in: Proc. Int. Conf. on Computer-Aided Design and Computer Graphics, Beijing - China, Aug. 1989, pp. 326-331

Knowledge Base Management Systems -

the Bases of Advanced CAD

S. DeBloch, T. Hiarder, N. Mattos, B. Mitschang
University Kaiserslautern, Department of Computer Science,
P.O. Box 3049, D-6750 Kaiserslautern, West Germany

Abstract

Semantic expressive representation of design objects, active system
behavior combined with reasoning facilities, and efficient implementa-
tion concepts are necessary requirements for the construction of better
CAD systems. Here, we describe our approach to a knowledge base
management system and exemplify its usage for advanced CAD sys-
tems.

1. Motivation

Currently, there is a lot of research investigation aimed at better com-
puter-aided design (CAD). These so-called advanced CAD systems
comprise the overall design process, taking at least several or all de-
sign steps into account and exhibiting an active system behavior. Thus,
they are capable of providing a more intelligent interface to the user, of-
fering for example solutions or hints to current design problems and
guaranteeing design-specific integrity constraints.

The approach mostly taken to yield a better suited designed environ-
ment is to couple an (existing) CAD system with a database system
(DBS) or with an expert system tool (XPS tool):

* The reason to add a DBS lies in its ability to manage persistent data
in an integrated and efficient way. Since different tools within the
broad area of CAD (e.g. tools for concept finding, solid modeling,
computation, simulation, and testing) refer to the same design ob-
jects, all aspects of these objects are represented in a unique and
non-redundant manner, allowing for consistent and uniform object
handling. This integrated view of different object aspects is also nec-
essary for the integration of other CA* areas (e.g. CAM, CAP) to
achieve computer-integrated manufacturing, i.e. CIM.

« On the other hand, the idea behind the usage of an XPS tool lies in
an improved and more intelligent system behavior [1,2]. An active
CAD system is able to provide the design engineer with appropriate
design hints, relevant problem solutions, refined simulation results,
and adequate diagnostic information in all stages of the design pro-
cess. Thus, it could take care of, for example, whether the object un-
der consideration is still manufacturable (considering manufacturing
restrictions and company guidelines) or whether some time depen-
dencies concerning the manufacturing process have to be taken into
account. Concerning the recent upcoming terminology, these sys-
tems are also called intelligent CAD systems.

This probably incomplete list of arguments for the use of DBS and XPS
components in an advanced CAD system, obviously reveals that a
practical approach should incorporate the advantages of both DBS and
XPS tools. However, it should by no means be based on an extension
or coupling of existing systems. The lack of component integration in

existing architectures is responsible in most cases for cumbersome
handling and for oftenly quite ineffective performance. For this reason,
the approach that is described here is totally different to the above
mentioned ones since it is centered around a so-called knowledge
base management system (KBMS) that integrates artificial intelligence
(Al) and database (DB) techniques in an effective way.

The paper is organized as follows: firstly, we define our conception of
advanced CAD by means of its inherent characteristics. Secondly, we
show that the optimal solution could be achieved only by an efficient in-
tegration of both DB technology and Al techniques within a KBMS. Us-
ing the KBMS KRISYS [3] that has been developed at our university
and some evident examples from architectural design we demonstrate
the applicability of our approach.

2. Characteristics of Intelligent CAD

In advanced CAD systems, the 'user’ is not the only active unit within
the overall design process - as it is in conventional CAD systems. In
such environments, the CAD system itself exhibits an active behavior
being therefore capable of providing a more intelligent user interface.
In some sense there is a kind of 'partnership’ between designer and
system where it is possible to switch between automated design guid-
ed by the system (e.g. in standard cases) and human design controlled
by the user's decisions (e.g. in special cases). The main goal of ad-
vanced CAD is to improve the whole design process by incorporating
not only geometrical but also technical and functional aspects as well
as construction and manufacturing dependencies along each design
step. This leads to a penetration of the design phases and to a manu-
facture-oriented design methodology. For example, the technical term
feature modeling has come up recently to express the shift from simple
geometric modeling (where it is only dealt with geometry) to a modeling
concept that additionally considers technical, functional, and manufac-
tural aspects of the design object at hand [4]. In the following, we con-
centrate on the most important facts inherent to advanced CAD:

First of all, an integrated product model that can be efficiently managed
is a mandatory prerequisite. This product model contains several sub-
models describing geometrical, topological and technical aspects,
structural and sizing aspects as well as functional and dynamic aspects
of the objects under design. Additionally, production information and
manufacturing information has to be included. For example, it seems
to be highly desirable to model the machines and their operations to be
able to check for manufacturability of the actual design object (e.g. con-
sidering manufacturing restrictions and company guidelines). Obvious-
ly, it is quite hard to keep these different representations belonging to
the same design object consistent within each one and among all its

representations. Thus, it is necessary to use a modeling system that
enables accurate semantic expressiveness to ensure a high degree of
semantic integrity already at the modeling level and to relieve the ap-
plication program from this part of integrity checking. In engineering ap-
plications, there are several integrity constraints concerning geometry,
topology, technical and functional behavior of the current object. Of
course, there are higher levels of consistency based on the above
mentioned ones, e.g. stress analysis, manufacturability or quality as-
surance.

Another important aspect are the different kinds of dynamism typically
found in a design process. Each CAD system has to keep track of all
design decisions and their results. This leads to version graphs, design
alternatives, and configurations each of them having its own semantics
with respect to a specific application area. The system is able to main-
tain these dependency structures only if there are adequate measures
to express the semantics and the reactions due to changes. Further-
more there must be an ability to cope with changing environments. For
example, new technologies or new manufacturing guidelines have
been introduced or new machines with new operations have been
bought. These changes have a significant impact on the optimality of
the design and must be noticed for this reason. Additionally, a good
system allows its user interface to be adapated to the user's concep-
tion. Thus it should be possible for a user to build up his own name
space, his own design methodologies or to select standard designs
from libraries or catalogues etc. Alltogether, easy adaptability is an im-
portant system property.

Along with the process of design there are a lot of changes that have
to be recorded and a lot of subsequent actions that have to be triggered
due to dependency or derivation relationships. If the system offers
enough knowledge and reasoning facilities it is capable to maintain
these relationships automatically thereby simplifying the application
programs or even the user's work [5]. Furthermore, it is able to propose
some design alternatives or similar design plans perhaps using librar-
ies that contain standard design plans or parameterized skeleton
plans. Additionally, the automatic generation of production or manufac-
turing plans connecting the phases of design and manufacturing be-
comes conceivable. With this, it is also possible to generate for exam-
ple NC code, assembly data, and quality assurance data.

Summing up, our conception of advanced CAD comprises the following

properties:

* semantic object representation, i.e. sufficient structural and behav-
ioral modeling facilities to enable a semantic expressive representa-
tion of each design object

* active system behavior combined with reasoning concepts to guar-
antee a consistent design and to provide appropriate design hints,
relevant problem solutions, refined simulation results, and adequate
diagnosis information in all stages of the design process.

Despite the efficient provision of these concepts a practical system has
to guarantee durability, consistency, and isolation of each design
phase with respect to the whole design process by means of an appro-
priate design-transaction concept.

3. The KRISYS Approach

3.1 Overview of the System Architecture

As shown in figure 1, KRISYS is architecturally divided into three hier-
archically ordered layers. They are responsible for a stepwise abstrac-
tion process and for the realization of the corresponding tasks within
each layer. The application layer realizes an external interface where
the knowledge is viewed in a more abstract and functional manner.
This object-abstraction interface is defined by the powerful query and

manipulation language KOALA (KRISYS Object Abstraction LAN-
guage) that keeps the end-user or application programs independent
from the representation of the underlying knowledge model. The terms
of the knowledge model of KRISYS, called KOBRA (KRISYS OBject-
centered RepresentAtion Model), are defined by a mixed knowledge
representation framework. Thus, the engineering layer implementing
KOBRA realizes at its interface an object-centered view of knowledge
representation and manipulation to the knowledge engineer. The task
of the lowest layer is to efficiently cope with storage of knolwedge. At
this level, most of the issues are related to traditional DB technology
applied to large KB, possibly shared by multiple users: storage struc-
tures, access techniques, efficiency, integrity features, transaction sup-
port, etc. Therefore, this layer is realized by a non-standard database
system (NDBS) which seems to be quite advantagous in a KBMS ar-
chitecture for a number of reasons [6]. NDBS are much more powerful
than traditional DBS and are, for this reason, able to satisfy knowledge
maintenance requirements. Our implementation layer consists of two
distinct modules. The DBS kernel is responsible for the storage and
management of the KB. The Working-Memory System embodies a
‘nearby application locality’ concept, thereby substantially reducing
DBS calls as well as the path length when accessing the objects of the
KB. This component manages a special main memory structure, called
working-memory, which acts as an application buffer, in which request-

ed KB objects are temporarily stored.
Application Knowledge
Programs Engineer

goal

layers

adequate o
query language KOALA Application
adequ;tgdlg?owledge KOBRA Engineering

PRIMA- Working-Memory
NDBS System

efficiently coping with

Implementation
knowledge storage

DBS kernel

Figure 1: Overall system architecture of KRISYS

3.2 Short Notes on the Knowledge Model of KRISYS

KOBRA supports an object-centered representation of the application
world. That is, every entity of this world is represented as a schema,
which has attributes to describe its characteristics and is clearly identi-
fied by its name. A schema corresponds to a frame or unit in other sys-
tems and must not be confused with a DB-schema. Attributes are either
slots, representing properties and relations to other objects, or meth-
ods describing the behavior of the entity. In order to characterize an ob-
ject in more detail, attributes can be further described by aspects (pos-
sible values and cardinality specifications, default values, etc.).

For structuring the KB, the knowledge model supports the abstraction
concepts of classification, generalization, association, and aggregation
[7]. These concepts are seen as special, predefined relationships be-
tween objects, defining the overall organization of a KB as a kind of
complex network of objects. KRISYS supports an integrated view of KB
objects: there are no different representations for classes, sets, in-
stances, complex objects, etc. They are all integrated within a schema,
which may describe an object related to many others via several ab-
straction relationships. Therefore, the same schema can, for example,
represent a class with respect to one object, and a set or even an in-

room 1
orientation -
position -
size 16

unit square-meters
neighbors room 2, room 4
usage sleeping

Figure 2: Sample schema description

stance with respect to another. As a consequence, the difference be-
tween data and meta-data, which is usually apparent in existing data
models, is eliminated in KRISYS, so that meta-information is integrated
into the KB. The semantics of the abstraction concepts are guaranteed
by built-in reasoning facilities provided by the system [7]. Finally, to rep-
resent procedural characteristics of the application world, KOBRA of-
fers methods, demons, and rules, with which behavior of design ob-
jects, reactions to real world events, and the problem solving know-how
may be respectively represented.

3.3 Using KRISYS to Model Advanced CAD-Systems

As an example of an advanced CAD-system supported by KRISYS, we
use an architectural design application currently being implemented.
The task of this system is to design one-story houses for families based
on requirements and needs specified by the user. During a first design-
phase, it questions the user as to his requirements, which may be in-
complete in the sense that they might not be sufficient to directly
achieve a final design stage. The system utilizes its knowledge (e.g.
standard requirements, laws, etc.) to supplement the user-sketched
blueprint, creating additional rooms and properties of rooms and con-
structing a functional description of the house. In a second phase, our
application uses this description to generate an architectural sketch.
The user may accept this sketch or reject it, causing the system to gen-
erate alternative ones. New requirements can also be added, or exist-
ing ones can be removed, leading to a (partial) repetition of the first de-
sign phase.

Object structure

Everything existing in the application domain is expressed as an object
of the KOBRA model, the so-called schema, in which descriptive, op-
erational, and organizational aspects of the real world are integrated.
In figure 2, we give an example of a schema representing a certain
room of a house. Its properties are described by the attributes and at-
tribute values: the size of the room is 16 square-meters, it is intended
to be used for sleeping and is adjacent to two other rooms, namely
‘'room 2" and 'room 3'. The orientation and position of the room are not
yet specified or determined. Via the aspect 'unit’ for the 'size’-attribute,
'square-meters’ is fixed as unit for the room size.

KB organization

KRISYS supports an integrated view of the KB by means of different
abstraction concepts. A partial view of our example KB is presented in
figure 3. The schema 'bed 1’ has, for example, three different 'roles’ at

the same time: it is an instance of 'beds’, an element of 'users-furnish-
ings’, and a component of 'room 1’.

design-objects

sc sc
sc
furnishings
areas rooms
) sc ss ss
1 o 5% ... sc
I
I
; bathrooms bedrooms users- beds wardrobes proposed-
1 : sc furnishings | Y furnishings
il | \ ! ‘\ |
. \ |
: i: children- parent- ! Y §
i i bedrooms bedrooms I N |
| | ' e 11 VL e
: room 2 ' Vo \ y
A [
private- / L ! | {
area 0 T ' !
p room bed 1 \ I
p wardrobe 1

Figure 3: An integrated view of the KB

.As already mentioned, the semantics of the abstraction concepts is
guaranteed by KRISYS via built-in reasoning facilities [7]. E.g. inherit-
ance, which is carried out according to the generalization/classifica-
tion-relationships, is the reasoning as to the structure of an object.
'Room 1’ inherits all properties of 'parents-bedrooms’, 'bedrooms’,
‘rooms’, and ’'design-objects’. The aggregation-relationships are the
basis for reasoning with so-called implied predicates. For example, the
fact that 'room 1’ has a size of 16 square-meters implies that the area
in which it is contained must be at least 16 square-meters in size. The
concept of association allows the definition of set properties. For the fi-
nal costs involved with the new house, the prices of all furnishings pro-
posed by the system have to be considered. The set property 'total-
price’ of 'proposed-furnishings’ is defined as the sum of all the prices of
its elements. Upon changes, like the insertion of a new piece of furni-
ture into the set, the new total price is automatically recalculated by
KRISYS.

Supporting an integrated product model

An object-centered representation can be directly utilized for the defi-
nition of an integrated product model. It allows a natural description of
the design object, integrating all aspects of the product into one KB-ob-
ject. The abstraction concepts can be used as the basic mechanisms
for describing the organizational semantics of the application domain.
Distinct aspects of the design object may be modeled using different
abstraction concepts or distinct hierarchies of the same concept (e.g.
one class hierarchy for representing geometrical, another for function-
al, and a last one for manufacturing information about the object),
which has the advantage that they are easily distinguishable in the
model. An integration of all aspects into one object is easily achieved
by overlaying the corresponding hierarchies.

In our architectural design system, we have described aspects con-
cerning the usage, adjacency, and geometry of objects within three dis-
tinct classes (see figure 4). The class 'usage-objects’ describes all as-
pects related to the usage of a design-object (e.g. a room) or the activ-
ities associated with it. Information about the adjacency of objects (e.g.
when two rooms are connect via a common door) is captured by the
class 'adjacency-objects’, while all geometrical aspects, such as the
size or the position of a room within the house, are covered by 'geomet-
rical objects’. The class 'design-objects’ inherits all attributes of its su-
perclasses and therefore integrates the different aspects related to the
design object. Since the design objects, like areas, rooms and furnish-
ings are also embedded in an aggregation and an association hierar-

chy, their role as complex objects, object components, or elements are
also considered. .

geometry-objects adjacency-objects usage-objects

orientation
position
size

neighbors

- —

usages

subclass
design-objects

orientation
position
size
neighbors
usages

<

Figure 4: Different aspects of the design objects

Integrating behavior into the application model

Operations and actions in which objects are involved are included into
a schema description as procedural attributes (methods). Our applica-
tion utilizes methods for several tasks. For example, the algorithms
performing the actual geometric design, i.e. partitioning the house into
geometric areas corresponding to the rooms (once their usage, func-
tionality, and other requirements are fixed) can be modeled as opera-
tions of 'geometry-objects’. The end-user of the system is of course not
directly concerned with operations upon geometrical representations.
His interaction with the application is usually settled at a higher seman-
tic level. E.g. the method 'add-neighbors’, defined in 'adjacency-ob-
jects’, is performed when the user adds new requirements about the
connections between rooms currently under design. Since these new
requirements can invalidate previously stated geometric design deci-
sions, the method 'add-neighbors’ may, in turn, call methods defined in
‘'geometry-object’ to cause a redesign of certain areas or of the whole
house.

Maintaining the semantic integrity

A significant part of the application world semantics is embodied in re-
strictions of and dependencies between certain aspects of the world.
KRISYS provides several mechanisms for explicitly describing integrity
constraints and integrating them into the application model. Figure 5
gives an example using the class 'design-objects’. Every design-object
is described by exactly one size, which is expressed through the value
'[1 1]’ of the cardinality aspect. Using the 'possible-values’ aspect, we
can state, that the minimum size of a room is 2 square meters. This as-
pect can also be used to ensure a constraint similar to the referential
integrity in database systems: in order to assure that the values of the
usage-slot, which represents the relationship between a design-object
and its usages, always reference an actual instance of the class "activ-
ities’, we assert '(INSTANCE-OF activities)’ as the value of the appro-
priate possible-values aspect.

design-objects

orientation -
position -
size -

cardinality [1 1]
possible-values > 2
unit square-meters
neighbors =
cardinality [1 o0]
usage
possible-values (INSTANCE-OF activities)

Figure 5: Specifying constraints by using predefined aspects

More complex integrity constraints can be expressed using so-called
demons and/or rules. For example, our application has to check wheth-
er an activity specified for a specific room is compatible with previously

asserted usage. There are statutes that strictly determine incompatible
usage. The architect has, for example, to consider that facilities for both
cooking and bathing must not be provided in the same room. For this
reason, we define a slot called 'contradictory-activities’, which contains
all incompatible activities for every activity in the KB. A demon is then
attached to the usage slot of every room (see figure 6), which is acti-
vated when a usage is added in order to check if one of the old usages
is a 'contradictory activity’ of the new one. Upon detecting an inconsis-
tency, an error is reported, automatically eliminating the previous
change of the KB.

design;g)bjects activjties

,
kitchens

room 5 bathing

usage cooking bathing

—t contradictory-activities cooking
demon check-usage

check-usage
begin
"check contradictory-activities-slot of

new usage"
if "an old usage [contradictory-activities"
then reject
end

Figure 6: Using demons for checking integrity constraints

Supporting an active system behavior

Demons and rules are also used to achieve an active system behavior.
An intelligent CAD system should support and guide the user through-
out all design phases, suggesting alternative product designs or possi-
ble solutions to his design requirements. A significant part of the knowl-
edge of our architectural design system is represented as rules, which
are responsible for the activities of the system. For example, the user
may specify activities or usage for the house, but need not relate them
to any rooms. This task is then automatically performed by the system.
E.g. when the user specifies the activity 'working’, the system activates
rules associated with the 'working’ object in the KB that either establish
a relationship between the activity and an already existing room (e.g.
the living-room), considering, for example, extra places for a work
desk, or generate a new room (e.g. the office room) for the activity. The
location of a room within a certain area (e.g. bathroom, bedroom are
parts of the private-area) and the connections between rooms (e.g. a
kitchen is connected to the dining-room) can also be inferred as well as
the size of a room, which strongly depends on the activities and the
number of people using the room. Standard sizes of doors and win-
dows as well as prices of material and equipment are considered in or-
der to keep the financial restrictions given by the user at the beginning
of his session.

All the information specified during the session or derived by the appli-
cation is then used to construct an architectural sketch of the house.
The user may accept this sketch or refuse it, which causes the design
system to present alternative sketches. Upon additional requirements
posed by the user, it has to repeat previous design phases and proba-
bly revise decisions made earlier. An explanation facility is also provid-
ed for making design decisions plausible to the user.

Extending the integrated product model

A last important issue is related to the notions of extensibility. Since
KRISYS does not make any difference between information and meta-
information describing the application model, all information is con-

tained in the KB and may be modified. It is therefore easy to keep track
of changes in the application environment because the application
model may easily be extended or changed. An intelligent CAD system
may therefore easily provide user operations for defining new object
types and extending or browsing through catalogues since these oper-
ations are already supported by KRISYS. As a consequence, our archi-
tectural design application may be extended to include the design of
many-story houses or other kinds of buildings (e.g. bungalows, villas)
in a natural way. Also operations could be provided, that allow the end-
user to define a new class of rooms with special properties (sound in-
sulation), that he might require for his house.

3.4 The Implementation Layer

KRISYS makes use of the PRIMA-NDBS [8], also developed at our uni-
versity, to realize the implementation layer. It offers neutral, yet power-
ful mechanisms for managing the KB. PRIMA is the PRototype Imple-
mentation of the MAD model, whereas the MAD model is an acronym
that stands for Molecule Atom Data model [9]. This non-standard data
model is an extension to the relational model in that relations are
named atom types and tuples are now termed atoms. Furthermore, all
relevant relationships between entities, i.e. the foreign-key/primary-key
connections between tuples, are explicitly specified in the meta data
and represented in the database in a direct and symmetrical way.
Therefore, complex objects, called molecules, are definable as higher
level objects (being a part of the net of interconnected atoms) and are
seen as a structured and coherent set of possibly heterogeneous at-
oms. From a more general point of view, the MAD model is a direct im-
plementation of the well-known entity-relationship model. The flexibility
of the MAD model stems from its dynamic definition and handling of
complex objects based on direct and symmetric management of net-
work structures and recursiveness. These concepts enable the appro-
priate mapping of knowledge structures to data model structures in an
effective and straightforward way as described below.

Mapping the knowledge model to the data model

In the previous chapter, we have seen that KOBRA presents all its con-
cepts for building a KB well integrated in its central construct: the sche-
ma. From a structural point of view, one may observe that the schema
(cf. figure 2) is composed of attributes which, in turn, consist of aspects,
suggesting a MAD schema that contains three atom types (corre-
sponding respectively to 'schema’, "attribute’, and 'aspects’) connected
via the references, i.e. relationships, has_attributes and has_aspects.
The MAD schema diagram in figure 7 shows a graphical view of atom
types (rectangles) and their interconnections (double arrows). Here,
aspect specifications are shared between several attributes preventing
redundancy (especially in case of inherited attributes). We explicitly ex-
ploit the capability of the MAD model to handle network structures in a
direct and non-redundant manner. The organizational axes of KOBRA,
i.e. attributes with abstraction semantics, are not represented as ordi-
nary 'attributes’ but as recursive MAD references between the atom
type 'schema’. Since for each MAD reference, there always exists a
back reference, each organizational axis is represented by a pair of

MAD attributes of type reference (shown as hatched double arrows in
figure 7).

aspects

Generic KOBRA schema expressed in terms of the
MAD schema diagram

Figure 7:

Transformation of operations

On one hand, KOBRA operations can be viewed as general functions
to work on the schema objects as a whole. On the other hand, there are
also operations to directly manipulate a schema objects’ attributes or
their aspects. To exemplify our transformation approach, we just
present one complex KOBRA operation together with the correspond-
ing MAD statements. Other operation transformations and a more de-
tailed discussion can be found in [9]. The data manipulation language
defined for the MAD model is syntactically related to the well-known
and easy to understand SQL language developed for relational data-
base systems. Therefore, it is easy to capture the semantics of MAD
statements: projection (SELECT) and qualification (WHERE) clause
are quite similar to SQL, whereas the FROM-clause of MAD provides
the important capability to dynamically express molecules just by writ-
ing the corresponding molecule structure, thereby introducing the dy-
namic complex object facility.

The operation in figure 8, expresses the insertion of a new instance-at-
tribute, to our KB. Since the insertion of an instance-slot (in the exam-
ple, number_of windows) provokes its inheritance, it is necessary to
obtain the whole generalization hierarchy before inserting the attribute.
This is accomplished by the first MAD statement, which retrieves the
whole generalization hierarchy beneath the schema object 'rooms’.
Such a hierarchy is specified as a recursive complex object starting
with the root atom type 'schema’ moving on firstly to all subclasses (us-
ing the reference type 'has_subclasses’ in a recursive manner) and
then to their instances (exploiting the reference type 'has_instances’).
Additionally, for all schema objects, their attributes are also retrieved
(taking the reference type has_attributes). The molecule diagram of

this generalization hierarchy is also depicted visualizing the evaluation
process of the corresponding molecules as introduced before.

Example: Insertion of the instance-slot 'number_of_windows’ to
the schema named 'rooms’

1. Retrieval of the whole subclass hierarchy
with corresponding instance schemas

SELECT ALL
FROM generalization-hierarchy
(schema-(.has_attributes-attributes,
.has_instances-schema.has_attributes-attributes)
(RECURSIVE: schema.has_subclasses-schema))
WHERE generalization-hierarchy.schema(root).name="rooms’

2. Modification within the KOBRA layer:

- addition of the instance-slot in the root schema, i.e. the
schema named 'rooms’

- inheritance as instance-slot to all
subordinate classes

- inheritance as own-slot to all subordinate instance
schemas

3. Update of the database:

MODIFY generalization_hierarchy
FROM generalization_hierarchy

has_subclasses
RECURSIVE

schema

has_instances has_attributes

| schema | | attributes

has_attributes

Figure 8: Insertion of an instance-slot expressed in terms of the
MAD language

After having modified the hierarchy in the KOBRA layer the complete
schema hierarchy is then updated in the DB via a modify statement.
This operation changes the specified molecule in accordance to the
given hierarchy by inserting atoms not yet stored and modifying the
corresponding connections. In this example, it should have become
clear that the recursiveness and the dynamic complex-object concept
of the MAD model and its language could be extensively exploited to
yield a direct and natural transformation of the KOBRA operations.

3.5 Summing up

In KRISYS, the integration of both technologies has been achieved in
a natural way, reflected in the stepwise abstraction process realized at
each layer. The implementation layer of KRISYS treats knowledge
structures simply as a kind of network of complex objects which are
consistently, reliably, and efficiently managed. At the engineering lay-
er, these structures obtain semantics, known only by the KOBRA mod-
el, remaining, for this reason, outside of the NDBS component. So, the
NDBS is not overloaded by application specific aspects, being, there-
fore, able to concentrate on performance and on other relevant DB as-
pects. On the other hand, the KOBRA model is not bounded by the se-
mantics provided by the MAD model, being, as a consequence, able to
come nearer to the application semantics by offering a rich and power-
ful spectrum of concepts for modeling.

4. Conclusions

In summary, KRISYS supports powerful and flexible constructs for an
accurate representation of real world information:

« Structural object orientation (i.e. the representation of complex ob-
jects) is provided, supporting the abstraction concept of aggrega-
tion.

» Behavioral object orientation is yielded by the integration of proce-
dural information (methods) into the object description.

« Data orientation is provided by demons, allowing flexible reactions
on certain events.

* Intensional information may be represented by rules in order to dy-
namically derive new data.

* For the organizational structuring of information, abstraction con-
cepts are supported in an integrated fashion, where the same object
can act in different roles. The semantics of these concepts are incor-
porated into the system via built-in reasoning facilities, which guar-
antee the structural and application-independent semantic integrity
of the stored information.

» Application-dependent semantic integrity is maintained explicitly via
aspects, demons, and rules.

Furthermore, the architecture and design decisions made (e.g. work-
ing-memory system, NDBS usage) are a prerequisite for persistent, re-
liable, and efficient management of the KB on secondary storage.
Therefore, we can conclude that this integration of DB and Al tech-
nigues fortifies each other, aiming at a base system - eg. KRISYS - that
effectively supports advanced CAD.

Though our approach looks like having removed some main obstacles
on the way to better CAD, a lot of problems have not been taken into
our consideration (eg. version or design-transaction issues). Of course,
it remains very important to gain practical experience with KRISYS in
some in-the-field applications. Therefore, we currently work on applica-
tions in the areas of diagnoses, planning, and design that will offer
more insight into modeling and efficiency requirements of advanced
CAD systems.

References

[1] Pham, D.T.: Expert Systems in Engineering, Springer-Verlag,
1988.

[2] Sriram, D., Rychener, M.: Expert Systems for Engineering Appli-
cations, special issue of IEEE Software, Vol. 3, No. 2, March
1986.

[3] Mattos, N.: KRISYS - A Multi-layered Prototype KBMS Supporting
Knowledge Independence, in: Proc. Int. Computer Science Conf.
- Artificial Intelligence: Theorie and Applications, Hong Kong,
Dec. 1988, pp. 31-38.

[4] Shah, J.J., Rogers, M.T.: Expert form feature modelling shell, in:
Computer-Aided Design, Vol. 20, No. 9, November 1988, pp. 515-
524,

[5] Hartzband, D., Maryanski, F.: "Enhancing Knowledge Represen-
tation in Engineering Databases, in: Computer, Vol. 18, No. 9,
Sept. 1985, pp.39-48.

[6] Harder, T. (ed.): The PRIMA Project Design and Implementation
of a Non-Standard Database System, SFB 124 Research Report
No. 26/88, University of Kaiserslautern, Kaiserslautern, 1988.

[7] Mattos, N.: Abstraction Concepts: the Basis for Data and Knowl-
edge Modeling, in: Proc. 7th Int. Conf. on Entity-Relationship Ap-
proach, Rom, Italy, Nov. 1988, pp. 331-350.

[8] Harder, T., Meyer-Wegener, K., Mitschang, B., Sikeler, A.: PRI-
MA - A DBMS Prototype Supporting Engineering Applications, in:
Proc. 13th Conf. Brighton, UK, 1987, pp. 433-442.

[9] Mitschang, B.: A Molecule-Atom Data Model for Non-Standard
Applications - Requirements, Data Model Design, and Implemlen-
tation Concepts (in German), IFB 185, Springer-Verlag, Berlin,
1988.

