
Abstract

Here, we propose a so-called knowledge base management system

based on the integration of database and artificial intelligence

technology that provides adequate capabilities for the construction

of advanced CAD systems. Our approach is evaluated in view of

other systems and its suitability is demonstrated by means of some

examples from the area of architectural design. Throughout the

paper, we refine our view of advanced CAD and define some inher-

ent characteristics of better CAD.

1. Introduction

Currently, many research investigations work for more appropri-

ate design methodologies and more effective design tools. Their re-

sults, the so-called advanced computer-aided design systems are

capable of providing an intelligent interface to the user:

• dealing with incomplete design information

Object specifications may be incompletely defined by the user.

The system supplements them by exploiting domain knowledge.

• exhibiting an active behavior

The system is able to provide the design engineer with relevant

solutions or hints to current design problems, complete object

specifications, refined calculation and simulation results, and

adequate diagnoses at all stages of the design process.

• guaranteeing area-spanning integrity constraints

At each operation, the system takes into account all design as-

pects as well as all kinds of dependencies and restrictions that

are involved in the design process (manufacturing, production,

company guidelines, time considerations etc.) in order to guar-

antee a consistent design.

In this new environment, the design process is done iteratively as

shown in figure 1. In contrast to conventional systems, we have no

stand-alone tools converting the output data structures of previous

design steps into internal data structures and vice-versa before

they can accomplish their functions. Our approach divides the de-

sign process into design phases, which subsequently

• supplement a previously incomplete design object specification,

• add structure and geometry information,

• consider functional, physical, and technological constraints, and

• support improvements or refinements by means of feedback to

each previous phase.

Since all design phases refer to the same design objects, all aspects

of these objects have to be represented in a unique and non-redun-

dant manner, allowing for a consistent and uniform object han-

dling. Obviously, the efficient and reliable management of such a

product model (that includes all different aspects of design objects

in one database schema) addresses the main functions of database

management systems. On the other hand, artificial intelligence

techniques (knowledge representation, reasoning, etc.) allow for

both semantically enriched design object descriptions and for an

active system behavior. Therefore, a practical approach to ad-

vanced CAD environments should incorporate the advantages of

both database (DB) and artificial intelligence (AI) techniques.

However, such an approach should by no means be based on an ex-

tension or coupling of existing systems. The lack of component in-

tegration in existing architectures is responsible in most cases for

cumbersome handling and for quite ineffective performance [1].

For this reason, the approach that is described here is centered

around a so-called knowledge base management system (KBMS)

that integrates AI and DB techniques in an effective way.

Using the KBMS KRISYS [2], that was developed at our universi-

ty, and some examples from an architectural design application,

we demonstrate the applicability of our approach. KRISYS

(Knowledge Representation and Inference SYStem) integrates

concepts from the fields of AI and DB in order to provide the desir-

able support of knowledge modeling, manipulation, and manage-

ment tasks. A mixed knowledge model offering a rich spectrum of

constructs (e.g., object-centered representation, abstraction con-

cepts, rules, demons) allows for an accurate representation of the
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application domain. The implementation of this knowledge model

uses the enhanced DBS PRIMA to provide features such as knowl-

edge persistence, efficient secondary storage management, fault

tolerance, etc. After having introduced a sample design applica-

tion, we show how the different modeling concepts offered by KRI-

SYS could be conveniently exploited to accomplish the main design

goals of advanced CAD. Simultaneously, we make apparent that

other presumably conceivable environments do not fulfil all re-

quirements and that the optimal solution could be achieved only by

an effective integration of both DB and AI techniques. Finally, we

conclude with a more comprehensive definition of our notion of ad-

vanced CAD, whereby we also indicate the main topics we are go-

ing to investigate in the near future.

2. A Short Overview of the Application

As an example of an advanced CAD-system supported by KRISYS,

we use an architectural design application currently being imple-

mented. The task of this system is to design one-story houses for

families based on requirements and needs specified by the user.

During a first design-phase, it questions the user as to his require-

ments, which may be formulated on a high semantic level (e.g., "I

need a room to work in, which should be located at the south side

of the house."). Furthermore, the specification of such require-

ments may be incomplete in the sense that they might not be suf-

ficient to directly achieve a final design stage. For this reason, the

system utilizes its knowledge (e.g. standard requirements, laws,

etc.) to supplement the user-sketched blueprint, creating addition-

al rooms and properties of rooms and constructing a functional de-

scription of the house. In a second phase, our application uses this

description to generate an architectural sketch. The user may ac-

cept the design sketch or reject it, causing the system to generate

alternative sketches. New requirements can also be added, or ex-

isting ones can be removed, leading to a (partial) repetition of the

first design phase. Different design alternatives are kept and may

be explained to the user until he accepts a certain sketch. The sys-

tem also detects inconsistencies caused by incompatible require-

ments or violation of laws upon which the user is notified.

3. Using KRISYS to Model Advanced CAD-Systems

One group of features provided by KBMS to support better CAD-

systems is related to knowledge modeling aspects, i.e., the con-

structs and mechanisms available for the description of the appli-

cation world. What can be considered as one of the major goals of

advanced CAD is the improvement of the overall design process by

incorporating different design aspects (e.g. geometrical, function-

al, manufacturing) which are related to different processing or de-

sign phases but are all integrated into the same design object. The

dependencies between these distinct representations have to be

maintained and exploited by the system in order to achieve a ’man-

ufacture-oriented’ design. Therefore, significant parts of the se-

mantics of the application world, which used to be buried in vari-

ous programs responsible for different design phases, need to be

represented explicitly in an integrated product model, where they

are available for all system components. As a consequence, knowl-

edge modeling aspects can be considered a key issue in the support

of advanced CAD [3].

3.1 Modeling Aspects

Object structure

KOBRA (KRISYS OBject-Centered RepresentAtion), the knowl-

edge model of KRISYS, provides an object-centered representation.

That is, everything existing in the application domain is expressed

as an object of the KOBRA model, the so-called schema, in which

descriptive, operational, and organizational aspects of the real

world are integrated. For this reason, an entity of the application

world directly corresponds to an object of the knowledge base (KB).

A schema, which is roughly analogous to a frame or unit in other

representation systems, may contain attributes for the description

of the real-world entity. The attributes may again be further de-

scribed by aspects in order to characterize an object in more detail.

In figure 2, we give an example of a schema representing a certain

room of a house in our architectural application. Its properties are

described by the attributes and attribute values: the size of the

room is 16 square-meters, it is intended to be used for sleeping and

is adjacent to two other rooms, namely ’room 2’ and ’room 3’. The

orientation and position of the room are not yet specified or deter-

mined. Via the aspect ’unit’ for the ’size’-attribute, ’square-meters’

is fixed as unit for the size of the room.

KB organization

For structuring the KB, KOBRA supports the abstraction concepts

of classification, generalization, association, and aggregation

[4,5,6,7]. These concepts are seen as special, predefined relation-

ships between objects, defining the overall organization of a KB.

Figure 3 gives a partial overview of our architectural KB consider-

ing the classification and generalization relationships. In this hi-

erarchy, the object ’room 1’ is seen as an instance of the class ’par-

ents-bedrooms’, which is a subclass of ’bedrooms’, which is again a

subclass of ’rooms’, etc.

Another view of the KB is given in figure 4, where aggregation re-

lationships involving ’room 1’ are presented. ’Room 1’ is a compo-

nent of the ’parent-area’ and again has parts like ’bed 1’ or ’ward-

robe 1’, representing pieces of furniture for the room.

The concept of association, which can be used to group heteroge-

neous objects together, is demonstrated in figure 5. The user of our

application is able to specify the furnishings that he already pos-

sesses and are to be moved into the new house. This can be very

important for the design of the rooms into which the furniture has

to be placed. Therefore, two set objects are introduced to distin-

guish the belongings of the user from the furnishings proposed by

the application. ’Bed 1’ is an element of the set ’user's-furnishings’,

room 1

orientation  -
position -
size 16

unit square-meters
neighbors room 2, room 4
usage sleeping

Figure 2: Sample schema description
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Figure 3: Generalization/classification hierarchy



while ’wardrobe 1’ is an element of ’proposed-furnishings’.  Both

sets are subsets of ’furnishings’.

The semantics of the abstraction concepts is guaranteed by the

system via so-called built-in reasoning facilities [4]. E.g. inherit-

ance, which is carried out according to the generalization/classifi-

cation-relationships, is the reasoning as to the structure of an ob-

ject. ’Room 1’ in figure 3 inherits all properties of ’parents-bed-

rooms’, ’bedrooms’, ’rooms’, and ’design-objects’. The aggregation-

relationships are the basis for reasoning with so-called implied

predicates. For example, the fact that ’room 1’ has a size of 16

square-meters implies that the area in which it is contained must

be at least 16 square-meters in size. This information is automati-

cally deduced by KRISYS. The concept of association allows the

definition of set properties. For the final costs involved with the

new house, the prices of all furnishings proposed by the system

have to be considered. The set property ’total-price’ of ’proposed-

furnishings’ is defined as the sum of all the prices of its elements.

Upon changes, like the insertion of a new piece of furniture into the

set, the new total price is automatically recalculated by KRISYS.

The KB structure defined by the abstraction concepts is not re-

stricted to hierarchies. It is also possible to specify several classes

for one instance or multiple superclasses for a class.

KRISYS supports an integrated view of the KB: first of all, there

are no separate representations for classes, instances, sets, aggre-

gates, etc. - all are represented as a schema. Also, the different

meanings of an entity are integrated into one schema. A partial

view of our example KB is presented in figure 6. The schema ’bed

1’ represents, for example, three different ’roles’ at the same time:

it is an instance of ’beds’, an element of ’users-furnishings’ as well

as a component of ’room 1’.

Supporting an integrated product model

An object-centered representation can be directly utilized for the

definition of an integrated product model. It allows a natural de-

scription of the design object, integrating all aspects of the product

into one KB-object. The abstraction concepts can be used as the ba-

sic mechanisms for describing the organizational semantics of the

application domain. Distinct aspects of the design object may be

modeled using different abstraction concepts or distinct hierar-

chies of the same concept (e.g. one class hierarchy for representing

geometrical, another for functional, and a last one for manufactur-

ing information about the object), which has the advantage that

they are easily distinguishable in the model. An integration of all

aspects into one object is easily achieved by overlaying the corre-

sponding hierarchies. An object may, for example, be an instance

of several classes, each belonging to a different hierarchy. It may

also be a component of another object or a member in a set object.

The object-centered representation and the semantics of the ab-

straction concepts appear to be very beneficial for the support of

the application. If, for example, a design object is deleted, because

the design engineer regards it as useless, KRISYS automatically

deletes all aspects of the object (i.e. the different views of the ob-

ject) as well as all object components, updates set properties (if

necessary), and performs other built-in reasoning operations relat-

ed to the semantics of the abstraction concepts.

In our architectural design system, we have described aspects con-

cerning the usage, adjacency, and geometry of objects within three

distinct classes (see figure 7). The class ’usage-objects’ describes all

aspects related to the usage of a design-object (e.g. a room) or the

activities associated with it. A kitchen may, in this case, be de-

scribed by the activities ’preparation of food’ and - probably - ’eat-

ing’. Information about the adjacency of objects (e.g. when two

rooms are connect via a common door) is captured by the class ’ad-

jacency-objects’, while all geometrical aspects, such as the size or

the position of a room within the house, are covered by ’geometrical

objects’. The class ’design-objects’ inherits all attributes of its su-

perclasses and therefore integrates the different aspects related to

the design object. Since the design objects, like areas, rooms and

furnishings are also embedded in an aggregation and an associa-

tion hierarchy, their role as complex objects, object components, or

elements are also considered. If the user has specified require-

ments about an area, (e.g. the children-area) and wants the whole

area to be redesigned because he has changed his opinion, the ar-

chitecture application only needs to delete the object ’children-ar-

ea’. KRISYS automatically deletes all representations of the object

and its subparts (e.g. different rooms and furniture proposed by

the system) and additionally updates the ’total-price’ in the set

’proposed-furnishings’. The user is then free to enter new require-

ments for the house.
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Figure 6: An integrated view of the KB

. . .

area

. . .

. . .

geometry-objects usage-objectsadjacency-objects

orientation
position
size

neighbors usages

subclass

Figure 7: Different aspects of the design objects

design-objects

orientation
position
size
neighbors
usages

·  ·  ·. . .



Integrating behavior into the application model

So far, we have only considered how the KOBRA model can be used

to describe properties and relationships of objects as well as the or-

ganizational structure of a KB. The behavior of objects or opera-

tions and actions in which they are involved may also be included

into a schema description as procedural attributes. For this rea-

son, the KOBRA model distinguishes between slots, which are de-

clarative attributes used to describe properties and relationships

of an object, and methods denoting procedural attributes for mod-

eling object behavior.

Our application utilizes methods for several tasks. For example,

the algorithms performing the actual geometric design, i.e. parti-

tioning the house into geometric areas corresponding to the rooms

(once their usage, functionality, and other requirements are fixed)

can be modeled as operations of ’geometry-objects’. The end-user of

the system is of course not directly concerned with operations upon

geometrical representations. His interaction with the application

is usually settled at a higher semantic level. E.g. the method ’add-

neighbors’, defined in ’adjacency-objects’, is performed when the

user adds new requirements about the connections between rooms

currently under design. Since these new requirements can invali-

date previously stated geometric design decisions, the method

’add-neighbors’ may, in turn, call methods defined in ’geometry-ob-

ject’ to cause a redesign of certain areas or of the whole house.

Similarly, the advantages of behavioral object-orientation become

apparent in systems using form features for solid modeling. The

designer is not interested in the geometrical representation (e.g.

BREP, CSG) of an object or the operations associated with it (in-

tersection, union of objects, ...), but thinks in terms of holes, slots,

sockets, etc., and of operations like ’drilling a hole’. Object proper-

ties and operations of both geometrical and feature-logical nature

can be integrated into the product model, where changes of the

form-feature representation via feature-operations are then direct-

ly transformed into operations of geometrical nature.

To include additional information into the KB and make the inte-

grated product model more powerful, one may also integrate

knowledge about the environment, such as production and manu-

facturing information, into the KB, using the same modeling con-

structs for this task, as we have described in the above text. A ma-

chine for manufacturing a design object can be represented as a

schema containing machine properties such as the tolerance guar-

anteed by it, and methods corresponding to machine operations.

This information could be directly utilized for production planning

or generating NC-programs.

Maintaining the semantic integrity

Until now, we have described how KOBRA supports the represen-

tation of structural, behavioral, and organizational knowledge of

an application domain. The introduced concepts may be directly

utilized for an integrated product model describing various aspects

of the design product and its environment. Nevertheless, a signifi-

cant part of the application world semantics is embodied in restric-

tions of and dependencies between certain aspects of the world.

These are usually described as integrity constraints applied to en-

sure that changes in the KB always result in a semantically correct

state. These constraints may involve certain granules of knowl-

edge, such as attributes (e.g., restricting the set of permitted val-

ues), objects (e.g., maintaining the integrity between different

views of the same object), or groups of objects (e.g., relationships

between the design object and environmental information like

"Can the design object be manufactured with the available ma-

chines?").

KRISYS provides several mechanisms for explicitly describing in-

tegrity constraints and integrating them into the application mod-

el. Firstly, the value class and the cardinality of slot values may be

restricted with the use of two predefined aspects, ’cardinality’ and

’possible-values’, which may be defined individually for each at-

tribute. Changes of the attribute value violating the given restric-

tions are automatically prohibited by KRISYS. Figure 8 gives an

example using the class ’design-objects’. Every design-object is de-

scribed by exactly one size, which is expressed through the value

’[1 1]’ of the cardinality aspect. A room also has to have at least one

neighbor, otherwise it is not accessible. The maximum number of

neighbors is, on the other hand, not limited since a corridor, for ex-

ample, can have quite a lot of neighbor rooms. Using the ’possible-

values’ aspect, we can state, that the minimum size of a room is 2

square meters. This aspect can also be used to ensure a constraint

similar to the referential integrity in database systems: in our ar-

chitectural design application, we have represented the design ob-

jects, such as rooms or furniture, and the usage of the objects (e.g.

sleeping, cooking) in separate hierarchies. This is necessary be-

cause a lot of information can be directly associated with usage or

activities, while activities and rooms are not always related in a

one to one correspondence. As an example, the activity ’eating’ may

be performed in the dining room and in the kitchen, which, in turn,

is also related to the usage ’preparation of food’. In order to assure

that the values of the usage-slot, which represents the relationship

between a design-object and its usages, always reference an actual

instance of the class ’activities’, we assert ’(INSTANCE-OF activi-

ties)’ as the value of the appropriate possible-values aspect.

More complex integrity constraints can be expressed using so-

called demons, i.e. procedures attached to attributes, which are ac-

tivated when the attributes are accessed. Distinct actions can be

specified for different types of access (get, put, add, ...) making it

possible to define flexible reactions on different events. For exam-

ple, our application has to check whether an activity specified for

a specific room is compatible with previously asserted usage. There

are statutes that strictly determine incompatible usage. The archi-

tect has, for example, to consider that facilities for both cooking

and bathing must not be provided in the same room. For this rea-

son, we define a slot called ’contradictory-activities’, which con-

tains all incompatible activities for every activity in the KB. A de-

mon is then attached to the usage slot of every room (see figure 9),

which is activated when a usage is added in order to check if one of

the old usages is a ’contradictory activity’ of the new one. Upon de-

design-objects

orientation -
position -
size -

cardinality [1  1]
possible-values > 2
unit square-meters

neighbors -
cardinality [1 ∞]

usage
possible-values (INSTANCE-OF activities)

Figure 8: Specifying constraints by using predefined aspects



tecting an inconsistency, an error is reported, automatically elim-

inating the previous change of the KB.

One way to guarantee the consistency of a KB is to reject any

changes that would violate integrity constraints, as we have al-

ready demonstrated in the above text. Another approach, that may

very often be taken, is to ’trigger’ additional operations upon

changes violating the integrity that transform the inconsistent KB

into a consistent one. This is also desirable within an integrated

product model, where changes concerning one representation of an

object (e.g. the functional aspects) should automatically cause

changes in the other representations (e.g. the geometry). In KO-

BRA, this approach may be realized either with demons to trigger

the appropriate changes or with the concept of rules, which can be

used to dynamically derive information and insert it into the KB.

In KRISYS, rules are special kinds of schemas containing as at-

tributes the conditions (i.e. ’if’-part) and the actions (i.e. ’then’-

part) of the rule. Basic inference strategies (forward-chaining,

backward-chaining) are also provided by the system.

The architectural system utilizes rules extensively for keeping the

KB consistent. As we have already mentioned, the user is able to

interact with the application at a very high semantic level. He

may, for example, specify activities or usage for the house, but

need not relate them to any rooms. This task is then automatically

performed by the system. E.g. when the user specifies the activity

’working’, the system activates rules associated with the ’working’

object in the KB that either establish a relationship between the

activity and an already existing room (e.g. the living-room), consid-

ering, for example, extra places for a work desk, or generate a new

room (e.g. the office room) for the activity (see figure 10).

Supporting an active system behavior

In general, demons and rules are constructs to achieve an active

system behavior. An intelligent CAD system should support and

guide the user throughout all design phases, suggesting alterna-

tive product designs or possible solutions to his design require-

ments. A significant part of the knowledge of our architectural de-

sign system is represented as rules, which are responsible for the

activities of the system. Since the requirements of the user may be

incomplete, the design system uses, for example, rules to derive

rooms and activities that are standard in every house (e.g. kitchen,

bathroom, ...) and are not specified by the user, as described above

(see also figure 10). The location of a room within a certain area

(e.g. bathroom, bedroom are parts of the private-area) and the con-

nections between rooms (e.g. a kitchen is connected to the dining-

room, but not to the bathroom) can also be inferred as well as the

size of a room, which strongly depends on the activities and the

number of people using the room. Standard sizes of doors and win-

dows as well as prices of material and equipment are considered in

order to keep the financial restrictions given by the user at the be-

ginning of his session.

All the information specified during the session or derived by the

application is then used to construct an architectural sketch of the

house. The user may accept this sketch or refuse it, which causes

the design system to present alternative sketches. Upon additional

requirements posed by the user, it has to repeat previous design

phases and probably revise decisions made earlier. An explanation

facility is also provided for making design decisions plausible to

the user.

The actual sketch or geometric design of the house is represented

in the KB as a tree-like structure, where every node of the tree cor-

responds to a design decision. The derivation of design alternatives

is performed in a non-redundant way by backtracking in this tree

and generating alternative decision nodes, thus utilizing previous

design steps. Different design alternatives are kept in the KB until

the user makes his decision. The explanation of the sketch is also

easily performed via the tree-like representation. After the design

session is finished, the resulting design is kept in the KB. A user

may therefore start a new session with the result of a previous one

as the basis for his new design.

Extending the integrated product model

A last important issue is related to the notions of extensibility. In

KRISYS, there is no difference between information and the meta-

room 5

design-objects

kitchens

activities

usage cooking bathing

·
··

demon check-usage

···

bathing

contradictory-activities cooking

Figure 9: Using demons for checking integrity constraints
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check-usage

Figure 10: Using rules to keep the KB consistent
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information describing the application model - contrary to the DB-

like view, which strictly separates the DB from the DB-schema. All

information is contained in the KB and may be modified. It is

therefore easy to keep track of changes in the application environ-

ment because the application model may easily be extended or

changed. Since a significant amount of the application semantics

is represented in the model, the application programs are to a large

extent immune to these changes. Also, the modeling facilities pro-

vided by KOBRA, i.e. constructs and operations used for specifying

the application model, are available to the application as well. An

intelligent CAD system may therefore easily provide user opera-

tions for defining new object types and extending or browsing

through catalogues since these operations are already supported

by KRISYS.

As a consequence of the notion of extensibility presented above,

our architectural design application may be extended to include

the design of many-story houses or other kinds of buildings (e.g.

bungalows, villas) in a natural way. Also operations could be pro-

vided, that allow the end-user to define a new class of rooms with

special properties (sound insulation), that he might require for his

house.

3.2 KOBRA Features Emphasized

After presenting the modeling concepts provided by KRISYS, we

would like to summarize the features of its knowledge model,

thereby making a comparison with the concepts supported by oth-

er existing systems (DBS and XPS tools like ART [8], KEE [9,10],

KNOWLEDGE CRAFT [11], and LOOPS [12]) as well as with the

way these concepts may be applied.

Integration of declarative, procedural, and structural

knowledge

In KRISYS, the effective support of modeling requirements is

achieved by a mixed knowledge representation framework which

is not usually found in existing DBS or XPS tools. Whereas these

systems emphasize either a declarative, procedural, or structural

view of the world, KOBRA remains neutral, equally focusing on all

of them. It integrates all different aspects of knowledge, conse-

quently obtaining the powerful framework necessary to enable a

natural and accurate modeling of all aspects of the application

world.

KRISYS allows for a representation of the whole descriptive char-

acteristics of the application domain, i.e., objects, properties, rela-

tionships, and constraints. It offers constructs to represent opera-

tional characteristics of the application world which are either

used to model the behavior of the domain objects (methods) or to

specify complex integrity constraints (rules and demons). The most

important aspect of the operational concepts provided by KRISYS

is their use to achieve an intelligent and active system behavior.

Finally, KRISYS supports the most significant abstraction con-

cepts (classification, generalization, association, and aggregation),

enriching considerably the semantics of its knowledge model with

their different built-in reasoning facilities.

Complete support of abstraction concepts

The support of all four abstraction concepts is a further aspect that

differentiates KRISYS from the above mentioned systems. Where-

as KOBRA puts special emphasis on a complete support of the ab-

straction concepts in order to use their semantics as the basis for

drawing conclusions about the objects and for maintaining the in-

tegrity of the knowledge base, these systems neglect the existence

of some of these concepts (generalization by DBS, association by

DBS, KEE, and LOOPS, and aggregation by all of them), forcing a

substantial amount of real world semantics to be maintained in

the application programs, thereby severely weakening the expres-

siveness and the semantic power of their knowledge or data model.

Furthermore, since KOBRA incorporates all roles of a real world

entity in one single schema, there is no need to introduce two dis-

tinct representations to support both association and generaliza-

tion/classification (as done by ART and KNOWLEDGE CRAFT) in

the model. It is also not necessary to make a kind of "hodgepodge"

with the semantics of the generalization/classification in order to

be able to support the representation of set properties (as done by

KEE). Even proposed extensions of DBS technology (semantic data

models [13,14], object-oriented data models [15], etc.) focus only on

some of these concepts (mostly aggregation and/or generalization/

classification) and neglect most of the underlying reasoning facili-

ties.

Dynamic built-in reasoning

Finally, KRISYS allows for changes on the abstraction relation-

ships at any time. The corresponding built-in reasoning is, in such

cases, automatically applied maintaining the KB in a semantically

consistent state. In some systems (ART and LOOPS), inheritance,

for example, is not more than a means to save typing work. Chang-

es in the structure of a class are either not allowed or not reflected

in the existing instances until a latter system recompilation, lead-

ing to severe inconsistencies in the meantime. In KRISYS, when

relevant information has been changed, inheritance as well as the

other built-in reasoning facilities are recalculated so that the sys-

tem can guarantee the structural and semantic integrity of the

knowledge base.

Integration of meta-information into the KB and extensibil-

ity

As a consequence of the previously discussed integrated and dy-

namic view of the abstraction concepts, KOBRA does not differen-

tiate between data and meta-data. Such a differentiation (required

by DBS) does not reflect the situation in the real world since

changes affecting the application model may also occur. Thus, it is

possible to insert an object into the KB and then dynamically es-

tablish or change abstraction relationships or directly introduce

new information into its structure. This capability is particularly

important in achieving the above mentioned extensibility of the

application model.

In summary, KRISYS supports constructs and mechanisms that

allow for an integration of a much higher degree of application se-

mantics into the model, thereby showing several advantages in

comparison to other systems:

• Structural object-orientation (i.e., the representation of complex

objects) is supported by means of the abstraction concept of ag-

gregation.

• Behavioral object-orientation is achieved by the integration of

procedural knowledge into the object description (methods).

• Data-driven and demand-driven computation are provided by

the concept of demons allowing for the specification of reactions

to certain events.

• Intensional knowledge may be represented by rules (also by de-

mons) in order to dynamically derive new knowledge.

• Organizational principles are provided in an integrated fashion

by abstraction concepts. The semantics of these concepts are in-

corporated into the system via built-in reasoning facilities,

which guarantee the structural and application-independent se-

mantic integrity of the KB.

• Application-dependent semantic integrity is explicitly specified

and maintained via aspects, demons, and rules.



4. Our KBMS Approach

After having introduced the most important modeling concepts of

KRISYS, with which the whole knowledge of an application world

may be suitably represented, we now want to focus on perfor-

mance-increasing measures in order to reach an efficient manage-

ment of the KB. For this reason, it is necessary to develop an ap-

propriate system architecture, a corresponding mapping concept,

and an effective processing model. In the following, we want to con-

centrate on each of these issues and their implementation concepts

as applied in the KRISYS KBMS.

4.1 Overview of the KRISYS Architecture

As shown in figure 11, the system architecture of KRISYS is divid-

ed into three hierarchically ordered layers. They are responsible

for a stepwise abstraction process and for the realization of the cor-

responding tasks within each layer. In the previous section, we

have described in detail the knowledge model KOBRA that is im-

plemented by the engineering layer. The KOBRA implementation

offers at its interface an object-centered view of knowledge repre-

sentation and manipulation to the knowledge engineer. To keep

the end-user or application programs independent from this repre-

sentation, the application layer realizes an external interface

where the knowledge is viewed in a more abstract manner. This

object-abstraction interface is achieved by the powerful query lan-

guage KOALA [16]. The goal of the lowest layer is to efficiently

cope with storage of knowledge and its supply to the other layers.

At this level, most of the issues are related to traditional DB tech-

nology applied to large KB, possibly shared by multiple users: stor-

age structures, access techniques, efficiency, integrity features,

transaction support, etc. Therefore, this layer is realized by a non-

standard database system (NDBS) which seems to be quite advan-

tageous in a KBMS architecture for a number of reasons [17].

NDBS kernels are much more powerful than traditional DBS and

are, for this reason, able to satisfy knowledge maintenance re-

quirements.

4.2 The Implementation Layer

KRISYS makes use of the PRIMA-NDBS [18], also developed at

our university, to realize the implementation layer. It offers neu-

tral, yet powerful mechanisms for managing the KB. PRIMA is the

PRototype Implementation of the MAD model, whereas the MAD

model is an acronym that stands for Molecule Atom Data model

[17]. This non-standard data model offers dynamic definition and

handling of complex objects based on direct and symmetric man-

agement of network structures and recursiveness. These concepts

enable the mapping of knowledge structures in an effective and

straightforward way as we are going to illustrate in the following

sections.

Short notes on the MAD model

The most primitive constructs of MAD are denoted atoms. They

are, in analogy to tuples in the relational model, composed of at-

tributes of various types, have their structure determined by an

atom type, and possess an identifier. Atoms represent components

of more complex objects, called molecules. Composition as well as

the decomposition of molecules are performed dynamically, follow-

ing the specification of a molecule type. A molecule type is defined

as a graph having atom types as nodes and relationship types as

edges. The specification of relationship types is made in attributes

of the atom types by using a special attribute type called reference.

In MAD, each relationship type is symmetrically modeled. That is,

for each reference attribute, there exists in the pointed atom type

a back-reference attribute, whose mutual referential consistency is

automatically maintained by the system. MAD allows for a direct

representation of all existing relationship types (i.e., 1:1, 1:n, and

n:m) achieved by a combination of attribute type reference with

the attribute type set_of. In this sense, atoms together with their

references build the molecules that may be dynamically defined.

Molecules are views or snapshots,  in which atoms are natural-

joined on their references (foreign keys). Such views may, in turn,

be used to construct other more complex molecules, which may

even occur recursively. Therefore, the specification of molecule

types can be defined in such a way that they directly allow for an

appropriate mapping of knowledge structures to data model struc-

tures as described below. From a more general point of view, the

MAD model is a direct implementation of the well-known entity-

relationship model (cf. figure 12).

Mapping KOBRA objects into MAD

In the previous chapter, we have seen that KOBRA presents all its

concepts for building a KB well integrated in its central construct:

the schema that renders an object-centered representation possi-

ble. From a structural point of view, one may observe that the sche-

ma (cf. figure 1) is composed of attributes which, in turn, consist of

aspects, suggesting a MAD schema that contains three atom types

(corresponding respectively to ’schema’, ’attribute’, and ’aspects’)

connected via the references has_attributes and has_aspects. The

Figure 11: Overall system architecture of KRISYS
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MAD schema diagram in figure 12 shows a graphical view of atom

types (rectangles) and their interconnections (double arrows).

This MAD schema defines just one ’aspects’ occurrence for each ’at-

tribute’ because aspect specifications have been grouped into the

atom type ’aspects’ and expressed as attributes thereof (note: at

the data model level). Thus, aspect specifications are shared be-

tween several attributes preventing redundancy (especially in case

of inherited attributes). Here, we explicitly exploit the capability of

the MAD model to handle network structures in a direct and non-

redundant manner. Such an adequate modeling is hard to achieve

using data models that only allow for hierarchical structures (e.g.

NF
2

models [19,20]). The organizational axes of KOBRA, i.e. at-

tributes with abstraction semantics, are not represented as ordi-

nary ’attributes’ but as recursive MAD references between the

atom type ’schema’. Since for each MAD reference, there always

exists a back reference, each organizational axis is represented by

a pair of MAD-attributes of type reference (shown as hatched dou-

ble arrows in figure 12). In this illustration, we have also listed the

atom-type definitions that lead to the MAD schema introduced

above.

Transformation of KOBRA operations to MAD queries

On one hand, KOBRA operations can be viewed as general func-

tions to work on the schema objects as a whole. On the other hand,

there are also operations to directly manipulate the schema ob-

jects’ attributes or their aspects. To exemplify our transformation

approach, we just present two KOBRA operations together with

the corresponding MAD statements.

The first operation, which expresses the function of reading a

whole schema object, can be directly mapped to one MAD state-

ment (figure 13). The data manipulation language defined for the

MAD model is syntactically related to the well-known and easy to

understand SQL language developed for relational database sys-

tems. Therefore, it is easy to capture the semantics of MAD state-

ments: projection (SELECT) and qualification (WHERE) clause

are quite similar to SQL, whereas the FROM-clause of MAD pro-

vides the important capability to dynamically express molecules

just by writing the corresponding molecule structure or molecule

type; thus, a dynamic complex object facility has been introduced.

The second operation (figure 14), i.e. insertion of a new instance-

attribute, is much more complex; for reasons of clarity, it has been

carried out in several steps (and for sake of simplicity, we omit the

insertion of the attribute’s aspects). Since the insertion of an in-

stance-slot (in the example, number_of_windows) provokes its in-

heritance, it is necessary to obtain the whole generalization hier-

archy before inserting the attribute. This is accomplished by the

first MAD statement of figure 14, which retrieves the whole gener-

alization hierarchy beneath the schema object ’rooms’. Such a hi-

erarchy is specified as a recursive molecule type starting with the

root atom type ’schema’ moving on firstly to all subclasses (using

the reference type ’has_subclasses’ in a recursive manner) and

then to their instances (exploiting the reference type

’has_instances’). Additionally, for all schema objects, their at-

tributes are also retrieved (taking the reference type

has_attributes). The molecule diagram of this generalization hier-

CREATE ATOM_TYPE schema
( schema_id : IDENTIFIER,

name : CHAR_VAR,
is_subclass_of : SET_OF(REF_TO(schema.has_subclasses)),
has_subclasses : SET_OF(REF_TO(schema.is_subclass_of)),
is_instance_of : SET_OF(REF_TO(schema.has_instances)),
has_instances : SET_OF(REF_TO(schema.is_instance_of)),
is_subset_ot : SET_OF(REF_TO)(schema.has_subsets)),
has_subsets : SET_OF(REF_TO(schema.is_subset_of)),
is_element_of : SET_OF(REF_TO(schema.has_elements)),
has_elements : SET_OF(REF_TO(schema.is_element_of)),
has_attributes : SET_OF(REF_TO(attribute.is_attribute_of)))

KEYS_ARE(name);

CREATE ATOM_TYPE attribute
( attribute_id : IDENTIFIER,

name : CHAR_VAR,
value : BYTE_VAR,
type : (memberslot,ownslot)
kind : (own,inherited)
is_attribute_of : REF_TO(schema.has_attributes)
has_aspects : REF_TO(aspects.is_aspect_of))

KEYS_ARE(name);

CREATE ATOM_TYPE aspects
( aspect_id : IDENTIFIER,

name : CHAR_VAR,
comment : CHAR_VAR,
value_set : BYTE_VAR,
cardinality_min : INTEGER,
cardinality_max : INTEGER,
default : BYTE_VAR,
is_aspect_of : SET_OF(REF_TO(attribute.has_aspects)))

KEYS_ARE(name);

attribute

aspects

a) MAD schema diagram

b) atom_type definitions

Figure 12: Generic KOBRA schema expressed in terms of the
                 MAD model

schema

Example: Selection of the schema ’bedrooms’

SELECT ALL
FROM schema-attribute-aspects
WHERE schema.name = ’bedrooms’

schema

attribute

aspects

has_attributes

has_aspects

Figure 13: Selection of a schema object expressed in terms of
                 one MAD statement



archy is also depicted in figure 14 visualizing the evaluation pro-

cess of the corresponding molecules as introduced before.

After this, the hierarchy is modified in the KOBRA layer to process

the insertion and inheritance of the instance-slot, as exemplified in

the second step. Following on, the complete schema hierarchy is

then updated in the DB via a modify statement. This operation

changes the specified molecule in accordance to the given hierar-

chy by inserting atoms not yet stored (here, all inherited at-

tributes) and modifying the corresponding connections (here, the

references between the ’schema’ objects and their new attributes).

In this example, it should have become clear that the recursiveness

of the MAD model and its language could be extensively exploited

to yield a direct and natural transformation of the KOBRA opera-

tions. Thus, recursiveness should be an integral part of the object-

supporting interface.

Processing model and efficiency considerations

Before describing the dynamic behavior of the KRISYS system, it

is necessary to get more detailed information concerning the imple-

mentation layer. Internally, this layer is divided into two sub-

Example: Insertion of the instance-slot ’number_of_windows’ to

schema

has_attributes

1. Retrieval of the whole subclass hierarchy
with corresponding instance schemas
SELECT ALL
FROM generalization-hierarchy

(schema-(.has_attributes-attributes,
.has_instances-schema.has_attributes-attributes)

(RECURSIVE: schema.has_subclasses-schema))
WHERE generalization-hierarchy.schema(root).name=’rooms’

2. Modification within the KOBRA layer:
- addition of the instance-slot in the root schema, i.e. the

schema named ’rooms’
- inheritance as instance-slot to all

subordinate classes
- inheritance as own-slot to all subordinate instance

schemas

3. Update of the database:
MODIFY generalization_hierarchy
FROM generalization_hierarchy

attributesschema

attributes

has_subclasses
RECURSIVE

has_attributes

has_instances

Figure 14: Insertion of an instance-slot expressed in terms of
                 the MAD language

               the schema named ’rooms’

systems (cf. figure 15): the PRIMA kernel and the working-memo-

ry system (WMS).

The PRIMA kernel offers application-independent data manage-

ment functions at its interface which is determined by the MAD

model. From the kernel’s point of view, the task of the WMS is the

embedding of the data model into an environment that could be

easily and efficiently accessed by the engineering layer. In the

PRIMA approach, a number of system design decisions were taken

with special emphasis on efficient molecule processing which is en-

hanced by a variety of storage structures and other tuning mecha-

nisms (e.g. molecule materialization or molecule caching). All

these performance enhancements are transparent at the kernel in-

terface. An in-depth description of the design and implementation

concepts of PRIMA can be found in [1].

From the point of view of the higher levels, there is another very

important issue when working with large KB: to efficiently cope

with long execution paths of KB accesses, and time consuming re-

quests to secondary storage. Thus, the task of the WMS is to firstly

considerably reduce the path length and secondly to minimize the

number of kernel calls when accessing KB objects. For this reason,

WMS realizes a kind of application buffer, which temporarily

stores needed objects in a main-memory structure, called working

memory, that offers almost direct access at costs comparable to a

pointer-like access. Consequently, WMS supports a processing

model aimed at a high locality of object references, thereby drasti-

cally reducing the path length when accessing the KB. To reach

this end, WMS offers the concept of contexts being a collection of

objects which are needed during a specific processing phase. This

concept is realized by the context manager, which fetches and dis-

cards such contexts as notified by specific control calls. These calls

are then transformed into set-oriented kernel operations (complex

queries) to extract the specified objects from the DB or to discard

them from the working memory. Access requests to schema objects

or parts thereof are dealt with by the working-memory manager,

which generates and sends simple queries to the kernel if the re-

quested objects are not found in the working memory. The distri-

bution component is only responsible for proper routing of the re-

spective KOBRA calls.

As indicated in figure 15, the KRISYS architecture fits nicely into

the most realistic and prevailing architectural environment for en-

PRIMA kernel

Figure 15: Components of the implementation layer
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gineering/design applications, i.e. workstation environments.

Here, workstation-oriented processing could be effectively en-

hanced by delegating WMS, engineering, and application layer to-

gether with the application to the workstation and the PRIMA ker-

nel to the host system. This partitioning is further favored by the

set-orientation of the kernel interface and the locality preservation

of the WMS, both minimizing workstation-host communication.

Additionally, the loose coupling greatly facilitates failure isolation.

This is a very critical design objective since a large number of users

may be affected by any kind of failure, and because interactive de-

sign transactions are typically very long.

4.3 Summing up

After reading the previous sections, one should conclude that

KBMS, and especially KRISYS, incorporate techniques of both AI

and DB. The engineering layer embodies expressive, accurate, and

flexible knowledge representation and manipulation mechanisms

of AI, which are necessary to enable a precise and semantically

rich modeling of the application world. The implementation layer

supports DB mechanisms for a reliable and efficient management

of persistent data, which is essential for a consistent and practica-

ble object processing. Further, the application layer realizes the

system interface (its description, due to space limitations, was left

out of this paper; for details see [16]). Since KRISYS did not result

from an extension or a coupling of existing systems, but from an

integration of different technologies, it combines the advantages of

both fields, which is fundamental for an effective support of ad-

vanced CAD. AI systems might allow for intelligent system behav-

ior, but they lack efficiency, reliability, multi-user support, etc.

DBS do fulfil management tasks but are, however, unable to pro-

vide the necessary modeling mechanisms.

In KRISYS, the integration of both technologies has been achieved

in a natural way, reflected in the stepwise abstraction process re-

alized at each layer. The implementation layer of KRISYS treats

knowledge structures simply as a kind of network of complex ob-

jects which are consistently, reliably, and efficiently managed. At

the engineering layer, these structures obtain semantics, being

then applied for knowledge modeling tasks. Thus, the application-

independent structural object representation provided by the ob-

ject-supporting interface guarantees that the semantics of knowl-

edge structures is known only by the KOBRA model, remaining,

for this reason, outside of the NDBS component. So, the NDBS is

not overloaded by application specific aspects, being, therefore,

able to concentrate on performance and on other relevant DB as-

pects. On the other hand, the KOBRA model is not bounded by the

semantics provided by the MAD model, being, as a consequence,

able to come nearer to the application semantics by offering a rich

and powerful spectrum of concepts for modeling.

5. Conclusions and Outlook

In advanced CAD systems, the user, i.e. the designer, is not the

only active unit within the overall design process (as is the case in

conventional CAD systems. In such environments, the CAD sys-

tem also exhibits an active behavior, therefore providing a more

intelligent interface to the user: guaranteeing a consistent design

and offering appropriate design hints, relevant problem solutions,

refined simulation results, and adequate diagnostic information at

all stages of the design process. In some sense, there is a kind of

’partnership’ between designer and system, where it is possible to

switch between automated design guided by the system (e.g. in

standard cases) and human design controlled by the user’s deci-

sions (e.g. in special cases). The main goal of advanced CAD is to

improve the design process by incorporating not only geometrical

but also technical and functional aspects as well as construction

and manufacturing dependencies along each design step. This

leads to a penetration of the design phases and to a manufacture-

oriented design methodology. Recently, for example, the technical

term feature modeling has arisen to express the shift from simple

geometric modeling (where it is only dealt with geometry) to a

modeling concept that additionally considers production and man-

ufacturing aspects of the design object [21].

Due to KRISYS’s rich spectrum of modeling concepts, the process

of modeling and, therefore, also the design process turn out to be

• more consistent - since a substantial amount of the application

semantics has been incorporated into the model,

• more flexible - since it is possible to repeat previous modeling

steps in order to make corrections or extensions on the knowl-

edge base, and

• easier - since KRISYS is also an active agent in the modeling

process, continuously making deductions on object structures,

checking the semantic integrity, and inferring new information

relevant to the application.

On the other hand, the architecture and implementation design

decisions made (e.g. context-driven working-memory system,

NDBS usage) are a prerequisite for persistent, reliable, and effi-

cient management of the KB on secondary storage, additionally

enhancing the prevailing workstation-oriented processing. Thus,

we can conclude that this integration of DB and AI techniques for-

tify each other, aiming at a base system such as KRISYS that ef-

fectively supports advanced CAD.

Though our approach looks like having removed some main obsta-

cles on the way to better CAD, a lot of problems have not been tak-

en into our consideration. There is a need for a tailored version

concept (including version graphs, design alternatives, and differ-

ent configurations) structuring the overall design process. These

structuring capabilities are embedded into a design-transaction

concept to guarantee durability, consistency, and isolation (or

sometimes just the contrary, i.e. group cooperation) of each design

phase with respect to the whole design process. Here it should be

mentioned that there are already some contributions to this prob-

lem area: e.g. in AI the concept of viewpoints [10] is known, and in

DB, for example, long transactions [22, 23], synchronization, re-

covery, and failure masking in workstation-oriented engineering

environments [24]; note that these concepts are applicable to our

KBMS approach because of the separation of DBS kernel and

WMS in the implementation layer’s architecture. Although other

extensions are conceivable, it is important to gain practical expe-

rience with KRISYS in some in-the-field applications. Therefore,

we have worked out applications in the areas of diagnoses, plan-

ning, and design. The results of these quite different and varied

applications will offer more insight into modeling and efficiency re-

quirements of advanced CAD systems.
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