, the language KOALA,

which defines all interactions between a user or application and the

system, which occur with two types of operations:

ASK - to ask KRISYS,  whether an "expression" is true,
retrieving the qualified knowledge, and

TELL - to tell KRISYS,   that an "expression" is true,
changing the KB appropriately

The Ask-Statement

An Ask-statement contains two parts; a projection and a selection

(i.e. qualification) part.

ASK[<projection>][<selection>]

The last one specifies the expression to be proved, which is struc-

tured in accordance to the first-order predicate calculus. The selec-

tion is evaluated following the model-theoretic approach [11]. In

other words, ask-statements are evaluated as true or false with re-

spect to the KB. During evaluation, the Closed World Assumption

(CWA) [12], the Unique Name Assumption (UNA), and the Domain

Closure Assumption (DCA) are taken as granted. For example, the

query (ASK (IS_INSTANCE tweety penguin)) would be true only if

there exists both tweety and penguin as objects of the KB related by

the abstraction concept of classification.

The logical formulas are built with predicates (e.g. IS_INSTANCE

in the above example). These use either constants, variables or

functions as their terms. The last one can, in turn, use variables or

constants as terms again, in order to address the objects of the KB.

KOALA supports functions and predicates to be applied to objects

(schemas), attributes  (slots),  attribute values  (slot values)  and at-

tribute  descriptions (aspects). Some important object predicates

are those used to express the abstraction concepts of classification/

instantiation (IS_ INSTANCE) generalization/specialization (IS_

SUBCLASS) and association (IS_ELEMENT, IS_SUBSET). The

next example shows a query which asks whether or not elephant is

a specialization of mammal and an element of the set

animals_from_africa:

(ASK (AND (IS_SUBCLASS elephant mammal)

(IS_ELEMENT elephant animals_from_africa)))

To manipulate attributes, KOALA offers functions to select all slots

of an object, only the inherited ones, the inherited ones from a par-

ticular object, the slots defined for an object (i.e. not inherited), its

instance_slots, its own_slots, its standard_slots or its user-

defined_slots. These functions have as their result a set of slots,

which are to be interpreted as the components of the specified object

(abstraction concept of aggregation). If someone would like to ask,
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(ASK (IS_IN nutriment (INHERITED_SLOTS camel

(SUPERS  mammal))))

Questions about slot values can be expressed by a lot of predicates,

which use functions to access the slot value itself (e.g. SLOTVALUE

<slot_name> <schema_name>). The equality predicate can be used

here, for example, to express that a slot value is equal to a specific

value:

(ASK(EQUAL milk (SLOTVALUE nutriment camel)))

Numerical comparison predicates are also provided. Furthermore,

using other functions, it is possible to evaluate arithmetic expres-

sions such as, sum, average, minimum and maximum value of a set

of numbers or even to count the number of elements of a set.

Attribute description predicates allow the application to formulate

questions about slot value restrictions, cardinality specifications,

etc. For example, the query

(ASK (IS_POSSIBLE_VALUE fly (ASPECTVAL

POSSIBLE_VALUE

form_of_locomotion mammal)))

checks, whether the value fly is allowed in the slot

form_of_locomotion of the object mammal.

Set orientation is achieved by using variables in the logical formu-

las. Variables express either objects, attributes, attribute values or

attribute descriptions of the KB. During evaluation they are instan-

tiated with all values, which satisfy the logical formulas. Because of

the DCA, formulas, which contain variables that cannot be instan-

tiated, are assigned ’false’. To ask whether there exists any bird

that cannot fly, one can use variables to create the following ques-

tion:

(ASK (EXIST ?X (AND (IS_INSTANCE ?X bird)

               (NOT(IS_IN fly (SLOTVALUE

                 form_of_locomotion ?X))))))

Variables can also be used to construct questions involving more

than one object (roughly analogous to a database join). The user can

also build queries combining variables that represent different

things (i.e. objects, attributes, attribute values or attribute descrip-

tions). For example, to know whether there is any object in the KB

that has stored a specific value in any of its attributes, someone

should pose the question

(ASK(EXIST ?X ?Y (AND (IS_SCHEMA ?X)

(IS_IN ?Y (ALL_SLOTS ?X))

(EQUAL specific_value

(SLOTVALUE ?Y ?X)))))

Frequently, the user is also interested to see the instances, which

satisfy his logical formulas (e.g. to identify the dogs descending from

the same parents), in addition to the boolean value of these formu-

las. He can specify this in the projection part of the ask-statement.

For example, if someone would like to know which mammals can

swim, he should ask

(ASK (?X) ( AND (IS_INSTANCE ?X mammal)

(IS_IN swim (SLOTVALUE

               form_of_locomotion ?X))))

The projection also enables the user to express exactly which parts

of the accessed information (objects, attributes etc.) he would like to

see. This can be achieved by using specific projection clauses or by

combining different variables (e.g. variables that represent objects

with those that represent attributes). For example, if someone

wants to see the dogs stored in a KB together with the value of the

slots they have in common with cats, one would ask KRISYS the fol-

lowing query:

Recursive queries may be expressed using the PATH predicate,

with which a special class of recursion equations, called generalized

transitive closure (GTC) [13], can be specified. Unfortunately, due

to space limitations it is not possible to discuss these aspects here.

(For a detailed description see [1]).

The Tell-Statement

The tell-statement takes a sentence and asserts that it is true. The

effect is to change the KB into one whose contents imply that sen-

tence. Naturally, it can also occur that the contents of the KB can

already imply the sentence asserted. In this case, no changes will be

made, since they are not required. For example, if the KS asserts

that penguin is a subclass of bird, expressing "(TELL

(IS_DIRECT_SUBCLASS penguin bird))" two situations can occur.

Either the KB already contains this information, requiring no

changes, or the KB does not contain it and consequently changes

must be made. Here, many things can happen. If neither bird nor

penguin exist as objects in the KB, both will be created and related

to each other by the abstraction concept of generalization. If only

one of them exists, the other one will then be created and related to

the first one as specified above. And if both of them exist only the

generalization relationship will be built.

TELL<assertion>[WITH<selection>]

The sentences to be asserted are specified in the assertion part of

the tell-statement. An assertion is syntactically similar to the selec-

tion part (see ask-statement), however, much more restrictive. It is,

for example, not possible to specify formulas combined with logical

connectors, in order to avoid ambiguities (note, that if someone as-

serts p v q, it is impossible to know whether p, q or both are true).

Nevertheless, several assertions can be specified, which will then be

interpreted independently, i.e., KRISYS will make each one true:

(TELL  (IS_DIRECT_SUBCLASS penguin bird)

 (IS_DIRECT_INSTANCE tweety penguin)

 (EQUAL frankfurt_zoo (SLOTVALUE address tweety))

If the same assertions should be made valid for several objects, a KS

can specify this requirement in just one tell-statement by using

variables to represent these objects. The variables would then be in-

stantiated during the evaluation of the selection part, which has the

same syntax and works just like the selection of the ask-statement.

After this evaluation, the assertions will then be applied for each in-

stance of the variables that satisfy the selection. The following ex-

ample shows a query expressing the assertion that every animal

that lives in water (here represented as elements of the set water-

animal) can swim:

(TELL (IS_IN swim (SLOTVALUE locomotion ?X))

WHERE  (IS_ELEMENT ?X water_animal)).

Another example for the use of variables shows the following query

which expresses that every owner of a dog of the KB should also be

an object of the KB:

(TELL (IS_SCHEMA ?X)

WHERE (FOR ALL ?Y WITH (IS_INSTANCE ?Y dog)

 (IS_IN ?X (SLOTVALUE owner ?Y)))).

Summarizing this chapter, we can say that the object-abstraction

interface is completely specified by the above two operations. "Tell"

takes a sentence and asserts that it is true, changing the KB into

one whose contents imply the assertion. "Ask" takes a sentence and

checks on the basis of the current contents of the KB whether it is

true or not. Schematically, they can be described as

TELL : KB x sentence  ==>  KB Sentence is true !

ASK : KB x sentence  ==>  T/F Is sentence true ?



are hidden from the user. The KB is characterized as an abstract

data type, specified only by these two operations rather than by a

certain implementation structure.

3.3  The Frame-System

We choose a frame system [4] to implement our engineering layer,

because we believe that it offers the necessary framework to repre-

sent the descriptive, organizational and operational aspects of the

domain knowledge of any KS.

Object-Oriented Representation

In the KRISYS Frame-System (KFS) the three aspects mentioned

above are incorporated in its basic concept: the schema. A schema

is the symbolic representation of a real world entity. It is composed

of a schema name and of a set of attributes. Attributes can be of two

kinds:

slots, used to describe the descriptive and organizational aspects

of the schema, and

methods, used to describe its operational aspects.

Therefore, KFS could be named object oriented. It allows both at-

tributive characteristics and procedural properties of the real world

entities to be integrated into a schema.

Actions in KFS occur by sending messages to the objects, which can,

in turn, communicate with other objects by message passing. This

concept supports the important principle of data abstraction. That

is, in order to request the methods of some objects to be performed,

no assumptions have to be made about the implementation and in-

ternal representation of the objects (i.e. slots and methods).

Slots and methods have the same structure. Both possess name,

value, type and a schema-name, that specifies where the attribute

was defined (origin). The type indicates whether an attribute repre-

sents characteristics of the schema itself, or of its instances. Char-

acteristics of a schema are described by the types OWNSLOT and

OWNMETHOD, whereas the instance ones by INSTANCESLOT

and INSTANCEMETHOD, respectively.

Associated with the attributes there can be aspects, which are used

to describe the attribute more exactly. Five aspects are predefined

in KFS for slots: possible-values, cardinality, comment, default and

demons. Figure 3 shows the structure of the schema elephant. Since

all attributes shown in the example describe characteristics of ele-

phant itself, they have type OWNSLOT or OWNMETHOD (the

meaning of the slots INSTANCE-OF and ELEMENT-OF will be de-

scribed later).

slots, that are automatically activated when these slots are access-

ed. This concept of data-oriented computation is very useful to rep-

resent intensional data or to check complex integrity constraints.

For example, if someone wants to represent some information

whose value changes with respect to other data (e.g. the exact age

of a person, which changes every day), he needs a mechanism that

generates the extensional value of this information automatically,

each time this information is accessed. This can be realized in KFS

by using demons.

Demons are stored in a KFS schema (like any other), which has,

however, the predefined schema DEMON as its most  superclass. As

an  instance of DEMON this schema  inherits the method attributes

GET, PUT, ADD and RETRACT, where the code for the respective

demons are stored (represented by schema D1 in Figure 4).

The linkage between slot and corresponding demons is done by stor-

ing in the demons aspect of the slot (S1) the schema name of the re-

spective demons (D1). Whenever an access to the slot is made KFS

checks if there is a demons aspect defined in this slot, activating it

by sending a message to the schema specified there, demanding the

evaluation of the corresponding demon. That is, the method speci-

fied in GET will be invoked if a get-access has been issued to KFS,

the method PUT is invoked by issuing a put-access etc. By not stor-

ing the demon-code directly in the aspect of the slot, as is done in

many systems, KFS allows many slots to use the same demons

without having to introduce redundancy in the representation. KFS

additionally allows the KB-designer to specify when the demon

should be activated (i.e. before or after the access to the slot). This

flexibility allows the use of demons for many different purposes. De-

mons applied to check integrity constraints should be activated be-

fore updating the value of a slot, whereas those used to trigger ac-

tions when particular slots are accessed should be activated after

the access itself.

Knowledge Organization

In order to enable the KB-designer to structure the KB adequately,

KFS supports various abstraction concepts. These are represented

as relationships between objects specified by predefined slots,

which are contained within every schema. The abstraction concept

of generalization is represented by the slots SUBCLASS_OF and

HAS_SUBCLASSES. INSTANCE_OF and HAS_INSTANCES are

used to specify the classification relationship. The association con-

elephant
INSTANCE_OF mammal OWNSLOT  GLOBAL
ELEMENT_OF savanna-animal OWNSLOT  GLOBAL

form-of-locomotion (walk swim) OWNSLOT  animal
POSSIBLE_VALUES (walk fly swim)
CARDINALITY [1,3]
DEFAULT (walk)

habitat (savanna) OWNSLOT  animal
POSSIBLE_VALUES INSTANCE_OF habitat-class)
CARDINALITY [O, ∞]
COMMENT (This slot contains the places, where this

  animal  is found in the nature)
eat (<code>) OWNMETHOD  animal

PARAMETER (food)

Figure 3: Example Definition of the Schema Elephant

schema-x
:
S1 <S1-value> OWNSLOT <S1-origin>

POSSIBLE-VALUES (...)
:
DEMONS D1

:

D1
INSTANCE_OF   (DEMON)
GET <get-code) OWNMETHOD  DEMON
PUT <put-code> OWNMETHOD  DEMON
ADD <add-code> OWNMETHOD  DEMON
RETRACT <retract-code> OWNMETHOD  DEMON

GET
PUT
ADD
RETRACT

schema-x
S1

get-slot-value
(schema-x, S1)

Demon D1

DEMON

D1

SEND D1 GET

Figure 4: Activation of Demons



need any special slot for its representation.

By relating objects to another, hierarchies are built, where a partic-

ular schema can play the role of a class (i.e. object type), an in-

stance, a set and/or an element. Since a schema is able to reflect an

instance and a class as well, we need two different slot and method

types to know whether a slot represents characteristics of itself

(OWNSLOT and OWNMETHOD) or of its instances (INSTANC-

ESLOT and INSTANCEMETHOD).

Inheritance

One of the advantages of organizing the schemas into abstraction

hierarchies are the built-in reasoning facilities they provide [6]. By

relating objects with abstraction relationships, special "automatic"

reasoning facilities are supported as part of each modification and

retrieval operation. The most usual and important of these reason-

ing facilities is the one built-in the is-a hierarchy i.e. inheritance. In

KFS only instanceslots and instancemethods are inherited, since

the ownslots and ownmethods represent characteristics of their

schemas. Between schemas linked with association relationships no

inheritance occurs. Here, as well as over aggregation relationships,

other kinds of built-in reasoning facilities are provided. For a de-

tailed description of these facilities see [6].

Reasoning

KFS also supports general reasoning facilities. Rules in KFS are

represented as schemas, which are also organized in special hierar-

chies having two predefined schemas as superclasses. One of these

schemas specifies the structure of the rules, i.e. this schema

(RULES) contains some instanceslots (condition, action, etc.) which

are inherited by each rule. In order to construct a rule base, the KB-

designer has only to store the particular contents of the condition,

action, etc. in the respective slot of each rule. The other top level

schema (RULE-SETS) contains methods corresponding to the stan-

dard inference strategies, which are then inherited by each set of

rules.

A particular rule of KFS can, therefore, be used in both reasoning

directions (i.e. forward-reasoning and backward-reasoning) without

having to be stored redundantly. The reasoning direction of the

rules are dynamically defined when the KS requests the activation

of one of the inference strategies. Since these are implemented as

methods, the activation of reasoning mechanisms is made by send-

ing a message to a rule set. This will then activate its corresponding

method (forward-reasoning or backward-reasoning) evaluating

each of its rule elements.

Summarizing this chapter, we can argue that KFS supports all is-

sues needed at the engineering layer. Descriptive aspects are satis-

fied by the rich declarative part of our frame model, i.e. the struc-

ture of schemas, slots, slot values and aspects. Organizational as-

pects are supported by the abstraction hierarchies and inheritance.

Operational requirements are met by allowing the KB-designer to

specify his own methods (object orientation), by supporting at-

tached procedures (data-oriented computation) and by offering rea-

soning mechanisms.

3.4  Working-Memory and Context Manager

As already mentioned, the goal of this component of KRISYS is to

provide a framework for the exploitation of the application’s locali-

ty. It is, therefore, desirable to have a mechanism that enables re-

duction of DBMS calls and the reduction of the path length when ac-

cessing the objects of the KB, allowing the application to reference

objects almost directly. This is reached by storing needed objects

temporarily in a special main memory structure called working-

to the stored objects.

The approach used to support locality, is to dynamically extract the

context (see 2.3) needed in each phase of the application’s problem

solving process from the DBS. Therefore, during changes of process-

ing phases the old context would be discarded from the working-

memory and the new one loaded into it. Since the application’s ac-

cesses will then be concentrated on the objects of the loaded context,

only a few DBS calls will be made during the next processing phase.

Due to the set-oriented specification of the required objects, the

DBS can use its optimization potential, reducing I/O and transfer

overheads. Furthermore, the tiny granules of the application’s ac-

cesses will not bring any inefficiency, since the path length when ac-

cessing the objects is now very short. (Details about the internal

structure and implementation aspects of the working-memory are

provided by [1]).

The performance of WMCM has been compared with the perfor-

mance of other coupling approaches between KFS and DBS (Figure

5). In this case we use a main memory-based form (i.e. when the

whole KB is stored in main memory) as basis for this comparision.

Coupling KFS and DBS directly seems to be the most inefficient al-

ternative, due to the long path length (from application to DB-buff-

er) by the application’s very tiny access granules. This problem is

eliminated by using an application buffer, which uses LRU as allo-

cation/deallocation strategy, to keep the most recently used objects.

This approach needs, however, to perform very many DBS calls,

since individual objects are frequently being extracted from the

DBS and stored into it. This is particularly critical after changes of

processing phases, when most of the needed objects are not found in

the buffer. We solved this problem by a set-oriented fetch, as de-

scribed above, which accomplishes an efficiency very close to the

main memory approach. Indicative performance figures of a partic-

ular example as illustrated in Figure 5 are derived in [10].

3.5 DBMS Kernel

Due to space limitations it is not possible to discuss the aspects of

the DBMS kernel and the mapping of frames with it in sufficient

depth.

The DBMS kernel architecture chosen for KRISYS [14, 15,16] was

developed for the support of the so called non-standard applica-

tions. For this reason, our kernel,  named PRIMA, offers neutral,

yet powerful mechanisms for managing KB of all types of KS effi-

ciently: storage techniques for a variety of object sizes, flexible rep-

resentation and access techniques, basic integrity features, locking

and recovery mechanisms, etc. [17]. PRIMA is a PRototype Imple-

mentation of the MAD model. MAD provides dynamic definition

and handling of objects, based on direct and symmetric manage-

duration of consultation ratio to main
(CPU-sec) memory approach

main mamory approach

direct coupling

coupling with application
buffer

WMCM

146

28105

2946

643

1

~ 170

~ 18

~ 4

Figure 5: Performance Comparison of Different

Coupling Approaches between KFS andDBS



ping process are found in [18,19, 20].

3.6 Summarizing Example

In this chapter, we illustrate the control flow through the KRISYS

layers by giving a simplified example of the operations needed to

solve a KS query at each of the system interfaces (we consider the

Working-Memory as been empty at the beginning of an evalua-

tion). Since a complete description is too space-consuming, we re-

strict ourselves to essential properties expressing the flavor of the

internal operations.

The tree structure of Figure 6 indicates the calling hierarchy need-

ed for the evaluation of an ASK-statement (where control opera-

tors, etc. are dropped for simplicity reasons). Exploitation of infor-

mation encountered in the Working-Memory would save (expen-

sive) calls to the DBMS kernel interface (with accesses to the

DBMS buffer or even to the disks). Perfect locality preservation

would avoid any kernel calls for repeated object references.

getobject(whale)

getelements(water_animal)

fetch(elements_of
water_animal)

getobject(V1)...getobject(Vm)

getschema(whale)

ASK (?X SCHEMA) (AND (IS_INSTANCE ?X mammal) (IS_ELEMENT ?X water_animal)))

SELECT ...
FROM ...
WHERE ...

local processing exploiting
the Working-Memory

Figure 6: Operator Tree for the Evaluation of an ASK-statement

presented the design of our prototype, named KRISYS. We have

advocated the division of KBMS in three different layers, which re-

spectively support the requirements of the application, the needs

of the KB-designer and the requirements of an efficient manage-

ment of the KB. The main philosophy of the system is the idea of

abstraction aimed at the independence of knowledge. At the sys-

tem interface, knowledge is seen not in terms of the flexible repre-

sentational framework supported by the engineering layer but

functionally, in terms of the application’s beliefs about its domain.

In order to achieve this functional view of the KB, it is necessary

to restrict the communication between application and KBMS to

ASK and TELL operations, however, providing:

• multiple ways to select the application`s domain knowledge,

• user defined projections,

• flexible forms to cause changes in the KB,

• set-orientation, and

• recursion.

A second very important philosophy is the effective support of the

needs of the KB-designer. Clearly, this philosophy has also been

the goal of most existing knowledge representation systems which

try to support these needs by focusing on the improvement of the

expressiveness (i.e. descriptive aspects) of their representation

model. However, in a KBMS context expressiveness is just one of

the three aspects to be considered at the engineering layer. Here,

organizational and operational aspects are equally as important as

descriptive ones. Because of this, an effective support of the needs

of the KB-designer is to be achieved by a mixed knowledge repre-

sentation framework offering:

• object-orientation,

• data-driven computation,

• mechanisms for knowledge organization (i.e. all abstraction

concepts),

• inheritance and other built-in facilities, and

• reasoning mechanisms,

all of them uniformly integrated with a very rich descriptive part.

A number of concepts used in the KRISYS implementation pay at-

tention to performance requirements. Most important is the

framework provided by the implementation layer for the exploita-

tion of the application locality. A single-user version of KRISYS is

now complete. KRISYS is to be considered a research vehicle for a

variety of KS. It is intended, therefore, to run as a tool for building

KS and as a generic system, aimed at the effective and efficient

management of large knowledge bases.
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