
in: Proc. 1st Int. Conf. on Deductive and Object-Oriented Database Systems,
Kyoto, Dec. 1989, pp. 535-554
Integrating Complex Objects and Recursion

Harald Schöning

University Kaiserslautern
P.O.-Box 3049
6750 Kaiserslautern
Federal Republic of Germany

The molecule-atom data model (MAD model) supports the management of
complex objects in databases. It allows for the dynamic definition of complex
object structures at query time. Since these structures may be recursive,
transitive closure computations are supported in a natural way. The results
of these computations do not only contain the elements belonging to a clo-
sure: structured representations of the transitive closure graph showing the
path used to reach each node can be derived, too. Furthermore, path prob-
lems can be solved by appropriate operator combinations. The integration
of the notion of complex objects with recursion makes the MAD model ap-
propriate for many enhanced applications such as VLSI design, CAD/CAM
and deduction.

1. Introduction

In recent years, many efforts have been made to integrate recursion into database
management systems (DBMS). One main direction was the development of deductive
DBMS which use recursion for reasoning and knowledge representation purposes
(e.g. [1]). Less attention was paid to the need of recursion in DBMS for so-called en-
hanced applications (e.g. CAD/CAM and VLSI-design). These applications typically
operate on complex objects (in contrast to the flat objects of classical database appli-
cations). Such complex objects may have a tree-like or a network-like structure often
defined by means of recursion. Examples are “slicing trees” in VLSI design (describing
a so-called floorplan by recursively partitioning the chip surface) and parts explosion
in CAD. Furthermore, a version concept can naturally be modeled recursively [2].

As a consequence, DBMS developed for enhanced applications should support the
notion of complex objects to enable an adequate modeling of the application objects
within the DBMS. Operations in these systems should handle entire complex objects,

allowing for structure-oriented projection and selection even in the case of recursive
object structures.

There are many proposals for algorithms handling recursion (e.g. in the form of a tran-
sitive closure computation) in DBMS (see [3] for an overview), but less attention has
been paid to the integration of recursion into data models and query languages. Nev-
ertheless, simple forms of recursion have been proposed for some query languages.
QBE, for example, only knows recursion for binary relations [4]. Horn clause languag-
es for DBMS allow the formulation of recursion [5, 6]. These languages, however, are
tailored for use in deductive DBMS, but complex object handling is not considered by
them. On the other hand, data models designed to support complex objects (e.g. NF2

[7]) are often based on a static object structure. Therefore, extensions of these models
allowing for recursion are not capable of a structured representation of recursive com-
plex objects [8], i.e., there is a discrepancy in the handling of recursive and non-recur-
sive complex objects. POSTGRES [9] supports transitive closure computations and
does not require statically predefined structures for complex objects. However, it does
not combine these two facilities to enable a structured representation of a recursively
defined complex object. Another QUEL extension [10] integrates transitive closure op-
erations restricted to direct recursion on hierarchical structures into the query lan-
guage without supporting a structured representation of their results. The data model
of [11] allows for direct recursion in so-called configurations consisting of a hierarchy
of complex objects, thus permitting a simple transitive closure computation. However,
it remains unclear, whether or not the result can be further processed with the data
model’s operations.

Although [4] states the need for facilities to compute path problems as well as transi-
tive closures, most of the models presented up to now concentrate on transitive clo-
sures. In contrast to that, our model is capable of computing the transitive closure as
well path problems. Furthermore, recursion is not limited to direct recursion. The mol-
ecule-atom model integrates the notion of complex objects with recursion, in that it
supports the structured representation of recursively defined complex objects, and
handles recursive and non-recursive complex objects in a uniform way.

In the next chapter, we formulate requirements for the integration of recursion into a
DBMS manipulating complex objects. The third chapter presents basic concepts of the
MAD model. The recursion handling facilities of this model are presented in chapters
4 and 5. Chapter 6 shows some examples of the wide range of applications that can
be modeled with these facilities.

2. Recursion in a Complex Object Environment

As mentioned above, complex object structures are often defined recursively. A ma-
chine, for example, consists of its parts, of their subparts, and so on. Thus, there is a
relationship between parts. The “top-down” direction of this relationship is called con-
sists-of and the “bottom-up” direction has the name is-used-in. Since the depth of a
parts explosion is not known in advance, determining all parts (at all levels of the hier-
archy) requires a transitive closure computation. In most proposals, the result of such
a computation is an unstructured list of tuples, representing only one of the relation-
ship’s directions (as in figure 1b). This is sufficient to determine, whether a specific part
is contained in the machine, but does not answer the question, where it is used and
which subparts of the machine depend on this part. In other words, a structured rep-
resentation of the transitive closure showing both the directions of the relationship is
required (figure 1a).

Some algorithms proposed for transitive closure computations work on all data, i.e.
compute the transitive closure of a whole relation. It is worth mentioning that in a com-
plex object environment transitive closure operations commonly do not need to be
computed over all data, but are performed selectively starting at a given root point
(“partial transitive closure”, in contrast to many recent discussions about transitive clo-
sure computations, e.g. [12]).

Another problem arising with recursive complex object structures is the computation
of aggregate values from the objects’ structures, i.e. not only to compute the transitive
closure, but to derive values describing some properties of the transitive closure’s
structure. This kind of problem is commonly referred to as generalized transitive clo-
sure [4]. Regarding the transitive closure as a graph, the generalized transitive closure
computation corresponds to the so-called path-problems [13]. This class of problems
can be characterized by a combination of two operators: a concatenator combines the
values within one path (consisting of several sections), and an aggregator computes
the result from the values of all paths. Table 1 lists some path problems and the ap-
propriate operator combinations. To compute the shortest path within a graph, for ex-

Table 1: Some path problems and appertaining operator combinations [13, 4]

Application Property Aggregator Concatenator

shortest path length or time duration min +
critical (longest) path length or time duration max +
maximal capacity path capacity max minimum
most reliable path reliability max *
bill of materials item count + *
list all paths edge name ∪ concatenation
list any path edge name choose any concatenation
propositional deduction proposition choose any concatenation

ample, one has to add the lengths of the sections within one path (concatenator +) and
has to find the path with the minimal length (aggregator MIN).

On the other hand, a complex object is always defined by its components and their
relationships to one another, even in the case of recursive object structures. There-
fore, the recursion to be dealt with can be limited to the connections established by
existing relationships among components (basic objects).

is
used

in

Sprocket

Bicycle

Wheel Seat Chassis

Tire Axle Drive Assembly Frame

Chain Crank Gears

Rod Bolt

CONSISTS_OF

(MAJOR_PART, MINOR_PART)

(BICYCLE, WHEEL)
(BICYCLE, SEAT)
(BICYCLE, CHASSIS)
(WHEEL, TIRE)
(WHEEL, AXLE)
(AXLE, ROD)
(AXLE, BOLT)
(CHASSIS, DRIVE ASSEMBLY)
(CHASSIS, FRAME)
(DRIVE ASSEMBLY, CHAIN)
(DRIVE ASSEMBLY, CRANK)
(DRIVE ASSEMBLY, GEARS)
(CRANK, BOLT)
(CRANK, SPROCKET)

(BICYCLE, TIRE)
(BICYCLE, AXLE)
(BICYCLE, ROD)
(BICYCLE, BOLT)
(BICYCLE, DRIVE ASSEMBLY)
(BICYCLE, FRAME)
(BICYCLE, CHAIN)
(BICYCLE, CRANK)
(BICYCLE, GEARS)
(BICYCLE, SPROCKET)
(WHEEL, ROD)
(WHEEL, BOLT)
(CHASSIS, CHAIN)
(CHASSIS, CRANK)
(CHASSIS, GEARS)
(CHASSIS, BOLT)
(CHASSIS, SPROCKET)
(DRIVE ASSEMBLY, BOLT)
(DRIVE ASSEMBLY, SPROCKET)

a) Structured view of a parts explosion (transitive closure of “consists-of”) [10]

b) The CONSISTS_OF relation

Figure 1: Structured and unstructured (relational) view of a transitive closure

additional tuples derived by
a transitive closure computation

con-
sists

of

Up to this point, the notion of complex objects was used without further definition. For
the following considerations, we define a complex object as a coherent, directed, and
acyclic graph with a root. The nodes of this graph are basic objects, the edges are
formed by one direction of the relationships among these basic objects. In figure 1, for
example, the complex object (graph) is a bicycle’s parts explosion, the basic objects
(nodes) are of type part, and the direction of the relationship forming the edges is
consists_of. Alternatively, the is_used_in direction could have been used to construct
a complex object with the semantics depends on part. The requirement for the graph
to have a root and to be coherent and acyclic corresponds directly to the intuitive view
of a complex object. Complex objects are not restricted to trees, but may be networks
(as shown in figure 1). Thus, our definition is adequate.

It should be stressed that a transitive closure computation along one direction of a re-
lationship with one starting point forms a complex object according to the above defi-
nition. E.g., all cities which can be reached from New York by railway form a complex
object (assuming a relationship “has_railroad_connection_to" among “towns”). Stati-
cally predefined object structures are not sufficient in this case, since the depth of re-
cursion can not be predicted.

In the next chapter, we present some basic features of the molecule-atom data model
(MAD model), which supports dynamically constructed complex objects according to
the above definition. The recursion handling facilities of this model are discussed in
chapter 4 and 5.

3. Basic Concepts of the MAD Model

The MAD model [14] supports retrieval and manipulation operations on complex ob-
jects (called molecules). The structure of these molecules is defined at query-time, i.e.,
the objects are built dynamically at execution time rather than stored with a fixed struc-
ture. Input as well as output of the MAD model operations are sets of molecules, i.e.,
the result of a query consists of structured objects rather than of flat tuples as in the
relational model.

Molecules consist of atoms, which are comparable to tuples in the relational model, in
that they consist of a set of attribute values and belong to one atom type (correspond-
ing to a relation). Attribute values need not be defined for all attributes of an atom.

Each atom type has exactly one attribute of type IDENTIFIER which is used to unique-
ly identify the atoms (system defined surrogate). Binary attribute-free relationships of
types 1:1, 1:n, and n:m can be directly expressed by attributes of type REFERENCE
(repeating groups of IDENTIFIER values, in contrast to e.g. [15, where References are
single-valued): If there is a relationship between atom type A and atom type B, then A
contains a REFERENCE attribute A_to_B, and B contains a REFERENCE attribute

B_to_A, which are pointing to one another. If there is a relationship between two atoms
a (of type A) and b (of type B), A_to_B of a contains the IDENTIFIER value of b, and
B_to_A of b contains the IDENTIFIER value of a. The values of the REFERENCE at-
tribute pairs define edges of a graph whose nodes are atoms (atom network). Analo-
gously, there is a corresponding undirected graph at the type level. The natural sym-
metry of real world relationships is automatically mapped to the MAD model schema,
because each direction of the relationship is mapped to a REFERENCE attribute.

The example used to demonstrate the characteristics of the MAD model throughout
the paper is chosen with respect to three requirements:

• The number of atom types involved should be small enough to make the examples
attractive, but large enough to show relevant aspects.

• The semantics of the example must not require any special knowledge of a sophis-
ticated application (such as CAD or VLSI design).

• The example’s structure must be very general. Ideally, almost all applications
should use structures which are special cases thereof.

For these reasons, we have chosen the highway example shown in figure 2 (type lev-
el), which represents non-hierarchical real world objects. Hierarchical structures are
just special cases thereof. A simple entity relationship diagram modeling cities with
their connections by sections of interstate highways as well as the corresponding MAD
model schema are depicted. A highway obviously consists of a set of highway sec-
tions. We consider only a few attributes of the atom types (see figure 2). The IDENTI-
FIER attribute of each atom type is called Id for simplicity purposes; of course, other
names are allowed. Cardinality restrictions could be added for each REFERENCE at-
tribute, but have been omitted here. One aspect of the MAD model not represented by

attributes:
Id : IDENTIFIER Id : IDENTIFIER Id : IDENTIFIER
Name : String Length : INTEGER No : INTEGER
interstate_connections: Exits: REFERENCE TO (City) has_sections:

REFERENCE TO belongs_to : REFERENCE TO
(Highway_Section) REFERENCE TO (Highway) (Highway_Section)

Figure 2: An entity relationship diagram and the corresponding MAD schema

sample entity relationship diagram

corresponding atom type network

City Highway_Section Highway

City Highway_Section Highway

2 m 1n

our example is a network-like type structure. We can neglect it here, since it does not
influence the recursion handling facilities, which form the focal point of this paper.

Figure 3b shows a sample atom network for the schema of figure 2, representing some
Texan cities and some interstate highways connecting them (figure 3a). The edges
among the atoms represent the connections established between two atoms by the
values of their REFERENCE attributes. For this reason, the values of REFERENCE
attributes are not shown explicitly. Similarly, IDENTIFIER attributes are not listed. The
atom representing San Angelo is not connected to any other atom, since there is no
highway leading to San Angelo in our example.

The data manipulation language (DML) of the MAD model allows for the dynamic def-
inition of molecule types based on atom type networks. For this purpose, atom types
are selected, and a direction is given to edges connecting them, yielding a directed
coherent graph with a root (the so-called molecule type graph). In a molecule defini-
tion, the directed relationships are represented by “-” preceded by the name of the
REFERENCE attribute used, while the atom types are identified by their name. For ex-
ample, the molecule type definition corresponding to figure 4 is
City.interstate_connections - Highway_Section.

Figure 3: A sample map and its representation as atom network

El PasoDallas AustinSan Angelo San Antonio Houston

571199

35

202 80

10

241

35

Dallas

San Antonio

Austin

El Paso

San Angelo

Houston

10

45

10

35

202

80

241

199
571

a) Some Texan cities and their interstate highway connections

b) atom network

City

Highway_Section

Highway 45

Since the direction of the relationship is specified at query time, Highway_Section - City is
also a valid molecule type definition. If there is only one relationship between two atom
types, the name of the corresponding REFERENCE attribute may be omitted. Thus,
City - Highway_Section is sufficient in the above molecule type definition. Ramification is
also possible, and is indicated by brackets and commas separating the branches. For
example, Highway_Section - (Highway, City) corresponds to the molecule type graph of fig-
ure 5.

An atom type may be included more than once in a molecule type graph. In this case,
each occurrence of the atom type must be identified by a so-called role name. If, for
example, the starting and ending points of a highway section are to be distinguished,
one could define the molecule type starting(City) - Highway_Section - ending(City).

In summary, molecules belonging to a molecule type can be described as follows:

• Each atom of the root atom type (root atom) induces one molecule.

• Atoms of other types belong to a molecule, if they can be reached transitively from
its root atom using the specified directed relationships.

• Thus, a molecule is a coherent directed subgraph of the atom network starting with
the root atom.

Hence, a molecule consists of a number of atoms together with the appropriate at-
tributes and of structure information describing the molecule’s shape. This structure
information is depicted by arrows in a graphical representation of molecules. The mol-
ecule type definition Highway - Highway_Section - City applied to the atom network of figure
3, for example, yields the molecules shown in figure 6. Although the molecule type
graph is a tree, the molecules have a network-like structure due to the fact that some
highway sections share the same city.

City

Highway_Section

Figure 4: Molecule type graph for City.interstate_connections - Highway_Section

Highway City

Highway_Section

Figure 5: Molecule type graph for Highway_Section - (Highway, City)

In the following, we will concentrate on the description of retrieval statements, because
they are sufficient to show all concepts involved in the following discussions. A retriev-
al statement (query) consists of a projection clause (SELECT), a molecule type defi-
nition clause (FROM), as described above, and a restriction clause (WHERE). The re-
striction clause contains conditions to restrict the set of molecules in the result. The
projection clause specifies the atoms and the attributes of the atoms which are to be
included in a result molecule. However, the coherency of the molecule must be pre-
served. The attributes to be projected can be specified in several ways:

• atom type: all attributes of this atom type are to be projected

• atom type (list of attributes): the listed attributes are to be projected. The list may
contain attribute names and so-called virtual attributes defined by assigning an ex-
pression.

• atom type (): no attributes of this atom are projected

ALL is a short form for a list of all atom types appearing in the molecule type definition.
ALLBUT (list of atom types) excludes the atom types listed from projection.

For explanation purposes, we introduce the following simple evaluation model for
MAD model queries. Of course, this model does not correspond to an optimized im-
plementation of molecule processing. The FROM clause is evaluated first, delivering
all molecules of the specified type. Then the WHERE clause is used to restrict this set
of molecules according to the condition specified. Finally, the structure of the mole-
cules is modified as specified in the SELECT clause. The language is complete, i.e.,
a query is allowed wherever a molecule type definition is allowed, even within a mol-
ecule structure definition (FROM clause).

The question: “How far are the next highway exits from San Antonio on the different
highways?”, for example, can be formulated as follows:

SELECT Highway_Section (Length), Highway (No), City (Name)
FROM Highway_Section - (Highway, City)
WHERE EXISTS City: City.Name = ’San Antonio’

and has the result set shown in figure 7. It is also possible to group the highway exits
to one molecule instead of specifying a set of molecules as above, using the following
query:

El Paso Houston Dallas AustinSan Antonio

10

San Antonio Houston Dallas

571 199

35

202 80

45

241

Figure 6: Molecules of type Highway - Highway_Section - City

SELECT starting (Name), Highway_Section (Length),

Highway (No), ending (Name)

FROM starting (City) - Highway_Section - (Highway, ending (City))

WHERE starting.Name = ’San Antonio’

The result set consists of one single element (figure 8). Here, the projection of starting

is necessary to maintain molecule coherency. However, there is no need to project

any attribute of starting. Thus, starting() is valid, too. The execution strategy is as fol-

lows: from San Antonio, three highway sections are found. From each of them, all cit-

ies indicated by the REFERENCE attribute Exits of Highway_Sections are included in the

molecule, as well as the corresponding highway.

Now, San Antonio appears once in role starting and once in role ending. This is not ex-

actly the result one wants to see. The appearance of San Antonio in role ending can be

suppressed by the so-called qualified projection which includes only those sub-mole-

cules in the resulting molecules which fulfil the restriction clause. The keyword RE-

SULT in the molecule type definition clause of the qualified projection indicates that

the work is performed on submolecules of the molecules derived from the appertaining

query. Atoms projected outside the qualified projection do not belong to the scope of

the qualified projection. In the following query, which cuts off San Antonio in role ending,

the scope of the qualified projection is the one-atom submolecule ending.

Figure 7: Distances to the next highway exits from San Antonio

El Paso10 San Antonio Houston10 San Antonio Austin35 San Antonio

571 199 80

Figure 8: Distances to the next highway exits from San Antonio

El PasoAustin Houston

San Antonio

35 10San Antonio

80 571 199

starting

ending

Highway_Section

Highway

qualified projection

SELECT starting (Name), Highway_Section (Length), Highway (No),
(SELECT ending (Name)

FROM RESULT
WHERE ending.Name <> ’San Antonio’)

FROM starting (City) - Highway_Section - (Highway, ending (City))
WHERE starting.Name = ’San Antonio’

Qualified projection must, of course, maintain the coherency of the resulting mole-
cules. Similarly, qualified projection could exclude the appearance of San Antonio in
each of the molecules of figure 7.

In addition to the features presented previously, there are some built-in functions work-
ing on lists such as SUM, AVG, etc. The function VALUE converts set of molecules
(each consisting of one atom with a single attribute) into a list. MOLAGG aggregates
the value of an attribute over all atoms of one type within one molecule. The following
example illustrates the use of MOLAGG and VALUE: “Which is the highway connect-
ing the highest number of cities and how long is it?”

SELECT Highway (No, Total := SUM (MOLAGG (Highway_Section.Length)))

FROM Highway - Highway_Section - City

WHERE COUNT (MOLAGG (City.Id)) = MAX (VALUE(

SELECT Number_of_cities := COUNT (MOLAGG (City.Id))

FROM Highway - Highway_Section - City))

The query in the WHERE clause delivers one molecule consisting of a single atom
with the attribute Number_of_cities for each highway in the database. Number_of_cities is
an example of a virtual attribute, computed from values of the molecule’s components
which are aggregated to a list by MOLAGG. In order to be able to compute the maxi-
mum over this set of molecules, the result set has to be converted to a list by VALUE.

After this short introduction of some query facilities in the MAD model, we now con-
centrate on recursion handling in this data model.

4. Recursion in the MAD Model: Transitive Closure

The specification of recursion along a relationship is straightforward in the MAD mod-
el: One of the directed relationships used for molecule type definition is used to form
a cycle in the type structure (indicated by the keyword RECURSIVE), thus allowing for
an unlimited depth of recursion. The subgraph within this cycle is called component
molecule type. Molecules of a recursive type are called recursive molecules. Such a
molecule is derived from the atom network in analogy to non-recursive molecules:
Starting from the root atom, the molecule is built up neglecting recursion (the resulting
root molecule forms recursion level 0). Then, molecules of the component molecule
type are appended to the root molecule as specified by the recursion forming directed
relationship. In order to guarantee termination, a component molecule belongs to a re-
cursive molecule exactly once: If a component molecule is already in the resulting mol-
ecule, it is not included again (cf. figure 9). This leads to the realization of a transitive
closure computation with one starting point: A maximal directed acyclic subgraph of
the atom network is formed (same approach as in [8] to avoid loops). The recursion

levels can be addressed by indexing the names of the components. Furthermore,
LAST and ALLREC can be used to reference the end of a recursion path or all recur-
sion levels, respectively. RECDEPTH is a built-in function delivering the recursion lev-
el of its argument. In the highway example, recursion can be used to solve queries
such as: How can other cities be reached from San Antonio by highway?

The recursion forming directed relationship is Highway_Section - City, the component mol-
ecule type is City - Highway_Section. The result set is shown in figure 9.

Since recursion termination is defined in terms of component molecules, the highway
sections belonging to the cities in the recursive molecule are always included, even in
the last recursion level.

It should be stressed that the result does not only contain the information as to which
cities can be reached, but also, how they can be reached, i.e. a structured view of the
transitive closure is derived rather than the flat view generated by many other ap-
proaches. Analogously to the starting point, defined in a very natural way in the MAD
model approach, there may be the wish to specify stopping criteria for the recursion,
e.g.

SELECT ALL
FROM City - Highway_Section RECURSIVE Highway_Section - City
WHERE City (0).Name = ’San Antonio’ City

Highway_Section
molecule type graph

571

Figure 9: Transitive closure of interstate_connections starting with Houston

DallasSan Antonio

Houston

Austin

City (0)

Highway_Section (0)

City (1)

Highway_Section (1)

City (2)

Highway_Section (2)

199 241

199 571 202

80

241

Houston Houston

DallasSan Antonio

End of recursion because the

80

El Paso

202

included in the result
component molecule is already

• limit the depth of the recursion or

• stop when a certain node is reached or

• stop when the paths used do not fulfil a certain condition.

For these purposes, the UNTIL clause can be used, which has the following seman-
tics: A component molecule is not appended to the recursive molecule, if the condition
of the UNTIL clause turns out to be TRUE after its inclusion. For the formulation of con-
ditions on a single component molecule, we introduce the keyword CURRENT to iden-
tify the component currently in doubt. The question: “Which routes can be chosen from
Dallas without touching San Antonio?” can be expressed as follows:

SELECT ALL
FROM City - Highway_Section RECURSIVE Highway_Section - City

UNTIL City (CURRENT).Name = ’San Antonio’
WHERE City(0).Name = ’Dallas’

To enable path-dependent conditions, the keyword PREVIOUS identifies the direct
(already included) predecessor of the current component molecule as the following
example shows: “Which cities can be reached from El Paso without changing the high-
way?”

SELECT starting (Name), Highway_Section (ALLREC) (), Next (ALLREC) (Name)
FROM starting (City) - Highway_Section - (Next (City), Highway)

RECURSIVE Next - Highway_Section
UNTIL Highway (CURRENT).No <>Highway (PREVIOUS).No

WHERE starting.Name = ’El Paso’

Until now, we have discussed transitive closure computation in the MAD model. As
mentioned in chapter 2, enhanced applications also require facilities to cope with path
problems. Chapter 5 shows the embedding of constructs allowing for the handling of
path problems in the MAD model.

5. Solving Path Problems with the MAD Model

The transitive closure representing molecules derived from queries with a RECUR-
SIVE clause contains only minimal paths (concerning number of traversed relation-
ships). These paths, however, are not sufficient for the computation of some path

starting

NextHighway

corresponding molecule type graph: Highway_Section

problems. For this reason, we introduce the REC_PATH clause which generates all
(concerning number of traversed relationships) maximal cycle-free paths according to
the specified directed relationship. This is achieved by following only one value of a
REFERENCE attribute at a time, instead of following all of them in the case of the RE-
CURSIVE clause. Each of the paths generated this way forms a molecule of its own.
In order to continue the construction strategy of the path molecules, the atoms of a
component molecule are included only if they directly belong to the recursive path or
if their type does not contribute to recursion at all (like Highway in the previous exam-
ple). This is the reason, why only one Highway_Section is present at each recursion level
in the following example. The question “Find all paths from Houston to El Paso” illus-
trates the difference between the clauses RECURSIVE (cf. figure 9) and REC_PATH
and yields the result shown in figure 10.

SELECT ALLBUT (Highway_Section (LAST))
FROM City - Highway_Section REC_PATH Highway_Section - City
WHERE City (0).Name = ’Houston’ AND City (LAST).Name = ’El Paso’

The molecules derived by REC_PATH can be directly used to compute path problems
in combination with MOLAGG and VALUE. Table 2 shows the appropriate MAD model
operators for aggregation and concatenation (cf. table 1).

Figure 10: The result of the REC_PATH query

This path is not contained in the result,
if RECURSIVE is used

El Paso Austin

Houston

San Antonio

El Paso

Houston

San Antonio

Dallas

199

571

241

202

80

571

City

Highway_Section

the dashed arrow indicates REC_PATH

molecule type graph:

instead of REC_PATH

Since molecules are already structured, there is no need for a concatenator in the last
three lines of table 2. A REC_PATH query without restriction clause yields all paths.
Thus, an aggregator for “List all paths” is not necessary. Similarly, each molecule rep-
resents a path, making an explicit choose any operator superfluous. In these cases,
MOLAGG can be used to “flatten” the structure of a molecule.

We give an example for the problem “shortest path”: “How long is the shortest distance
from San Antonio to Dallas?”

This query illustrates the completeness of the query language (cf. chapter 3). We dis-
cuss its semantics step by step: The molecules specified by the inner FROM and
WHERE clauses are shown in figure 11a. The inner SELECT concatenates the
lengths of the highway sections by adding them, thus yielding the total path length (as
virtual attribute pathlength). Each value derived this way forms, together with the desti-
nation (To) of the corresponding path, a new atom. All new atoms are grouped to one
molecule with the starting city as the root atom (figure 11b). The qualified projection
within the aggregation selects the two submolecules with To=’Dallas’ from this mole-
cule. Finally, the minimum of their pathlength values is computed.

Application Property Aggregator Concatenator

shortest path length/duration MIN (VALUE...) SUM (MOLAGG...)
critical (longest) path length/duration MAX (VALUE...) SUM (MOLAGG...)
maximal capacity path capacity MAX (VALUE...) MIN (MOLAGG...)
most reliable path reliability MAX (VALUE...) MULT (MOLAGG...)
bill of materials item count SUM (VALUE...) MULT (MOLAGG...)
list all paths edge name [MOLAGG]
list any path edge name [MOLAGG]
propositional deduction proposition [MOLAGG]

Table 2: MAD model operators for path problems

Aggregation

Concatenation

SELECT starting (miles:=MIN(VALUE(SELECT pathlength
FROM RESULT
WHERE To = ’Dallas’))))

FROM (SELECT starting (),
New :=
(pathlength := SUM (MOLAGG (Highway_Section (ALLREC).Length)),
To := ending (LAST).Name)

FROM starting (City) - Highway_Section - ending (City)
REC_PATH ending - Highway_Section

UNTIL ending (PREVIOUS).Name = ’Dallas’
WHERE starting.Name = ’San Antonio’)

6. Further Comments on Functionality and Applications

The structure of a component molecule type is not limited, i.e., the component mole-
cules themselves may be recursive. An application of this nested recursion facility is
sketched in the following example: Imagine, you want to know how to reach all cities
and not only those touched by an interstate highway. In this case, one has to include
other roads into the model. Figure 12 shows a map with some additional roads (con-
necting San Angelo to the other cities) and one way to model this map in the MAD
model.

The question: “Show me ways from Houston to San Angelo starting on an interstate
highway” can be formulated as follows:

SELECT ALL
FROM starting (City) - Highway_Section - (Highway, ending (City) -

Roads := (SELECT ALL
FROM Road_Section - (C (City), Road)

REC_PATH C - Road_Section
UNTIL C (PREVIOUS).Name = ’San Angelo’

WHERE C (LAST).Name = ’San Angelo’)
REC_PATH ending - Highway_Section
UNTIL EXISTS Roads (PREVIOUS)

WHERE starting.Name = ’Houston’ AND EXISTS Roads (LAST)

El Paso

571

Austin

Dallas

202

80

Houston

Dallas

241

199

cut by UNTIL clause

a) Molecules described by inner FROM and WHERE

571, El Paso 440, Dallas282, Dallas

b) Result of inner SELECT

Figure 11: Illustration of the sample shortest path query

San Antonio San AntonioSan Antonio

The inner recursion delivers all connections leading from the current exit of the inter-
state highway to San Angelo by other roads.

Of course, it is interesting to consider how far the recursion handling facilities of the
MAD model can be used for deductive databases. Deductive database systems based
on the relational model commonly realize predicates as relations, and facts as tuples
in this relation. In order to store the fact “John is parent of Mary”, for example, there
must be a relation parent , where a tuple (John, Mary) is stored. Right sides of rules
combining predicates are transformed into joins over the appropriate relations. Recur-
sion in these rules cannot be handled within the pure relational model, and therefore
has to be realized on top of it by a program, or must be integrated as an extension of
the relational model.

In the MAD model, predicates are expressed by relationships. If, for example, a pred-
icate B is represented by a REFERENCE attribute B, then the fact B(a, b) is represent-
ed by a relationship between the two atoms a and b via an appropriate value of a’s at-

35

Dallas

San Antonio

Austin

El Paso

San Angelo

20

Houston

10

10

45

10

35

Sonora

Abilene

277

277

corresponding atom type network

City

Road

Figure 12: Adding other roads to the city/interstate highway map

Highway_Section

Road_Section

Highway

Highway_Section

Road_Section

Highway

starting

ending

road C

corresponding molecule type graph:

tribute B. Thus, the structure B(x, z), C(z, y) corresponds to x.B - z.C - y. The above ex-
ample “John is parent of Mary” would be realized by a REFERENCE attribute is_parent
within the atom type Person and is_parent of the atom representing John containing the
IDENTIFIER value of the atom representing Mary .

Recursive rules are mapped onto recursive molecule types. A set of rules representing
the ancestor relationship

corresponds to the molecule type definition x.Parent - y RECURSIVE y.Parent - y.

Deduction based on the MAD model is further supported by its facilities for dynamic
schema modifications (allowing for the introduction of new predicates) and molecule
type pre-definition. The further discussion of these topics, however, is beyond the
scope of this paper. Here, we stress only two aspects: Predicates are automatically
bidirectional in the MAD model: The definition of a predicate is_parent implies the def-
inition of has_parent. As already mentioned, the natural symmetry of real world rela-
tionships is directly mapped into the model. Furthermore, multiple relationships among
atom types may be united, as the following example illustrates: A distinction between
has_father and has_mother does not impose problems for the computation of the an-
cestor relation. In the following query, the ancestor relation is given in a structured
view:

Thus, the MAD model also supports rule processing in deductive applications. Addi-
tionally, knowledge base management systems can be based on the MAD model as
it was shown in [14].

7. Conclusions

The need for recursion is obvious in many database applications, particularly in en-
hanced applications such as CAD/CAM. Here, recursion is required in combination
with the notion of complex objects. Using the MAD model as example, we have shown,
how these two aspects can be integrated into a data model and a query language.

Transitive closure as well as path problems can be computed employing these facili-
ties. In contrast to many other approaches, the structure of even recursive objects can

Ancestor (x, z) :- Parent(x, y), Ancestor(y, z) more naturally expressed by :

Ancestor (x, y) :- Parent (x, y) Ancestor (x,?) :- Parent (x,?)+

SELECT ALL
FROM P:=(SELECT Name, parents := has_father&has_mother

FROM Person) RECURSIVE P.parents - P
P

be represented within the data model, i.e., recursive and non-recursive objects are
handled in a uniform way. Thus, many applications where objects of this type are used
(e.g. VLSI design and CAD) are supported by the MAD model. Furthermore, the MAD
model can be used for deduction in a natural way.

We did not address questions of implementation, but concentrated on data model and
query language aspects. The language constructs to express recursion may appear
quite complex in the case of path problems. This is caused by the generality of the lan-
guage. This complexity can be broken down by the introduction of specialized lan-
guage constructs like “Shortest_Path (Dallas, San Antonio, City-Highway_Section)”,
which can be expanded automatically to the queries discussed above.

The RECURSIVE clause has been implemented in the PRIMA project [16, 17]; a sec-
ond version of PRIMA also offering the REC_PATH clause is under implementation.

8. Acknowledgments

I would like to thank T. Härder and A. Sikeler for reading an earlier version of this
manuscript and for helpful suggestions to improve the presentation, as well as I. Littler
for preparing the manuscript.

9. References

[1] Bayer, R.: Database Technology for Expert Systems, in: Wissensbasierte Syste-
me, Informatik Fachberichte 112, Springer, pp. 1-16.

[2] Klahold, P., Schlageter, G., Wilkes, W.: A General Model for Version Manage-
ment in Databases, in: Proc. 12. Int. Conf. on VLDB, Kyoto, 1986, pp. 319-327.

[3] Bancilhon, F., Ramakrishnan, R.: An Amateur’s Introduction to Recursive Query
Processing Strategies, in: Proc. ACM SIGMOD, Washington, DC, 1986, pp. 16-
52.

[4] Dayal, U., Smith, J.M.: PROBE: A Knowledge-Oriented Database Management
System, in: Brodie, M.L., Mylopoulos, J. (eds.): On Knowledge Base Manage-
ment Systems, Springer, 1986, pp 227-257.

[5] Raschid, L., Su, S.Y.W.: A Parallel Processing Strategy for Evaluating Recursive
Queries, in: Proc. 12. Int. Conf. on VLDB, Kyoto, 1986, pp. 412-419.

[6] Ullman: Implementation of Logical Query Languages for Databases, in: ACM
TODS, Vol. 10, No. 3, 1985, pp. 289-321.

[7] Scheck, H.J., Scholl, M.H.: The Relational Model with Relation-Valued Attributes,
in: Information Systems, Vol. 11, No. 2, 1986, pp. 137-147.

[8] Linnemann, V.: Non First Normal Form Relations and Recursive Queries: An
SQL Based Approach, in: Proc. 3rd IEEE Int. Conf. on Data Engineering, Los An-
geles, Feb. 1987, pp. 591-598.

[9] Stonebraker, M., Rowe, L.A.: The Design of POSTGRES, in: Proc. ACM
SIGMOD, Washington, DC, 1986, pp. 340-355.

[10] Tillquist, J., Kuo, F.-Y.: An Approach to the Recursive Retrieval Problem in the
Relational Database, in: CACM, Vol. 32, No. 2, 1989, pp. 239-245.

[11] Kim, W., Chou, H.-T., Banerjee, J.: Operations and Implementation of Complex
Objects, in: Proc. 3rd IEEE Int. Conf. on Data Engineering, Los Angeles, Feb.
1987, pp. 626-633.

[12] Agrawal, R., Jagadish, H.V.: Direct Algorithms for Computing the Transitive Clo-
sure of Database Relations, in: Proc. 13. Int. Conf. on VLDB, Brighton, 1987, pp.
255-266

[13] Carré, B.: Graphs and Networks, Clarendon Press, Oxford, 1979.

[14] Mitschang, B.: Towards a Unified View of Design Data and Knowledge Repre-
sentation, in: Proc. 2nd Int. Conf. on Expert Database Systems (EDS), Tysons
Corner, Virginia, 1988, pp. 30-50.

[15] Lorie, R.; Plouffle,W.: Complex Objects and Their Use in Design Transactions,
in: Proc. Data Base Week, San Jose, 1983, pp. 115-121.

[16] Härder, T., Meyer-Wegener, K., Mitschang, B., Sikeler, A.: PRIMA - A DBMS Pro-
totype Supporting Engineering Applications, in: Proc. 13. Int. Conf. on VLDB,
Brighton, 1987, pp. 433-442.

[17] Härder, T. (ed.): The PRIMA Project - Design and Implementation of a Non-
Standard Database System, Research Report 26/88, SFB 124, University Kai-
serslautern, 1988.

