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Abstract

Conventional data models embodied by current database management systems (DBMS) do not provide satisfactory

support for emerging applications. A major reason for this deficiency is the absense of concepts for complex object

processing. In this paper, we explain the motivation and key properties of a new data model explicitly designed for the

management of complex objects. Furthermore, the most important design decisions and implementation concepts for

complex objects are discussed, as far as they were realized in the PRIMA project. Finally, we describe a nested trans-

action concept enabling intra-transaction parallelism when complex objects have to be retrieved or manipulated.

1. Introduction

Today’s DBMS are unable to meet the increasing requirements of emerging applications that would like to use a

DBMS. Such applications including CAD, VLSI design, geographic information management, etc. are often called non-

standard applications. To improve this situation, a new generation of DBMS architectures adjusted to the demands of

the applications has to be developed.

For this purpose, many researchers have analysed the data management needs of a spectrum consisting mainly of

engineering applications and have encountered both a modeling and a processing problem in today’s DBMS [Da86,

DD86, DE84, LK84, SR86, WSSH88]. An important reason for both problems is the lack of adequate support for com-

plex objects [". . . support for molecular objects should be an integrate part of future DBMSs . . ." [BB84]). For our

discussion, the notion of complex objects (molecules) is used to indicate that such objects have an internal structure

maintained by the DBMS and that access to the object is provided as a whole as well as to its components.

[BB84] has classified the 'molecular' objects according to their structure, leading to disjoint/non-disjoint and recursive/

non-recursive complex objects. We have argued elsewhere [HMMS87, Hä89, Mi89] that the least restrictive or most

general classification properties non-disjoint/recursive  are indispensable for a data model sufficiently useful for the

broad class of non-standard applications. In order to achieve refined and accurate modeling as well as efficient pro-

cessing for complex objects, the data model and its implementation should offer [HMS90]

• genuine and symmetric support for network structures (sharing of sub-objects in contrast to hierarchical struc-

tures, which are just special cases thereof), or even recursive structures,

• support for dynamic  object definition in combination with

• powerful , yet efficient manipulation  facilities.

Before we outline the molecule-atom data model (MAD model) as our solution to the handling of complex objects in

sect. 3, we explain why the relational model fails to provide the above mentioned capabilities. Sect. 4 discusses the

major implementation problems related to complex objects within the architectural framework of the PRIMA project

[Hä88]. The main properties of a nested transaction concept are sketched in sect. 5, which supports parallelism in

operations on complex objects motivated in sect. 6. Finally, we present some conclusions and give an outlook as to

our current application areas.

2. Why not the relational model ?

In order to investigate the weaknesses of the relational model for engineering applications, we start with a simplified

example from solid modeling. Fig. 1 illustrates the Entity/Relationship diagram [Ch76] and a mapping example for the
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representation of 3D-objects. Note, we have skipped a number of additional entity types such as track and relationship

types (between Point and Face or Point and Volume) to keep the example tractable. The recursive relationship on

Volume is only used to demonstrate the mapping of recursive structures to the data model. In the following, we mainly

focus on the non-recursive part (from Volume to Point).

The relational model offers the concept of normalized relations, primary key, and foreign key to map entity and rela-

tionship types. Primary/foreign key pairs are used to represent the relationships in the model. Since only functional

relationships may be covered by primary/foreign key pairs, every (n:m)-relationships has to be replaced by two (arti-

ficial) (1:n)-relationships. Such keys are always symbolic values (user-defined) which may have some critical impact

on join, integrity checking, or search operations. As far as model-inherent integrity preservation is concerned, the so-

called relational invariants should be guaranteed by the system.

Our reference example of Fig. 1 may be syntactically translated into a relation DB schema by assigning each entity

type and each (n:m)-relationship type to a separate relation and by representing each (1:n)-relationship type by a pair

of primary/foreign keys. The result is shown in Fig. 2 together with a sample database for the representation of the

simple solid Tetrahedra 0. To indicate the functional relationships established by primary/foreign keys, we have used

dotted lines at the instance and at the type level.
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Fig. 1: Reference example: ER diagram and ER instances for a simple solid
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As one can see even in this simplified example, the tuples representing Tetrahedra 0 are spread across many (six)

relations. More complex CAD objects would require the use of about 20 or more relations [Hä89]. Since the data model

knows only relations as objects, more complex structures cannot be dealt with. It can only provide an 'atomized' view

of the application entities, that is, all model-inherent operations deal with tuples and relations (closure property), but

CREATE TABLE Volume
(vid : INTEGER,
descriptor : CHAR(20),
numfaces : INTEGER,
usage : CHAR(25),
PRIMARY KEY (vid));

CREATE TABLE VolStructure
(u_vid : INTEGER,
l_vid : INTEGER,
PRIMARY KEY  (u_vid, l_vid),
FOREIGN KEY (u_vid) REFERENCES Volume,
FOREIGN KEY (l_vid) REFERENCES Volume);

Schema definition statements

CREATE TABLE Face
(fid : INTEGER,
forientation : INTEGER,
numedges : INTEGER,
vref : INTEGER,
PRIMARY KEY (fid),
FOREIGN KEY (vref) REFERENCES Volume);

CREATE TABLE FE_Rel
(fid : INTEGER,
eid : INTEGER,
PRIMARY KEY  (fid, eid),
FOREIGN KEY (fid) REFERENCES Face,
FOREIGN KEY (eid) REFERENCES Edge);

CREATE TABLE Edge
(eid : INTEGER,
etype : CHAR(5),
PRIMARY KEY (eid));

CREATE TABLE EP_Rel
(eid : INTEGER,
pid : INTEGER,
PRIMARY KEY  (eid, pid),
FOREIGN KEY (eid) REFERENCES Edge,
FOREIGN KEY (pid) REFERENCES Point);

CREATE TABLE Point
(pid : INTEGER,
x, y, z : INTEGER,
PRIMARY KEY (pid));

Relations
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Representation of Tetrahedra 0

Fig. 2: Reference example represented in the relational model
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cannot derive structured objects. For example, the view of the solid as an integral object including its representation,

manipulation, and integrity preservation has been lost. When complex objects have to be handled, a component above

the data model interface (e.g. application) has to perform this task using relational operations.

For this reason, access to complex objects has to be simulated by means of SQL operations applied to sets of inde-

pendent relations. Let us assume that the Face object with fid < 3 together with the related Edges and Points has to

be fetched. Since the result of an SQL operation is a (homogeneous) relation, such a request is not feasible (without

loosing the object structure). But we may, for example, obtain all Points belonging to Face objects (with F.fid < 3),

thereby explicitly reconstructing the complex Face object by means of user-specified joins:

SELECT F.fid, F.forientation, F.numedges P.x, P.y, P.z

FROM Point P, EP-Rel S, Edge E, FE_Rel T, Face F

WHERE F.fid < 3

AND P.pid = S.pid /∗ reconstruction of ∗/

AND S.eid  = E.eid /∗ complex objects ∗/

AND E.eid  = T.eid /∗ at ∗/

AND T.fid  =  F.fid; /∗ run time ∗/

The relational model permits the use of relationships in both directions. If we want to access all Faces associated with

Point (50,44,75), we cannot refer to the corresponding Point object with all related Edges and Faces (a complex object

with inverse nesting as compared to the previous case), but we may again derive the object structure explicitly:

SELECT F.fid, F.forientation, F.numedges

FROM Point P, EP-Rel S, Edge E, FE_Rel T, Face F

WHERE P.x = 50 AND P.y = 44 AND P.z = 75

AND P.pid = S.pid /∗ reconstruction of ∗/

AND S.eid  = E.eid /∗ complex objects ∗/

AND E.eid  = T.eid /∗ at ∗/

AND T.fid  =  F.fid; /∗ run time ∗/

It is interesting to note that the same sequence of join operations has to be used in both cases, although both object

structures (Face-Edge-Point and Point-Edge-Face nesting) are quite different.

More arguments and observations may be found for modeling and processing weaknesses of the relational model. To

shorten the discussion, let us summarize our criticism:

• The structure of complex objects is not preserved when mapped to relations; hence, it cannot be used for retrieval,

update, or integrity checking.

• (n:m)-relationships cannot be directly represented; their replacement by two (1:n)-relationships leads to ponderous

modeling and increase of type-crossing operations.

• Referential integrity checking may be expensive due to missing operational support.

• Explicit reconstruction of complex objects at run-time causes significant overhead due to the number and type of

join-operations (based on symbolic values).

• Neither recursive object structures nor recursive search operations (e.g. transitive closure) are supported.

As a consequence, the application has to do almost everything in a very expensive way as far as complex object han-

dling is concerned.
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3. A Data Model for Complex Objects

So far we have explained why complex object management is not possible in the relational model because of inade-

quate operations and missing structures to support object orientation. Simulation of an equivalent behavior, however,

is incomplete (lack of structure) and neither effective nor efficient as shown in [Hä89]. For this reason, we advocate a

powerful data model supporting complex objects; its key properties were encountered by several prototype studies

which were directed towards database requirements for engineering applications.

3.1 Desired Data Model Properties

Our data model should exhibit structural object orientation allowing the system to utilize the structure information to

derive or manipulate the complex object as a unit and to maintain the referential integrity of the structure. The integra-

tion of application-oriented (behavioral) semantics and integrity into the model was not considered in order to avoid

overloading the model with application-specific aspects; it could be added by a so-called application layer operating

on top of the data model interface [HM90]. The result of our prototype studies revealed important access and process-

ing characteristics of engineering applications [Hä89] which influenced the design objectives of our data model:

• Non-disjoint object representation:  Complex objects may share common subobjects. Whenever a relationship

is of type (n:m), such component sharing occurs. This type of relationship is frequent in engineering applications

and, therefore, critical for modeling tasks. If relationship representation is restricted to functional ones (1:1, n:1),

object representation is disjoint; however, modeling accuracy and completeness are by no means satisfying the

requirements of advanced applications. Hence, non-disjoint object representation is essential.

• Recursive objects:  Complex objects are called recursive if they are composed of objects of the same type, e.g.

solids are built using previously constructed solids. Besides (n:m)-relationships recursiveness seems to be a dis-

tinct characteristic of engineering applications. Hence, recursive object definition as well as object manipulation by

the system avoids tedious and ineffective object manipulation by the application.

• Dynamic definition of complex objects:  Static definition of complex objects means that they are defined in the

DB schema (frozen at schema definition time). Such static objects are considered to occur rather infrequently. Typ-

ically, each algorithm has tailored views of the complex object it is processing. Some solid-construction algorithm

may require a particular face object along with the corresponding edges and points (Face-Edge-Point), whereas

another task may refer to just the inverse object nesting, i.e. a point object with its adjacent faces and edges (Point-

Edge-Face). Hence, design flexibility is greatly enhanced by means of dynamic object definition, e.g. in the user

query.

• Symmetry of relationship representation:  Dynamic object definition implies dynamic object derivation. Since all

relationships specified in the DB schema may be used in either direction for object definition, all of them should be

represented in such a way that they can be efficiently traversed in both directions (symmetrical representation). For

performance reasons, (n:m)-relationships should be mapped directly (without special connection record) to mini-

mize type-crossing operations (e.g. joins).

It was our main goal to incorporate all these properties in our data model.

3.2 The Molecule-Atom Data Model

In the following, we introduce the essential characteristics of the molecule-atom data model (MAD model [Hä88]) and

show how the design objectives were obtained. The concepts of the relational model help us to explain similarities and

differences, when mapping entity and relationship types of the real world using the concepts of the data model:

• Relations are named atom types  and tuples are now called atoms , which represent entities of the real world.
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• All relevant relationships between entity types are explicitly specified in the DB schema and represented in the DB.

As opposed to this, the relational model relies on the foreign key/primary key concept.

• Relationship types, simply called link types , are represented in an explicit and symmetrical way. As a result, the

DB schema consists of undirected networks of atom types.

• Atoms are connected to one another by links  according to the link types specified in the DB schema. As an impor-

tant consequence, the DB can be viewed as an undirected network of atoms.

• Atoms consist of attributes  of various data types, are uniquely identifiable, and belong to their corresponding atom

types. The data types of the attributes, however, can be chosen from a richer selection than those in the relational

model. The types RECORD, ARRAY , and the repeating-group types SET and LIST yield a powerful structuring fa-

cility at the attribute level.

• Two special types serve for the realization of links between atoms. Atom identification is achieved by the IDENTI-

FIER type which is implemented by a system-supplied surrogate concept. Based on this type the REFERENCE

type was defined and provides a list of identifier values belonging to atoms of exactly one atom type.

Fig. 3 illustrates as an example, the schema definition for solids and an atom network representing the simple solid

Tetrahedra 0 (the recursive relationships on Volume atoms are not shown). By comparing it with Fig. 1, it becomes

obvious that the MAD model can be perceived as a direct mapping (implementation) of the ER model. As illustrated

by the schema definition, each link type (e.g. between atom types Volume and Face) is specified by a pair of

REFERENCE_TO attributes, one in each atom type involved (e.g. attribute fref of Volume and attribute vref of Face).

A link between two atoms (e.g. between 0 and 3) is represented by the corresponding values of the REFERENCE_TO

attributes forming the link type; they contain the IDENTIFIER values of the atoms they are referencing (e.g. vref of

atom 3 stores the vid value of atom 0 and, in turn, fref of atom 0 the fid value of atom 3 and, of course, 1,2,4). As

indicated by the example, our data model supports the concept of cardinality restrictions for link types. An AT_LEAST

and an AT_MOST value specify the minimum and maximum number of references which each atom may contain for

the corresponding link type.

Obviously, all kinds of relationships (1:1, 1:n, n:m) as well as recursive relationships on the same entity type (e.g. on

Volume) can be directly mapped by this concept. Hence, (n:m)-relationships no longer require a decomposition and

two (1:n)-mappings, as is necessary in the relational model. Furthermore, convenient  information such as numfaces

and numedges in the relational DB schema (see Fig. 2) is redundant in the sense that the number of faces and edges

can be extracted by searching the Face and FE-Rel relations respectively. As a consequence of our link representa-

tion, we do not need to represent this information by attributes; the operation COUNT applied to V.fref and F.eref

quickly delivers the current values thereby avoiding the introduction of hidden redundancy. As far as referential integ-

rity is concerned, the system controls all defined link types (pairs of REFERENCE_TO attributes) together with the

associated cardinality restrictions. If a link is inserted, modified or deleted by updating the corresponding

REFERENCE_TO attribute value, the appropriate back references are automatically adjusted. The specification of the

counterpart attribute in the REFERENCE_TO clause is not necessary if only a single link is involved in an atom type.

If multiple links are present,  this specification is needed to avoid ambiguities. It permits the fast location of the corre-

sponding counter references necessary for checking the cardinality restrictions and for link modification operations.
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The direct and symmetric representation of relationships by bidirectional links establishes the basis for the model’s

flexibility. Based on the atom networks, complex objects (molecules) are dynamically definable as higher level objects

which are viewed as structured sets of interconnected and possibly heterogeneous atoms. Their structure is described

by a directed connected subgraph of the DB schema whose nodes are the atom types involved and whose edges are

the link types to be used. For example, Face-Edge-Point specifies the structure of molecules where the relationships

Face-Edge and Edge-Point are exploited to derive the molecule set. The structure graph must have one designated

node (the root ) from which all other nodes can be reached. Only in the case of recursive molecules is this structure

graph allowed to be cyclic (e.g. Bill-of-Materials problem).

At least at the conceptual level, the dynamic derivation of the molecules proceeds in a straightforward way using the

molecule structure as a kind of template, which is laid over the atom networks: for each atom of the root atom type, a

molecule is derived following all links determined by the link types of the molecule structure until the leaves are

reached. Hence, for each root atom a single molecule is derived (see Fig. 4). Both the molecule structure together with

the corresponding set of molecules are denoted molecule type .

3.3 Query Facilities in MQL

The operational power of the MAD model is gained by the molecule query language (MQL) and its facilities for mole-

cule processing. A detailed description of it may be found in [Mi88]. Here, we have to restrict ourselves to a short sum-

CREATE ATOM_TYPE Volume (V)
(vid : IDENTIFIER,
description : CHAR(20),
u_vid : REFERENCE_TO (V.l_vid (0,*),
l_vid : REFERENCE_TO (V.u_vid) (0,*),
usage : CHAR(25),
fref : REFERENCE_TO (F.vref) (4,*));

Schema definition statements

CREATE ATOM_TYPE Face (F)
(fid : IDENTIFIER,
forientation : INTEGER,
vref : REFERENCE_TO (V.fref) (1,1),
eref : REFERENCE_TO (E.fref) (3,*));

CREATE ATOM_TYPE Edge (E)
(eid : IDENTIFIER,
etype : CHAR(5),
fref : REFERENCE_TO (F.eref) (2,*),
pref : REFERENCE_TO (P.eref) (2,2));

CREATE ATOM_TYPE Point (P)
(pid : IDENTIFIER,
eref : REFERENCE_TO (E.pref) (3,*),
x, y, z : REAL);

1 2 3 4
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atom type

Face

Edge

Point

Sample database (atom network)

0

Fig. 3: Reference example represented in the MAD model
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mary. Similar to SQL, MQL is subdivided into three parts dedicated to data definition (DDL), load definition (LDL), and

data manipulation (DML). To indicate the power of the language, we illustrate some query facilities.

Analogous to SQL, there are three basic language constructs:

• The FROM clause specifies the molecule type to be worked with.

• The WHERE clause allows for the restriction of the corresponding molecule set.

• The projection clause (i.e. the SELECT clause in the case of retrieval statements) defines the set of the molecule’s

atoms to be retrieved and is responsible for proper molecule projection.

Compared to SQL, these constructs exhibit extended semantics and syntax in accordance to the more complex ob-

jects which have to be dealt with. They form the basis of all DML-statements offered. The result of each query is also

a molecule type. Thus, it can be shown [Mi89] that the closure of the MAD model under its molecule operations is

guaranteed. This is a very important fact, which allows the nesting of molecule queries; each molecule-type specifica-

tion can be replaced by a molecule query.

In the following, we wish to demonstrate how the key properties of the MAD model are available through MQL state-

ments. Dynamic object definition is achieved by means of the FROM clause which determines the molecule structure

to be operated upon. Fig. 4a shows the result of an MQL query which was derived from the atom network of Fig. 3. In

addition, Fig. 4b illustrates the aspect of symmetric relationship representation, where Point-Edge-Face was used in-

stead of Face-Edge-Point in the previous example.

The molecule structures in Fig. 4 form (simple) hierarchies; in the same way, network structures may be specified, e.g.

the molecule type A-(B,C)-D corresponds to a diamond structure at the type level. Even recursion along a link type

can be easily specified by an MQL query. One of the directed links selected for the molecule type definition is used to

form a cycle in the molecule structure. Hence, the definition of a recursive molecule type consists of a subgraph called

component molecule type  and the recursion defining relationship (indicated by the keyword RECURSIVE). Mole-

cules of a recursive type are denoted recursive molecules [Sch89].

Recursive molecules on atom type Volume may be defined via REFERENCE_TO attributes u_vid or l_vid by using

the RECURSIVE clause, e.g.

- Volume RECURSIVE Volume.u_vid-Volume (is-used-in relationships)

SELECT  ALL
FROM Face-Edge-Point
WHERE F.fid < 3;

Face

Edge

Point

Edge

Point
SELECT ALL
FROM Point-Edge-Face
WHERE P.x = 50 AND P.y = 44 AND P.z = 75

1

1413
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12

123 124

12

2
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234

341413

134

a)

b)

Fig. 4: Sample queries and corresponding molecule sets

moleculemolecule set
structure

Face1 3 4
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- Volume RECURSIVE Volume.l_vid-Volume (is-composed-of relationships).

These molecule type definitions specify molecules which are tailored to solve problems of the Bill-of-Material type.

They are derived from the atom network (of Volume atoms) in analogy to non-recursive molecules: Starting from the

root atom a component molecule is built up (recursion level 0). For each leaf atom involved in the recursion defining

relationship, new root atoms may be found. They trigger the derivation of the related component molecules (recursion

level 1) which are appended to the resulting molecule. Depending on the network structure, this process allows for an

unlimited depth of recursion. In order to guarantee termination, a component molecule belongs to a recursive molecule

exactly once; if a component molecule is already in the resulting molecule, it is not included again. Furthermore, re-

cursion depth can be controlled by special keywords referring to the recursion level or stop predicates [Sch89]. This

recursive process leads to the realization of a transitive closure computation with a single starting point: A maximal

directed acyclic subgraph of the atom network is formed.

Molecules representing transitive closures contain only minimal paths, which are not sufficient for the computation of

some path problems (e.g. shortest paths, critical paths, etc.). For this reason, the expressiveness of MQL was extend-

ed by the REC_PATH clause and by special operators for aggregation and concatenation to specify and evaluate re-

cursion paths. Path problems are computed by generating all maximal cycle-free paths according to the directed re-

lationship specified in the REC_PATH clause (in place of the RECURSIVE clause). Instead of tracing all values of a

REFERENCE_TO attribute at  a time to derive the transitive closure, only one REFERENCE_TO value is followed for

the path computation. As a result, each of the generated paths forms a molecule of its own. For details see [Sch89].

An example for recursive molecules is outlined in Fig. 5. The definition of the recursive molecule type consists of the

component molecule type (A-B-C) and the recursion defining relationship (C-A). Molecule derivation is

sketched for a sample DB. In this example, recursion would proceed as long as new root atoms (of type A) are found

during molecule materialization.

a1

b1 b2

c1 c2 c3

a2 a3

b3 b4 b5

c4 c5 c6 c7 c8

a4 a6a5

level 0

level 1

level 2..

Fig. 5: Example of a recursive molecule type

SELECT ALL
FROM A-B-C RECURSIVE C-A
WHERE A.id = a1
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C

DB schema
a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7 c8

sample database

recursive molecule

A

B

C

component
molecule
type

A-B-C RECURSIVE C-A

recursive
molecule structure



- 10 -

All examples so far reflect the property of non-disjoint representation of the atom networks and the derived molecules.

A molecule set is dynamically obtained as the result of an MQL query: the corresponding sets of interrelated hetero-

geneous record structures are then passed on to the caller of the query.

Obviously, dynamic object derivation is a performance-critical issue. It should be noted, however, that atom-type

crossing operations (hierarchical joins) are less frequent and more efficient than joins in the relational model due to

direct (n:m)-relationship representation and system-controlled surrogates. Furthermore, cluster mechanisms at the

physical level may speed-up such operations.

4. Implementation of complex objects

So far, we have outlined our view of dynamically derived structured objects. Furthermore, we have sketched some

functions of the DML to define and manipulate such objects. With these concepts in mind we can begin discussing the

major issues of a DBMS which implements such a powerful data model.

Every DBMS embodies a layered architecture which is in charge of dynamically mapping the physical objects on ex-

ternal storage devices to the objects (molecules) visible at the data model interface. At the bottom, the database is a

very long bit string stored on disk which needs to be interpreted by the DBMS code. Proceeding from the bottom up,

each layer derives objects containing more structures and allowing more powerful operations. Finally, the uppermost

interface supports the objects, operations, and integrity constraints of the data model. Here we refer to a hierarchical

architecture with three layers, which is common in many approaches (e.g. System R [As76]). These layers are called

storage system, access system and data system which we describe from the bottom up along with their mechanisms

related to complex objects implementation.

4.1 Storage system

The storage system is responsible for the management of the DB files on external storage and the DB buffer in main

memory as well as for the propagation of updates back to external storage. The objects, or alternatively containers,

offered by the storage system are segments divided into pages of equal size. Appropriate adaptation of page size to

suit the objects to be stored will reduce I/O overhead, since pages are the unit of physical data transfer. A separate

page size per object, however, is unmanageable and would cause a lot of fragmentation in the DB buffer and on disk.

A different page size per segment (e.g. 2n Kbyte, 1 < n < 5), on the other hand, may be feasible and may relieve the

mapping problem for larger objects. Accordingly, the mapping between pages and disk blocks as well as buffer re-

placement become more complicated. Buffer management with multiple page sizes [Si88] adds a lot of complexity to

replacement decisions, even for restricted page lengths (2n Kbyte). A single buffer may achieve better memory utili-

zation as compared to schemes with multiple buffers of the same overall size where each buffer is used for a fixed

page size. However, buffer fragmentation as well as stronger sensitivity of replacement decisions to reference patterns

and page sizes, make the use of such schemes at least debatable. More robust and simple buffer management is

therefore gained  by a static buffer partitioning, where each of the multiple buffers may be managed by a page replace-

ment algorithm tailored to the expected reference patterns. Lower memory utilization as an argument will become less

valid  with the growth of memory sizes and a decrease in memory costs.

Typically, the storage system interface offers a single page upon request of the access system. When accessing larger

objects or object clusters, it may be advantageous to support the concept of page sequence (or virtual page) consisting

of a header page and an arbitrary number of component pages. Reference to such a compound page enables the

storage system to accomplish optimization measures when it has to be read or written (e.g. parallel disk access,

chained I/O).



- 11 -

4.2 Access system

The access system stores and maintains records (atoms with set-valued variable-length attribute values) and a variety

of access path structures to speed-up different types of access. For this purpose, it uses the services of the storage

system (e.g. fix and unfix page or page sequence, etc.).

Storage of records

Atoms to be stored need a flexible storage structure supporting variable length, dynamic growth or shrinking, as well

as stability of reference. In our context, the following properties for storage schemes are important [SS90]:

• Modification or direct access of atoms is always performed via surrogates. Hence, the corresponding values should

make fast access possible.

• Physical movements of an atom should not invalidate its external address used for reference purposes.

• Computation of the position of an attribute value within a record is performance-critical, e.g. to enable efficient sort-

ing.

• Fast access to a single attribute value should be supported independent of whether it has a defined value or not.

• Storage size of records should be kept as small as possible to reduce storage costs as well as I/O overhead.

• Dynamic extensions of existing atom types (e.g. addition of a new attribute) should be possible without immediate

modifications in the records affected.

A flexible storage scheme satisfying these requirements was proposed in [SS90]; here, we only sketch the main ideas.

The description of an atom type is kept in the meta-data managed by a dedicated component. Hence, attribute de-

scription such as name, type, fixed or variable length, single- or set-valued, etc. is available for all attributes, as well

as information concerning their sequence, in the atom. In this way, all values belonging to an atom can be stored in

form of byte strings (value), as illustrated in Fig. 6.

The first entry of each record contains the surrogate of the associated atom (access to the record via the surrogate

value has to be organized efficiently, e.g. by a surrogate translation table). The defined values information implement-

ed by a bitmap permits the skipping of undefined attributes values. Thus, only existing attribute values are stored in

the sequence specified in the meta-data. To support position computation within a record, fixed-length attributes are

directly stored, whereas variable-length attributes are represented by a management entry (of fixed length) which

points to the corresponding value at the ’variable’ part of the record. It should be noted that this scheme tries to mini-

mize modification as well as expansion overhead, by using a starting offset (which changes when a new value its at-

tached) and additional relative offsets (which may be influenced when variable-length values are updated). Further-

more, attribute expansions at the atom-type level do not have an impact on the record structure, the corresponding

attribute value is considered undefined as long as the record has not received it (the length of the bitmap allows such

a decision).
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Mapping a record to a page sequence

If the record length is smaller than the page size of the corresponding segment, it is stored within a single page and

may share the page with other records. On the other hand, a record may exceed the page size which requires a page

sequence to be used as a ’container’ for such a record. A straightforward approach is to consider the page sequence

as a single linear address space, i.e., a record is mapped onto the page sequence as if there were no page boundaries

(except the intersperse of page headers).  In this case,  however,

record update may become very cumbersome when displacements across pages are involved. Therefore, a mixed

strategy may be beneficial, to avoid excessive modification overhead. A ’fixed’ part contains the global information, all

fixed-length attribute values, and all management entries, whereas the ’variable’ part at the end consists of all variable-

length attribute values which would frequently cause displacements if represented as a contiguous byte sequence. As

indiciated in Fig. 7, the fixed part is consecutively mapped to the page sequence disregarding the page boundaries.

The attribute values of the variable part are then attached at the end of the fixed part. Each attribute value, however,

is checked as to whether or not it fits entirely into a page. If not, one or sometimes even more new pages are allocated

to accommodate the values. The details of this mapping may be found in [SS90].

Figure 6: Storage scheme for the representation of atoms

global information F F O F O length ••• value •••length

management entry

surrogate defined values informationtotal-length starting offset

offset relative to starting offset

value

+

+

F:  fixed length attribute value

O:  offset relative to starting offset

defined values information:  bitmap indicating defined and undefined attributes values
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Note that only one record is stored in a page sequence which strongly simplifies the management of ’long’ records,

especially their modifications. This storage scheme could also be extended to accommodate 'long fields' [CD86, LL89]

which, however, does not directly address the issues of complex objects.

So far, we have outlined the storage structure when a single atom type is allocated to a segment. With appropriate

access paths such as B*-trees, fast direct access to single atoms as well as efficient navigation through atom sets

according to value-based sort orders may be accomplished. Fast access to a complex object as a whole, however, is

not supported. Complex objects with a static structure (restricted to hierarchical relationships) can be easily allocated

to enhance efficient access by clustering the object’s components along its (unique) structure (e.g. NF2 tuples

[SPSW90]). Dynamic definition of complex objects, in contrast, leaves the selection of a particular object structure

open until run-time; hence, the best we can expect is a more or less precise prediction of access characteristics to the

database to define and establish appropriate storage structures (at schema definition time).

One concept to speed-up dynamic object derivation is the symmetrical relationship representation by surrogate-based

links which allows for direct accessing of the counterparts in join operations; thus, it guarantees effective and relatively

efficient hierarchical joins. If the atoms to be joined, however, are spread over multiple segments, quite a substantial

I/O overhead has to be taken into account which makes object derivation (a multi-join process) time-comsuming. For

this reason, a special storage structure useful for at least frequently requested complex objects should help to improve

dynamic object derivation. In [SS89], a cluster mechanism is proposed that is expected to support the required flexi-

V3global information V1 V2

+
+
+

variable length attribute values

fixed length attribute values
and management entries

V1

V2
V31

V32

+
+

+

page sequence

page sequence

a) structure of the record

b) mapping to a page sequence

Figure 7: Mapping a record to a page sequence
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bility and dynamism for complex object construction (as needed by the MAD model) with nearly the efficiency of static

structure clustering.

A Storage structure for atom clusters

In order to achieve physical clustering for a set of atoms, we have to allocate them in an appropriate physical container,

i.e. in a page sequence. If we cluster all atoms belonging to a specific molecule in such a physical container, molecule

materialization is a perfectly local operation, that is, the page references for the required hierarchical joins are confined

by the page sequence. Such a structure is called atom-cluster type; it obviously minimizes disk access time for the

corresponding atom set. Hence, the key idea is to predefine atom-cluster types (by LDL statements) and to allocate

the associated (heterogeneous) atom sets to page sequences such that frequently requested molecules are logically

contained in these atom clusters. Here, we cannot discuss the question as to which atom-cluster types should be cho-

sen to speed-up molecule materialization; such a decision needs a lot of application knowledge and must be ad-

dressed by the DB administrator.

Before we illustrate a storage structure for atom clusters, we wish to point out some consequences of the underlying

concept. Fig. 8 and 9 show some examples of molecules which may be derived from our sample database in Fig. 3.

For example, we may define an atom-cluster type Volume to Face, which clusters the atom set of Fig. 8. (An atom-

cluster type is directed in the sense that the root atoms determine the atom set to be clustered.) Then, the molecule

with the structure Volume-Face as well as those of Face-Volume can be derived using the atom cluster. In this case,

the functional relationship between Volume and Face allows disjoint representation of atom clusters.

In Fig. 9, the atom-cluster type is again hierarchically structured, however, the relationships between Face and Edge

as well as Edge and Point are (n:m). Such relationships to non-disjoint components cause redundant atom represen-

tation in the clustered atom sets. As illustrated in our example, molecule sets for molecule types Face-Edge-Point,

Edge-Point and others can be materialized from the given atom-cluster type. Apparently, the molecule types Point-

Edge or Point-Edge-Face cannot be completely derived by using a single atom cluster per molecule.
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Figure 8: Example of a disjoint atom cluster and molecules derived from it
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[SS89] argues that only hierarchically structured atom-cluster types should be allowed; network-like or recursive type

structures should be ruled out for operational reasons, complicated maintenance, and semantical interpretation prob-

lems. Nevertheless, the price for the cluster concept is redundancy maintenance if (n:m)-relationships are involved.

Hence, the benefits of materialization support must outweigh the increased update costs.

Physical contiguity of all atoms belonging to an atom cluster can be effectively obtained by the following mapping (Fig.

10): Each atom cluster is described by a so-called characteristic atom which contains references to all atoms, grouped

by atom types, belonging to the resp. atom cluster. Moreover, the characteristic atom keeps information for each ref-

erence to the contained atoms which is evaluated to determine update dependencies in the cluster.

Each atom cluster is mapped onto a so-called cluster record, i.e. a byte string of variable length containing the char-

acteristic atom together with all atoms of the cluster. Although they may be referenced several times, all atoms are

included only once.
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The cluster record, in turn, is mapped onto a page or a page sequence of the segment to which the atom-cluster type

is assigned. If the entire cluster fits into a page, the cluster record can be stored as a byte string containing subrecords

for each atom (according to the storage scheme in Fig. 6). Even multiple (small) atom clusters may be stored subse-

quently in a page, whereas a page sequence always contains only one atom cluster, that is, stores only a single cluster

record. Such a mapping is more complicated: All atoms of a single atom type are placed into a subrecord; all sub-

records are subsequently mapped onto pages thereby adjusting them to page boundaries, if necessary (see Fig. 10).

Since atom clusters (or page sequences) may become large, additional address structures can help to quickly locate

an atom. Single-page atom clusters are searched sequentially, whereas direct access to atoms is provided for larger

clusters by keeping an address table for the subrecords in the header page of the page sequence. Subrecords which

span multiple pages, in turn, have an address table for the atoms to avoid a sequential scan over these pages.

Replicated storage structures

To improve retrieval of dynamically defined sets of atoms, various forms of storage redundancy may be introduced.

As explained above, atom-cluster types will cause atom representations to be replicated by a varying degree depend-

ing on the relationship structure. Furthermore, access paths such as B*-trees or grid files embody some kind of storage

redundancy (at least at the level of attributes and identifiers). However, explicit replication of selected atom types may

sometimes be useful to enhance retrieval performance. For example, the specification of a sort order provides a spe-

cial storage structure keeping all atoms of an atom-type sorted according to some of its attributes; such sort orders

are fully redundant because the basic storage structure (in system-defined order) always exists for an atom type.

As far as modification operations are concerned, storage redundancy has to be concealed by the access system.

Hence, the update of an atom in one particular representation has to be automatically propagated to all its represen-

tations in a way that is transparent to all system components outside the access system.

2
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Figure 10: Example of an atom cluster
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Although the complexities involved in the maintenance of replicated storage structures have to be confined to the ac-

cess system, the existence of such structures together with appropriate access primitives has to be made known to

the data system. Otherwise the optimizer cannot select from the existing choices of access paths which would make

storage redundancy useless.

The access system interface

The access system offers an atom-oriented interface which allows for navigational retrieval and modification of atoms.

To satisfy the retrieval requirements of the data system, it supports direct access  to single atoms as well as atom-

by-atom access  to either homogeneous or heterogeneous atom sets.

Scans are a concept to control a dynamically defined set of atoms, to hold a current position in such a set, and to

successively deliver single atoms or only selected attributes thereof for further processing. A scan operation is linked

to a certain storage structure or access path which determine sequence and result set of atoms to be retrieved. To

increase the flexibility of scans, their result set can be restricted by a simple search argument solvable on each atom

and/or start/stop conditions in the case of value-based ordering of atoms. The PRIMA access system supports the

following scan operations at its interface:

• the atom-type scan based on a general basic storage structure

• different access path based scans (e.g. a scan based on B*-trees)

• scans guaranteeing a certain sort order, which may either be materialized or dynamically derived

• the atom-cluster scan which operates on clusters of heterogeneous atoms.

Whereas the first three scan types support ’horizontal’ access to a homogeneous atom set belonging to one atom type,

the last one allows for the ’vertical’ access to a heterogeneous atom set across several atom types.

4.3 The data system

The data system has to fill in the gap between the atom-oriented interface of the access system and the data model

interface, which deals with complex objects. Its main task is to map the objects and operations of the MAQ model to

the primitives available at the access system interface. Hence, it is responsible for the dynamic construction of mole-

cules and for the set-oriented delivery of result sets to the requesting component.

For this purpose, the data system implements all mechanisms of complex object processing which arise from the need

to handle molecules dynamically defined at query time. It translates MQL queries into an internal representation called

query evaluation plan  (QEP), optimizes the QEP, and executes it by means of access system calls in order to com-

pute the requested result. MQL statements are normally embedded in application programs which may be executed

quite frequently. An interpreter approach would, therefore, repeatedly cause the full overhead of all query processing

phases. To obtain the benefits of a ’compiled’ approach [LW79], we separated compilation and optimization from ex-

ecution leading to three distinct phases of complex object processing:

• Compilation of the MQL statement generates a valid, but not necessarily optimal query evaluation plan and stores

it within an access module.

• Optimization transforms the QEP according to given heuristics and rules, in order to find the equivalent QEP which

executes the query with minimal response time. This optimization phase includes the determination of evaluation

strategies and the selection of access paths.

• Execution of the access module either retrieves or modifies atoms by means of access system calls according to

the optimized QEP. Instead of generating code for the QEP, we designed an interpreter for QEPs, which contain

the execution sequence in the form of access system calls. To handle retrieval requests, the data system maintains

a main storage data structure where it inserts and combines the requested atoms in order to build up the query
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result. Upon completion, the derived molecule set is passed on to the caller in a set-oriented manner. Such an exe-

cution can be repeated independently of the first two phases.

In this paper, we cannot describe all the complexities of complex object processing [HMS90]. We would rather sketch

some important issues by means of examples.

Compilation of a retrieval statement

The MQL compiler checks the user query for syntactic and semantic correctness, performs the so-called query stan-

dardization, and creates the initial QEP in an access module. Standardization includes

- the replacement of ALL  in SELECT clauses by the corresponding set of attribute names

- the resolution of molecule types predefined in the DB schema (FROM clauses)

- the representation of boolean expressions in conjunctive normal form as well as the expression completion of

incompletely quantified expressions in the WHERE clauses.

Let us assume a rather simple query with qualified projection in the SELECT clause referring to the database in Fig. 3:

SELECT Face, Edge, (SELECT Point
FROM RESULT
WHERE Point.x > 10)

FROM Face-Edge-Point
WHERE Face.fid < 3

The resulting QEP in Fig. 11 consists of an operator graph describing the execution plan. It serves as an easy--to-

understand example which illustrates the principal ideas. Of course, such QEPs may be much more complex.

It is generally possible to divide all nodes of an operator graph into two classes: the leaf nodes  are employed to con-

struct the (simple) molecules, whereas the inner nodes  subsequently operate on these molecules to derive more

complex structures or properties, e.g. recursive molecules, qualified projection, aggregation etc.

All operators related to leaf nodes are of type CSM (’construction of simple molecules’); they can be used to derive

molecules of the following form:

SELECT <unqualified projections>
FROM <one non-recursive, hierarchical molecule type>
WHERE <molecule qualification Q>

construction of simple molecules

SELECT Face, Edge, Point
FROM Face-Edge-Point
WHERE Face.fid < 3

operator
working on
molecules

operator
constructing
molecules

Fig. 11: Example of a simple QEP representation

SELECT Point
 FROM RESULT

qualified projection

WHERE Point.x > 10
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Hence, the CSM type is in charge of selecting the qualified atoms via access system operators and of building up the

(initial) molecule set by using a main memory data structure. Since leaf-to-root evaluation is always applied to the op-

erator graphs, the operators represented by the inner nodes work on this data structure thereby accomplishing the

requested result set step by step.

Optimization considerations

The optimization phase includes simplification, amelioration and finally refinement of a query [JK84]. Query refinement

which is most important to our discussion considers alternative strategies for the execution of the operators in the QEP

in order to find the cheapest execution plan. It should be clear so far that CSM is a performance-critical operator (be-

sides the operator for the construction of recursive molecule) because it reads atoms from the database (as the only

operator). Hence, the problem of access path selection and the algorithms for processing joins have to be considered.

We have pointed out for the relational model that reconstruction of complex objects has to be performed by general

joins using primary/foreign key pairs. In our case, CSM executes specialized joins called hierarchical joins and eval-

uates conditions on the result. The molecule structure as specified in the FROM clause can be seen as a kind of join

plan where atom types connected by a link type may be combined via the specified directed link. As opposed to the

relational join, our hierarchical join is an (n:m)-join, that is, for example, each atom f of Face within a molecule Face-

Edge may have several descendants ei of type Edge which may be shared with other Face atoms. In this case, the

join condition is "E.eid is contained in F.ref", where the REFERENCE_TO attribute F.ref points to atoms of type Edge.

Hence, a nested loop algorithm may be efficiently applied:

Foreach atom f of type Face
Foreach entry d in F.ref

If atom e of type Edge with e.eid = d is not contained in the result's atom set
call e from the access system via condition e.eid = d

Note that an atom may be shared among several molecules of a result set or may be a descendent of more than one

atom within a molecule. Such cases give rise of the optimization in the inner loop.

It is clear that all atoms participating in a hierarchical join have to be fetched via access system calls. To minimize the

number of these calls, the evaluation of the WHERE-clause conditions should be performed as early as possible to

restrict the atom set to be investigated. Since restrictions may apply to every atom type appearing in the molecule

structure, restriction evaluation is not straightforward. For a refined discussion, we refer to [HMS90]. Furthermore, the

speed of a hierarchical join depends on the access paths and clusters to be used in locating the atoms in the database.

Hence, CSM optimization has to perform the selection of the best available scans on existing storage structures for

each of the hierarchical joins. Obviously, the use of atom-cluster scans which are tailored to the execution of hierar-

chical joins will greatly accelerate CSM operation.

Execution of an access module

Query optimization yields the ’best’ QEP in form of an operator graph which specifies the execution plan of the query

still at quite an abstract level. Query execution is then performed by interpreting the operator graph node by node un-

der control of the data system. Again, various strategies concerning sequential, pipelined, or even concurrent execut-

ing of nodes are applicable (see [HSS88]).

As mentioned earlier, the result set of a query is built up in a main memory data structure. Since distinct molecules

are derived, one may get a substantial degree of storage redundancy for the representation of atoms due to the (n:m)-

relationship involved. To avoid multiple copies of the same data in the resulting molecule set, we separated the rep-

resentation of the molecule structure from the representation of its data (see Fig. 12). Hence, only REFERENCE_TO
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values of atoms are included several times to establish the structural view. To guarantee fast access to all elements,

structure and atom data are organized in two tables based on extendible hashing.

Let us finish the discussion of the data system with some remarks on the materialization of recursive molecules. Each

component molecule is derived just like a regular molecule using hierarchical joins, etc. These component molecules

are then combined according to the recursion defining links. The hash-based data structures (Fig. 12) greatly facilitate

the detection of loops in the recursion, since component molecules may be identified

by their root atoms. Hence, it is sufficient to check for the non-existence of the root atom in the resulting molecule,

before the corresponding molecule component is materialized.

All further transformations and manipulations on recursive molecules are performed by operators corresponding to

inner nodes of a QEP (see Fig. 11). Obviously, the availability of sufficient storage space in main memory determines

the performance of these QEP operations.

5. Transaction Concept for Processing Complex Objects

In the previous section, we have described which implementation concepts support the requirements of complex ob-

ject management and how they fit in a layered DBMS architecture. Now, we will discuss the principles of the dynamics

of query processing for complex objects, that is, the transaction concept [BKK85, Gr81, KLMP84] to be employed, and

some hints related to its implementation. A major objective of the transaction concept design was the desire to exploit

the inherent parallelism when processing MQL operations (see sect. 6). Thus, the transaction concept should enable

concurrent operations in the various DBMS layers thereby reducing the response time for a given MQL request

[WS84].

Flat transactions do not provide any intra-transaction control structure to enable cooperation and isolation on shared

resources and to conceal the impact of failing activities. For this reason, nested transactions [Mo81] were proposed

as a control structure to achieve a safe and robust run-time environment for parallel and/or distributed processing with-

in a transaction. A transaction is recursively decomposed into subtransactions resulting in a transaction tree with the

so-called TL-transaction (top level) as the root. These subtransactions control all activities in the system. Accordingly,

they can be used as the units of concurrency control as well as recovery. A suitable transaction nesting may obtain

sufficiently small granules of concurrency control (e.g. locking) to enable significant intra-transaction concurrency in a

Fig. 12: The two components of molecule set representation: structure and data
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safe way. On the other hand, such a transaction nesting enables intra-transaction recovery where a subtransaction

(and its subordinates) can be aborted and rolled back without any side-effects to others.

Flat transactions observe the ACID principle [HR83]. As the unit of Atomicity, Consistency, Isolation and Durability, a

transaction guarantees concurrency transparency among transactions as well as failure transparency. These proper-

ties must also be realized by the TL-transaction as the outermost sphere of transaction control, whereas weaker prop-

erties may be provided by subtransactions. Atomicity and isolated execution remain key properties of each subtrans-

action; consistency control and the responsibility for the persistence of its modified data (durability), however, may be

delegated by a subtransaction to its parent transaction (and ultimately to the TL-transaction). For further discussion of

nested transaction properties, we refer to the literature [HR87,Mo81,We86].

A model for nested transactions

How can we apply the transaction nesting to the complex object processing? The dynamical flow of control during the

execution of a DBMS request may be characterized as a tree of procedure activations; for example, each operator

within a layer or at its interface embodies such a procedure. A closer look at the typical workloads of engineering ap-

plications [Hä89] reveals that the operator trees spanned by typical requests may obtain a very large fan-out at each

of our system layers. For example, consider even the simple query of Fig. 11 and assume that the CSM operator per-

forms some atom-type scans. Obviously, subgraphs of our operator graph have to be guarded by subtransactions.

The critical question is what are the appropriate granules (subgraph sizes) to balance the overhead of transaction

management with the benefits of fine-grained control structures (concurrency, failure isolation). The model of nested

transactions itself does not restrict the use of subtransactions to a minimum granule. Hence, we may allocate multiple

transaction levels within a single system layer or we may even bracket execution paths across layer boundaries. It is,

however, a good design principle to observe layer boundaries within the transaction hierarchy. Therefore, we do not

permit transactions to span multiple system layers. Hence, transaction properties (atomicity, isolation) may be used

to control clean and safe cooperation across layer boundaries.

Our nested transaction model is illustrated in Fig. 13. The TL-transaction consists of a sequence of MQL queries where

each of them is guarded by an MQL transaction. This, in turn, can be decomposed into multiple data system transac-

tions (depending on optimizer decisions and the inherent potential of intra-operation concurrency). Each data system

transaction may invoke many access system transactions each fetching or modifying a single atom (if maximum par-

allelism should be achieved). On the other hand, an entire scan operation may be enclosed by a single access trans-
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action (with a conversational interface to the parent transaction).

As indicated in Fig. 13, storage system operations are not organized as separate subtransactions, that is, I/O opera-

tions within an access system transaction are not performed in parallel. Hence, as far as concurrency and recovery

issues of them are concerned, access system transactions will provide the necessary functions [HPS90].

In our PRIMA implementation, we decided to group all transaction-related services in a so-called transaction manage-

ment subsystem (see Fig. 14). It consists of four major components which are jointly responsible for preserving the

ACID properties during transaction execution. The transaction manager is responsible for the management of the

transaction hierarchies and for accomplishing the atomicity property. Furthermore, it is acting as a coordinator to dis-

tribute information or to obtain general agreement, e.g. during commit or abort. Consistency is controlled by the con-

sistency manager whereas concurrency control performed by the lock manager takes care of isolated execution. Fi-

nally, durability of database updates is guaranteed by the recovery manager which collects log information to cope

with various failure types. For performance reasons, the services of these managers are directly invoked by a trans-

action as long as it proceeds normally. In the case of special events, however, all managers have to be synchronized

by the transaction manager to do their job.

Implementation issues of nested transaction management

In our context, we will limit our discussion to the most relevant aspects which affect complex object processing. The

transaction manager offers general functions to create, commit, or abort a transaction in the framework of nested
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Fig. 13: Example of a transaction hierarchy to be established by an MQL operation
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transactions. Hence, their implementation has to reflect the anticipated type of processing, that is, highly dynamic

transaction trees embodying a lot of concurrent activities have to be efficiently maintained by m-ary trees (e.g. mapped

to binary trees adjusted to specific traversal requirements).

Concurrency control is more strongly influenced by the properties of complex objects. If only static objects (defined in

the DB schema) are involved, the checking of synchronization conflicts is comparably simple. For example, [He89]

proposes an algorithm based on a hierarchical data model [SS86] which allows easy detection of common subhierar-

chies. With dynamically defined objects incorporating network structures, however, there is hardly a chance to find an

effective conflict detection algorithm at the type level. Synchronization which is based on conflict checking of molecule

structures (type graphs) would be very pessimistic and would mostly detect phantom conflicts. Similar arguments ap-

ply if the predicates (together with the type definitions) of the MQL queries are utilized. (Note, molecules are 'elusive'

as far as conflict checking is concerned. They have to be materialized before component overlap can be determined.)

Therefore, the only realisitic approach with tolerable performance characteristics seems to employ synchronization at

the atom level. Thus, we have implemented an R-X locking protocol (with lock inheritance) which requires an explicit

lock request for each atom involved in a complex object operation. When a page is accessed to fetch or modify an

atom, an appropriate short-term lock (fix-phase) is acquired for the entire page or page sequence in order to prevent

side-effects due to page modifications. Thus, concurrent operations of multiple subtransactions (or independent trans-

actions) in a page are supported by our locking protocol (excluding only fix-phases).

Consistency control [Es76] becomes more and more important even in conventional DBMS, e.g. the preservation of

referential integrity. This is particularly true for complex object processing where the system must guarantee consis-

tency in situations with much more elaborate objects and operations. As indicated in sect. 4, our system provides in-

creasing levels of abstraction where the objects, operations and integrity constraints grow more complex with each

layer. Hence, our framework of nested transactions seems to fit nicely the requirements of this level-to-level control of

integrity. We mentioned earlier that a subtransaction may delegate its responsibility for integrity preservation to its par-

ents. This fact allows more complex integrity conditions to be controlled and optimized. Consider the deletion of a mol-

ecule where multiple atoms with their references and counter-references have to be deleted. Since referential integrity

cannot be guaranteed for each single delete of an atom, the corresponding check operation must be deferred.

Another example is the control of the cardinality restrictions for links which sometimes require several modfication op-

erations before they satisfy their specification. In such situations, a consistency control component [Sch90] can be

used to collect the resp. information relevant for integrity control and to optimize the checking and modification over-

head, e.g. an atom to be addressed by multiple references has to be located only once. The transaction hierarchy then

allows flexible control for such deferred checks.

Finally, let us highlight our design decisions in the case of the recovery component. Buffer management applies a

NOSTEAL policy [HR83]; thus, the abort operation of a subtransaction is a in-memory rollback by using a log of inverse

operations at the atom level. To speed-up commit processing, we employ a NOFORCE scheme, which requires partial

REDO of committed transactions when a system crash occurs. For this purpose, we keep a REDO log on disk; since

we use atom locking (and the log granularity cannot be larger than the lock granularity), physical entry logging based

on atoms was chosen. Hence, our NOSTEAL/NOFORCE scheme optimizes the normal case (and not the crash re-

covery) by avoiding synchronous I/O as far as possible.

6. Using Parallelism in Complex Object Management

Our design decision for the nested transaction concept was explicitly motivated by the desire to achieve intra-trans-

action parallelism in various tasks of complex object management. As illustrated by Fig. 13, the transaction framework
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allows the exploitation of inherent parallelism and the control of medium or even fine grained parallel activities in sev-

eral system layers.

As discussed elsewhere [Du87, HSS89], suitable hardware configuration and run-time environments are a prerequi-

site for implementing these concepts. In our case, we assume a tightly or closely coupled multiprocessor architecture

where database buffer, lock and log information, as well as other common data may be efficiently shared among the

various processes distributed across the processors. In order to simulate such an environment in a network of SUN

workstations, we have implemented the RC-System (remote cooperation) which allows efficient location-transparent

communication among processes configurated as a system [HKS90].

Intra-operation parallelism

In this section, we will briefly identify the DBMS functions where it pays to generate parallel activities. Obviously, re-

trieval of atoms and the subsequent molecule materialization is a promising area. Since an MQL query specifies a set

of molecules, one strategy is to derive all molecules in parallel (inter-molecule parallelism), that is, each molecule is

handled by an own process or task. Another strategy could derive the molecule's components concurrently (intra-mol-

ecule parallelism). This strategy is enabled by our link concept where the REFERENCE_TO attribute of an atom con-

tains the set of identifiers of atoms it is linked to. Hence, the traversal of subgraphs in the atom network may be per-

formed in parallel. Depending on the specific molecule qualification (WHERE clause), various optimizations of search

strategy are conceivable [HSS88].

Similar efforts can be employed to manipulation operations and consistency management. Again, the link concept

supports concurrent activities in an obvious way. For example, the deletion of a molecule or checking of referential

integrity could proceed in parallel.

Finally, the maintenance of redundancy is an area we have designed parallel algorithms for. In sect. 4, we have ad-

vocated the use of replicated atom representations (e.g. sort orders) or atom-clusters provoking redundant storage

structures in order to speed-up retrieval operations and, of course, dynamic materialization of molecules.

Deferred update of replicated storage structures

The maintenance of replicated storage structures could easily cause a performance bottleneck if update operations

occur too frequently. Therefore, the concept of deferred update was proposed in the literature [DLPS85] to avoid re-

sponse time penalties. However, this concept requires replicated copies to be invalidated as long as they do not rep-

resent the latest value; depending on the number and type of replication, the implementation of a practical invalidation

scheme may turn out to be cumbersome.

Concurrent update [HSS88] avoids the problem of maintaining invalid storage structures. Parallelism in the access

system is used to keep all replicas of a modified atom up-to-date. For this purpose, an evaluation component identifies

update calls to the access system and invokes concurrent operations on the various redundant structures. Hence, re-

sponse time of such a call should not be strongly increased as compared to the non-redundant case.

7. Conclusions and Outlook

The data model plays a key role in any DBMS application. This fact is particularly true, if complex objects, e.g. in en-

gineering applications, have to be processed. Although once faithful believers in the relational model, we now feel that

this simple model is too simple, at least as far as advanced applications are concerned. For this reason, we were con-

verted more and more to another 'kind of religion' and advocate the MAD model. This data model allows for dynami-

cally defined and recursive complex objects with non-disjoint components which are derived from atom networks in-
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corporating symmetrical relationship representation. Recursion definition enables the solution of transitive closure as

well as path problems which may be directly specified by means of MQL queries.

For the implementation, we have outlined a number of important concepts. We aimed to increase the freedom in de-

fining segments with page sizes tailored to the atom type to be stored as well as in page sequences in order to reduce

the I/O problem. The mapping of atoms to records was achieved by a flexible storage scheme which guarantees fast

access to any field position and limits the overhead/displacement of updates directed to variable length fields. Atom

clusters were introduced to speed-up materialization of molecules which are frequently referenced. Since atoms are

clustered in physical contiguity according to the molecules to be derived, 'non-disjoint atoms' have to be stored redun-

dantly. Generally, replication was proposed as a concept to accelerate dynamical object derivation.

The materialization of complex objects is achieved by compiling MQL queries into operator graphs which are opti-

mized according to the available access paths and storage structures. Execution of such operator graphs is then per-

formed by an interpreter which uses a hash-based main memory data structure to represent the result molecule set.

A nested transaction concept was designed to employ parallel algorithms when processing MQL queries. By the de-

composition of the dynamical execution trees of such queries into hierarchically nested subtransactions, medium or

even fine grained parallelism may be achieved. This parallelism within complex object processing can be applied to

retrieval as well as update operations of molecules in order to speed-up molecule materialization or the maintenance

of replicated storage structures.

The stepwise abstraction process realized by the various layers of our system leads to structure-oriented complex ob-

jects; that is, the result of an MQL query is a set of molecules which, in turn, consist of a set of interconnected heter-

ogeneous atoms without any specific application semantics. We expect that advanced DBMS applications will prima-

rily take place in workstation/server environments where the application-oriented processing is carried out in  the work-

stations. For this reason, our molecules are transferred across a set-oriented interface to a so-called application layer

located at the workstation where they are stored in an object buffer to obtain 'nearby the application' locality. The ap-

plication, e.g. a solid modeler, can then manipulate these data structures via a predefined interface which offers op-

erations tailored to the resp. application (e.g. in the form of ADTs). Hence, the application layer may be equipped with

concepts and mechanisms to overlay application-oriented semantics [BM86] to the more structure-oriented molecules

of the MAD model. This approach avoids the overloading of the complex object data model by application specific as-

pects.

Based on this architectural framework, we have implemented a technical modeler (TechMo), a VLSI design applica-

tion, and a knowledge base management system KRISYS [DHMM89, Ma89]. The former two application refer to tai-

lored ADT interfaces which are realized by specific application layers. KRISYS, in turn, can be perceived as a (generic)

modeling system which allows the specification of rich facilities and abstraction concepts for application support

[Ma88]. Quite a number of applications in the areas of expert systems and intelligent CAD are currently being inves-

tigated.
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