
appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

1

Query Processing for Complex Objects

T. Härder, B. Mitschang, H. Schöning

University of Kaiserslautern

Erwin-Schrödinger-Straße

D-6750 Kaiserslautern

West Germany

Keywords: Query Processing, Complex Objects, Query Optimization, Data Model

Abstract

Over the last few years several new data models together with their languages have been developed to

meet the increasing requirements of engineering or office applications. A major characteristic of these

data models is their ability to process and manage complex objects which the relational model does not

provide adequate support for. Whereas the problem of query translation for relational languages has pro-

voked broad research activities during the last fifteen years, the analogous problem of translating non-

procedural queries on complex objects into lower level programs for efficient execution has received only

little attention.

This paper tries to reveal the new aspects of query translation and execution on complex objects as com-

pared to similar activities when processing flat relations. For this purpose, we investigate the essential

concepts necessary to perform compilation, optimization, and execution of queries on complex objects.

1. Introduction

Recently, the development of a new generation of database systems capable of supporting non-standard

application areas such as engineering applications for CAD/CAM and VLSI or knowledge-based appli-

cations has emerged as an important direction of database systems research. These advanced applica-

tions differ from conventional (business) applications in a number of important aspects including data

modeling and processing, concurrency control and recovery mechanisms, as well as access methods

and storage structures. Most of the design and implementation approaches [5,6,8,25,26,28,36,41] refer

to some kind of object-orientation and extensibility. In these cases, the overall uniting characteristic is

adequate support for complex objects. This is accomplished in different ways starting from only a few

selected extensions of the relational model and leading up to the integration and superposition of hierar-

chical structures on relations. Apparently, the provision of

• genuine and symmetric support for network structures (sharing of sub-objects in contrast to hierarchi-

cal structures, which are just special cases thereof), or even recursive structures,

• support for dynamic object definition in combination with

• powerful, yet efficient manipulation facilities

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

2

has drawn much less attraction, although it is urgently needed in many application areas for refined and

accurate modeling as well as efficient processing of their objects (cf. for example [3] “... support for mo-

lecular objects should be an integral part of future DBMSs ...”, where ‘molecular’ objects were classified

according to their structure, leading to disjoint/non-disjoint and recursive/non-recursive complex objects).

Especially for the support of such a complex-object (molecule) notion, we have designed the molecule-

atom data model (MAD model) [30] and accomplished its prototype implementation PRIMA [17].

Whilst the current research interests tend to cover efficient and extensible processing as well as optimi-

zation of logical database languages and recursive queries, there is only minor research activity in the

area of processing queries on complex objects. Thus, it is the scope of this paper to introduce some rel-

evant concepts for such processing and to exemplify them by means of MAD queries in the PRIMA sys-

tem. We want to identify problems arising from the facility to dynamically define complex object structures

at query time, with respect to query optimization and query execution. The data model, used in this paper

to show some intrinsic issues of complex object processing, could be classified as an extension to the

non-first-normal-form models and other models (e.g. [27]) as well as to the relational model, which are

all limited, at most, to hierarchical and statically defined complex objects. For reasons of convenience,

the MAD model will be developed starting from the ideas of the relational model. This will provide a

smooth and easy to understand introduction to the data model for the reader.

The prime focus of the paper is a comprehensive discussion of new aspects of query processing when

complex as opposed to flat objects (relations) have to be dealt with. For this purpose, the MAD model

and its implementation PRIMA are used as a reference example to identify theoretical as well as practical

problems. Section 2 introduces the environment of our discussion, including system architecture and

data model. In section 3, we present the three phases of query processing in our model, namely compi-

lation, optimization, and execution as well as the novel issues related to complex object processing. In

particular, major optimization challenges are shown. Section 4 presents some conclusions.

2. A Model for Query Processing

For our purposes, it is sufficient to refer to an abstract view of database processing in an analogous way

to [10]. Most set-oriented database systems can be described by two major components: the logical da-

tabase processor and the physical database processor. For example, in System R [2] the logical data-

base processor is called the “Relational Data System” and the physical database processor the “Rela-

tional Storage System”. The logical database processor translates the user queries into an internal rep-

resentation called query evaluation plan (QEP), which is further optimized to guarantee efficient

evaluation. At execution time, the physical database processor evaluates the previously generated QEP

against the database in order to compute the requested result.

This quite abstract model of database processing will be taken as a basis for illustrating query processing

for complex objects, as applied by the PRIMA system. This prototype database system reflects a multi-

layered architecture with well-defined internal interfaces as a prerequisite for modularity, data indepen-

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

3

dence, and extensibility in the various layers. For our purpose, it is sufficient to identify only the two layers

shown in Figure 2.1. The external interface of PRIMA allows for handling of molecules and is defined by

the MAD model. With regard to the PRIMA architecture it is a straightforward process to identify the two

components performing logical and physical database processing: the PRIMA data system corresponds

to the logical database processor and the PRIMA access system coincides with the (top-most layer of

the) physical database processor. It is the task of the data system to perform the complex mapping of

the molecule-set oriented external interface onto the atom-oriented interface of the underlying access

system.

* * * Figure 2.1 * * *

In the following, we will characterize the data system introducing its upper and lower interfaces. Based

on these descriptions, it is quite easy to explain and to illustrate the main concepts underlying the com-

plex object processing in PRIMA.

2.1 The Molecule-Atom Data Model

The upper data-system interface coincides with the external interface of the PRIMA system and is estab-

lished by the MAD model with its molecule query language MQL. MQL is embedded in a host program-

ming language and can be directly used in an application programming environment; interactive opera-

tion is also supported. Both interfaces are equally powerful and are described in more detail in [15]. Here,

we present an overview of the MAD capabilities for complex object management that is valid for both

interface types.

From the Relational Model to the MAD Model

In the following, we presume that the reader is familiar with the relational model and its well-known con-

cepts, e.g. tuples, relations, database and database schema, primary key, foreign key etc. To reach the

level of the MAD model, we have to slightly modify our view of the relational model in the following way:

• Relations are named atom types and tuples are now termed atoms. In addition, atoms may have richer

internal structures than tuples, e.g. multi-valued attributes.

• All relevant relationships between entity types, i.e. the foreign-key/primary-key connections between

atom types, are explicitly specified in the schema and represented in the database.

• These relationships, simply called link types, are represented in a direct and symmetrical way. Thus,

the database schema consists of undirected networks of atom types.

• Atoms may be connected to one another by links according to the link types specified in the database

schema. Hence, a database can be seen as an undirected network of atoms.

Thus, the MAD model uses atoms as a kind of basic elements to represent real world entities. Similar to

a tuple, an atom consists of attributes of various data types, is uniquely identifiable, and belongs to its

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

4

corresponding atom type. The attributes' data type can be chosen from a richer selection than in conven-

tional data models. Here, the type concept has been extended by RECORD, ARRAY, and the repeating-

group types SET and LIST to yield a powerful structuring capability at the attribute level. For the realiza-

tion of links between atoms, we have introduced two special types. The IDENTIFIER type serves as a

surrogate, which allows for atom identification. Based on this type, it is easy to define the REFERENCE

type providing a list of identifier values belonging to atoms of exactly one atom type.

* * * Example 2.2 * * *

A link type (e.g. between atom types A and B) is represented by a pair of REFERENCE attributes, one

in each atom type involved (e.g. attribute b of A and a of B in Example 2.2). As syntactical suger, we

denote this link type A-B, if there is only one link type between atom types A and B. A REFERENCE at-

tribute cannot exist on its own, but always has a corresponding ’counter’ REFERENCE attribute. A link

between two atoms (e.g. between atoms a1 and b1 of Example 2.2) is represented by according values

of the REFERENCE attributes forming the link type (in Example 2.2, the value of attribute b of a1 contains

the value b1, and the value of attribute a of b1 contains a1). Obviously, all kinds of relationships (1:1, 1:n,

n:m) can be directly mapped by this concept. This direct representation and the consideration of bidirec-

tional links establish the basis of the model's flexibility. Moreover, atom-type crossing operations along

these links are more efficient than joins in the relational model due to direct (n:m)-relationship represen-

tation and system-controlled surrogates. In Example 2.2, three atom type definitions are shown (for atom

types A, B, and C, respectively). The cardinality of the REFERENCE attributes is restricted by a minimum

and a maximum number of identifiers per attribute value. For example, each A atom has to have at least

2 references to B atoms (there is no upper limit), whereas each C atom must have at most 5 references

to B atoms, and at least 1. The two link types correspond to n:m relationships. The resulting atom type

network is depicted in Example 2.2. Furthermore, a sample database corresponding to this schema is

shown.

Based on the atom networks, the model's complex objects (molecules) are dynamically definable as

higher level objects which are viewed as structured sets of interconnected and possibly heterogeneous

atoms. Their structure is described by a directed connected sub-graph of the database schema, whose

nodes are the atom types involved (e.g. A, B, and C in Example 2.3) and whose edges are the link types

to be used (A-B and B-C in Example 2.3). This graph must have one designated node (the root) from

which all other nodes can be reached. The corresponding atom type is called root atom type. The struc-

ture graph is allowed to be cyclic only in case of recursive molecules (e.g. bill-of-material). For each mol-

ecule structure, there exists a corresponding molecule set, which groups all molecules showing the spec-

ified structure. At least from the conceptual point of view, the dynamic derivation of the molecules pro-

ceeds in a straight-forward way using the molecule structure as a kind of template, which is laid over the

atom networks. Thus, for each atom of the root atom type one molecule is derived following all links de-

termined by the link types of the molecule structure until the leaves are reached (In Example 2.3, the mol-

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

5

ecule construction starts from atom type A, then following link type A-B and B-C. For example, starting

with atom a1, the atoms b1, b2, and b3 will be added to the molecule. In the next step, c1, c3, c2, and

c4 will also be included into the molecule). This process is termed hierarchical join [32]. Both, the mole-

cule structure together with its derived molecule set are denoted molecule type. The basic means used

to tailor a molecule type appropriately are the well-known selection and projection operations. They are

applicable to each molecule type.

The flexibility of the MAD model stems from the fact that the same database (i.e. atom networks) can be

used to derive totally different molecule types, just by specifying different molecule structures. Example

2.4 shows a bunch of molecule structures that are valid for the same database consisting of the atom

types A, B, C, and D as well as the link types in between. The reason that this works well, lies in the direct

and bidirectional link concept allowing for a symmetrical use of the database.

* * * Example 2.3 * * *

Query and Manipulation Facilities in MQL

The operational power of the MAD model is founded on its adequate means for molecule processing pro-

vided by MQL. Similar to SQL [46], MQL is subdivided into three parts reflecting data definition (DDL),

load definition (LDL), and data manipulation (DML). Here, we focus on the latter, that is, on query (i.e.

retrieval) and manipulation (i.e. insertion, deletion, and modification) capabilities.

Analogously to SQL, there are three basic language constructs:

• The FROM clause specifies the molecule type to be worked with.

• The WHERE clause allows for the restriction of the corresponding molecule set.

• The projection clause (i.e. the SELECT clause in the case of retrieval statements) defines the set of

the molecule’s atoms to retrieved and is responsible for proper molecule projection.

Compared to SQL, these constructs exhibit extended semantics and syntax according to the more com-

plex objects which have to be dealt with. They form the basis of all DML-statements offered. The result

of each query is also a molecule type. Thus, it can be shown [31] that the closure of the MAD model under

its molecule operations is guaranteed. This is a very important fact, which allows for the nesting of mol-

ecule queries; each molecule-type specification (e.g. A-B-C in Example 2.5) can be replaced by a mole-

cule query (cf. Example 3.3).

In the following, we wish to illustrate the descriptive and operational power of the MQL-DML in more de-

tail, thereby refining the basic clauses, which are depicted in Example 2.5 and introduced above. The

FROM clause of each given DML-statement determines the molecule structure to be operated upon.

* * * Example 2.4 * * *

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

6

There are two generic kinds of molecule structure (cf. Example 2.4):

• The molecule structure of network-like molecule types (cf. Example 2.4a) resembles a meshed graph.

In this case, there may be component types with more than one link type. In graphic terms, this fact is

expressed by nodes with more than one incoming edge - of course, a hierarchical graph is just a spe-

cial case thereof. All molecules of the corresponding molecule set have to obey the associated net-

work semantics: During molecule construction only those atoms are selected as part of that molecule

for which there is a link from already selected atoms for all incoming edges. Thus, it is guaranteed that

all constructed molecules are built up from a set of atoms that are interconnected according to the

specified molecule structure (cf. Example 2.4). Since it is possible to define molecules having non-

disjoint atom sets, which exhibit a general graph structure, the model allows for the sharing of sub-

objects between molecules in a natural way.

• Recursive molecule types (cf. Example 2.4b) use a network-like component molecule type combined

with a recursion-defining link type expressed in a special RECURSIVE clause (e.g. C-A in Example

2.4b). The resulting molecule structure is the recursively continued molecule structure of its compo-

nent molecule type. The derivation of the corresponding recursive molecules has to be performed step

by step in an iterative manner, going from one level (i.e. component molecule) to the next subordinate

level using the recursion-defining references (cf. Example 2.4b). Here, the transitive closure has to be

computed, which could be additionally cut off by an optional restriction clause (UNTIL clause). A more

detailed description of the recursion facilities of the MAD model can be found in [39]. By means of re-

cursive molecule types, we are able to construct molecules exhibiting a dynamic number of nesting

levels which contributes a major enhancement compared to the static number of nestings found in

non-first-normal-form tuples. Thus, the MAD model is capable of handling recursive molecule types

which are defined as true data model objects in contrast to a number of other data models, e.g. [

1,27,42].

Although molecule types are generally defined as part of a query, it is possible to predefine frequently

used molecule types and to assign a name to them. This is similar to a view definition in the relational

model.

The optional WHERE clause restricts the molecule set (determined by the molecule type of the FROM

clause) to those molecules satisfying the given qualification condition. Since molecules normally com-

prise of an interconnected heterogeneous set of atoms, it is necessary to extend the qualification facilities

of the language. Thus, it should be possible to query the molecule structure yielding quantified qualifica-

tion terms. Hence, testing for the existence (EXISTS-quantifier) of atoms of a given component type or

using the FOR_ALL-quantifier as an alternative quantification construct is allowed. There are also the

specialized quantifiers EXISTS_AT_LEAST n, EXISTS_AT_MOST n, and EXISTS_EXACTLY n. The

standard presetting used in MQL is the existential quantifier, so that the use of quantifiers is optional. The

query of Example 2.5 depicts an explicitly quantified qualification condition.

The well-known projection expressed by simply listing the components (atom types with their attribute

types) to be retrieved is also valid in MQL. To retrieve the whole result set in an unchanged state the

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

7

keyword ALL may be used. The complementary ALL_BUT construct allows to list components that are

not to be retrieved. Furthermore, for more selective specification of the resulting molecules, MQL intro-

duces the so-called qualified projection (complementary to the above mentioned unqualified projection).

Qualified projection is expressed as a 'SELECT...FROM...WHERE' expression within the projection

clause. This nesting allows for a supplementary projection of the components of the result-set molecules

by evaluating the qualification condition of the WHERE clause within the qualified projection. The scope

of this qualification comprises the whole molecule; therefore, we use the presetting RESULT for the cor-

responding FROM clause. Referring to our Example 2.5, only those C atoms are finally retrieved, which

satisfy the qualification term stated. Exploiting these two projection capabilities, we are able to retrieve

only those components (sub-molecules) of the result-set molecules we are interested in. Hence, the pro-

jection clause determines the final structure of all molecules in the result set. In the case of retrieval, the

SELECT clause may be extended by an order specification. Furthermore, aggregation functions like

SUM and AVG can be applied.

* * * Example 2.5 * * *

Comparison to Other Models

After having sketched the MAD model and its language MQL, it is worthwhile to draw a comparison to

other models and their languages. A rough but expressive comparison can be done just by looking at the

different complex object concepts supported: It is obvious that the MAD model with its support for net-

work structures comprises all models that are based on flat or only hierarchically structured objects.

Thus, the relational model, the extended relational model [27], and even the non-first-normal-form mod-

els [1,25,42] are just special cases thereof. A more detailed comparison is possible using the models'

formalizations: comparing the molecule algebra [31] defined for the MAD model with the NF2 relational

algebra [42] or other NF2 approaches [35,4,38] leads to the same conclusions.

Furthermore, the MAD model is able to deal with recursive complex objects as data model objects show-

ing a dynamic number of levels in the object’s structure [39]. This gives the MAD model more flexibility

compared to the above mentioned models that only support a fixed nesting structure and are not able to

represent the result structure of recursive queries within real data model objects. Meanwhile, there are

attempts to enhance these models to include a recursion facility [23,4].

Another major issue of the MAD model is its provision for dynamic object definition. That is, the molecule

types to work with are defined in the query language and are not statically fixed in the database schema

as it is the case in most NF2 approaches. For this reason, the MAD model offers a great flexibility in com-

plex object definition and management (e.g. all molecule types sketched in Example 2.4 might have been

defined over the same database).

Obviously, every attempt to compare the models' query languages is strongly influenced by their under-

lying complex-object concepts. MQL is an SQL-like language offering set-orientation and expressiveness

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

8

with respect to dynamic object definition, powerful molecule restriction, and an extended projection facil-

ity. Thus, the most important concepts expressible in SQL-like languages [27,25] for other data models

(offering less complex object concepts) are also expressible in MQL.

A language approach along the lines of MQL has been described in [41]. There, the language CERMoQL

offers a set-oriented, declarative access to the database objects defined by an extended Entity-Relation-

ship data model [10]. Support for structured (including recursion) and versioned objects is given.

Considering object-oriented data models [8,28], we firstly have to notice that they are mostly character-

ized by their facilities comprising modeling and managing of meshed and sometimes even recursive

structures, which are frequently viewed from different points, depending on the current processing state.

The link concept and the concept of dynamic molecules combined with the expressiveness of MQL seem

approximately equal to these characteristics defining object orientation. In contrast to these models,

MAD does not support behavioral object orientation. The early available object-oriented database mod-

els [7] show (compared to e.g. relational models) some deficiencies in their query capabilities, i.e. set-

orientation was mostly out of their scope. The database was queried in a navigational manner along the

references defined between the database objects (e.g. path expressions in OPAL [33]). By now a lot of

research focuses on full-fledged query languages for object-oriented database models [22, 44]. Seen

from a more general point of view the upcoming object-oriented query languages exploit facilities to query

along predefined relationships (in [6] called functional join) as well as to use traditional value-based re-

lational join capabilities. The functional join facility resembles the molecule building concept of MAD, and

the general/relational join capability is also available in MAD/MQL. Therefore, there seems to be on one

hand a considerable overlap of language concepts between MAD/MQL and object-oriented query lan-

guages that lead on the other hand to similar processing concepts. This argumentation done for MAD/

MQL, as a representative of a complex object data model, seems to carry over to other complex-object

data models [6, 45]. Of course, more detailed work needs to be done on the finer-grained similarities and

differences between both camps.

After having described the MAD model, which forms the upper interface of the data system (Figure 2.1),

we now introduce the interface of the access system, which provides atoms as the basic building blocks

for molecules.

2.2 The Access System Interface

The access system offers an atom-oriented interface which allows for navigational retrieval and modifi-

cation of atoms. To satisfy the retrieval requirements of the data system, it supports direct access to sin-

gle atoms as well as atom by atom access to homogeneous and heterogeneous atom sets.

Manipulation and direct access operations refer to atoms identified by their logical address. The logical

address (or surrogate) is used to implement the IDENTIFIER attributes as well as the REFERENCE at-

tributes.

Scans are a concept to control a dynamically defined set of atoms, to hold a current position in such a

set, and to successively deliver single atoms or only selected attributes thereof for further processing.

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

9

The result set of the scan can be restricted by a simple search argument (or some additional start/stop

conditions in the case of access paths) solvable on each atom. Some scan operations depend on the

existence of a certain storage structure, which is generated by corresponding LDL-statements. The PRI-

MA access system supports the following scan operations at its interface:

• the atom-type scan based on a general basic storage structure,

• different access path based scans (e.g. a scan based on B-trees)

• scans guaranteeing a certain sort order, which may either be materialized or dynamically derived.

• the atom-cluster scan which operates on clusters of heterogeneous atoms.

Whereas the first three scan types support "horizontal' access to a homogeneous atom set belonging to

one atom type, the last one allows for the 'vertical' access to a heterogeneous atom set across several

atom types. The concept of atom clusters [43] has been introduced to speed up construction of frequently

used molecule types. All atoms of the corresponding molecules are stored in physical contiguity, i.e. the

molecules are pre-derived and materialized in this storage structure.

3. Concepts for MQL Processing

In the following, we concentrate on concepts for efficiently mapping the molecule-set oriented MAD/MQL

interface onto the atom-oriented access system interface. This task is accomplished by the PRIMA data

system.

DML-statements are expected to be used more than once, since they are normally embedded in appli-

cation programs which are executed quite frequently. This means that the overhead for repeated execu-

tions should be minimized. A first way in which to do so is to separate compilation from execution and to

store the compilation result within a so-called access module. Thus, repeated execution does not require

repeated compilation. Secondly, query optimization is mandatory to make execution more efficient. This

leads to three phases of DML processing:

1. Compilation of the DML-statement generates an executable, but not necessarily optimal query eval-

uation plan (QEP) and stores it within an access module.

2. Optimization transforms the QEP and replaces the generated access module. This includes rear-

rangements within the QEP, strategy choices, and selection of access paths.

3. Execution of the access module requests atoms retrieved by the access system and combines them

in order to build up the result set. Execution can be repeated independently of phase 1 or 2.

Although these three processing phases are common to other well-known query processing approaches,

we have to consider several novel aspects due to the inherent properties of molecule processing (i.e.

dynamics in molecule definition, atom heterogeneity in molecule building). These features will be high-

lighted in the subsequent sections.

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

10

3.1 The Compilation Phase

The compilation phase accepts only correct MQL-statements and generates a semantically equivalent

QEP. For this purpose, the query is checked to see whether it fulfills all constraints imposed by the MAD

model and the database schema, e.g. whether all names are defined, whether the result is described by

a coherent graph, and so on. Furthermore, the compilation phase performs a first step towards query

optimization as introduced by [20], i.e., “standardization” (which means to change the query to a stan-

dardized form).

Standardization

To achieve this standardization, we have to look through all clauses of an MQL statement:

• Projection clause: Since MQL allows for the use of ALL and ALL_BUT in SELECT clauses in the

place of an exhaustive attribute enumeration, these keywords have to be replaced by their actual

meaning, i.e., by a set of attribute names.

• FROM clause: Predefined molecule names may be used in the FROM clause to specify the scope of

the query. In this case, the underlying molecule definitions have to be substituted. This process has

to be repeated recursively, because molecule definitions can be based on other molecule definitions.

• WHERE clause: Besides the well-known standardizations of boolean expressions (cf. [20]), there is

an MQL-specific one: MQL allows for incompletely quantified expressions in WHERE clauses (with

each non-quantified expression E containing attribute “att” of atom type AT having the semantic “EX-

ISTS a ∈ AT: E”). To standardize the representation, expression completion forms the existential clo-

sure [29].

After the compilation phase is finished, a correct QEP has been generated and stored within an access

module, which already may be executed by the query execution components. We have designed QEPs

in such a way that they do not need to undergo any optimization in order to be executable, although op-

timization is strongly recommended for complex retrieval statements. As a consequence, associated with

each operator in a QEP, there is a standard execution technique to be applied (e.g. nested loop strategy

for two-way join), which may be changed by the optimization phase; access paths are not considered

within the compilation phase and the building of the initial QEP. In the following, we show the structure

of a QEP for retrieval statements.

Representation of QEPs for retrieval statements

Retrieval QEPs consist of an operator graph (cf. Example 3.1) describing the execution plan. Evaluation

of a node operates on its children's results. The left child's result may be computed immediately, whereas

those of the others are prepared either concurrently or later, depending on the node's type and the eval-

uation strategy applied.

* * * Example 3.1 * * *

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

11

Generally, it is possible to divide all nodes of an operator graph into two classes (cf. Example 3.1). The

leaf nodes are used to construct the molecules, whereas the inner nodes (projection, recursion, aggre-

gation, etc.) operate on the derived molecules (typically in main memory). All leaves are of type CSM

(“construction of simple molecules”). This operator type represents the class of syntactically and seman-

tically correct queries of the following form:

SELECT <unqualified projections>

FROM <one non-recursive, hierarchical molecule type>

WHERE <molecule qualification Q>

As already mentioned, the inner nodes are operators that act on the molecules delivered by their children

(leaf to root evaluation). Some examples of these operators are:

• Aggregation of selected values (provided by the only child) by a function like SUM, COUNT, AVG. In

Example 3.1, an aggregation is used to compute one set of identifiers from a set of molecules.

• Qualified projection of sub-molecules (right child) by conditions referring to the molecules delivered by

CSM (left child). The results of qualified projection are always passed on to aggregation in order to

compute the new reference list to each atom of the root atom type defined by the qualified projection

(where qualified projection may have cut off some sub-molecules).

• Construction of recursive molecules using non-recursive component molecules. Each recursion level

is constructed separately (using CSM). The component molecules of the next recursion level are de-

termined by the recursion-defining reference attributes, together with the termination condition (UNTIL

clause) and the general recursion termination rule for processing the transitive closure (fixed point se-

mantics [29] w.r.t. the set of non-recursive component molecules). This level by level evaluation is

shown in Example 2.4b for a simple recursive molecule.

Example 3.1 combines several operators to create an operator graph. First of all, the left-most operator

(construction of simple molecules) has to be evaluated, delivering molecules of the hierarchical molecule

type A-B-C which satisfy the qualification criteria given. Based on this result, the qualified projection of

the sub-molecules has to be performed. For this purpose, further operators are required: The (right) “con-

struction of simple molecules” selects from the result set of the first (left) CSM operator all sub-molecules

to be projected and the aggregation operator computes the valid reference list to structurally reflect the

proper qualified projection. In our example the qualification of the sub-molecules has to be supplemented

by a parameter value (value 1) derived from the “surrounding” molecule (cf. operator “qualified projection”

in Example 3.1). From the operator graph, an access module is generated which employs standard ac-

cess methods. This access module is modified in the optimization phase to incorporate more appropriate

access methods. Hence, for very simple statements (e.g., insertation of single atoms based on constant

values) the optimization phase may be ommitted.

Like the MQL-statements for manipulation and retrieval, manipulation and retrieval QEPs resemble each

other. Since more complex language constructs are applicable for retrieval statements, QEPs for retriev-

al (SELECT statements or sub-queries) are more complex than those for manipulation statements, and

therefore are more likely to be far from the optimal QEP. For these reasons, we discuss optimization only

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

12

for SELECT statements in the following. Nevertheless, the optimization phase can also be applied to ma-

nipulation statements using similar techniques.

3.2 The Optimization Phase

According to [20], the next steps of query optimization are simplification and amelioration (corresponding

to what [11] calls query modification). Finally, query refinement (called “query optimization” by Freytag

[11]) generates a set of access plans, the cheapest of which is chosen to be executed (or in our case to

be stored in an access module).

Simplification and amelioration

We first describe the simplifying transformations which are typical for the MAD model. The various sim-

plification techniques developed for the relational model are usually also applicable for MQL queries.

• Molecule structure definitions may contain components that are neither projected nor used for qualifi-

cation. This case will occur quite often when predefined molecule types are used. If those components

are leaves of a molecule graph, they can be cut off recursively without influencing the result (Example

3.2).

• As each MQL query delivers a set of molecules, MQL consequently allows for the use of a query at

any place where a molecule type definition is allowed, thus leading to query nesting in SELECT,

FROM (cf. Example 3.3), and WHERE clauses. Some nested MAD queries can be transformed into

equivalent MAD statements with a lower degree of nesting (statement simplification, Example 3.3)

based on well-known strategies, as described in [21,13].

• Qualified projection is supplied to select components by their values rather than by their types. Qual-

ifications on whole molecules are normally expressed using the WHERE clause. Thus, qualified pro-

jection concerning the root atom type can be equivalently transformed into a qualification attached to

the WHERE clause.

SELECT A(att1), B(att2) SELECT A(att1), B(att2)
FROM A-B-C-D-E FROM A-B-C-D
WHERE EXISTS D:(D.att3=7); WHERE EXISTS D:(D.att3=7);

C and E are components that are neither projected nor used for qualification. E can be cut off,
since it is a leaf of the molecule graph. C must not be removed, because it is needed to access
the D atoms needed for qualification.

Example 3.2: Molecule structure simplification by cutting off unused components.

≡

Example 3.3: Statement simplification by sub-query elimination.

SELECT A(att1, att2)
FROM (SELECT A (att1, att2, att3)

FROM A-B
WHERE B.att2 = 7)

WHERE A.att3 = 9;

SELECT A(att1, att2)
FROM A-B
WHERE (B.att2 = 7) AND (A.att3 = 9);

≡

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

13

• Predicates hidden implicitly in the FROM clause are made explicit (restriction enhancement). The que-

ry shown in Example 3.5 does not contain an explicit restriction on atoms of type A. However, there is

a restriction on atoms of type B, which only can be fulfilled, if there are any B atoms, i.e. if the REF-

ERENCE attribute b OF A (pointing to B atoms) is not empty. Hence, the restriction A.b <> EMPTY is

implicitly hidden in the query, and is made explicit as shown in the right part of Example 3.5.

Query Refinement

Finally, alternative strategies for the execution of the operators in the QEP have to be considered in order

to find the cheapest execution plan. In the following, we argue why we concentrate on only one operator

(CSM) in the subsequent discussion. Of course, our optimizer has to cope with all types of operators.

Some of them may be handled very similar to relational operators. For example, selection and (unquali-

fied) projection do not pose many new problems. Therefore, we concentrate on join and related prob-

lems.

For example, besides the hierarchical join used in the molecule structure definition, MAD allows for a tra-

ditional value-based relational join. Because of the similarities, optimization techniques for this operator

can be derived from those developed for the relational join. Nevertheless, this kind of join is not a typical

operation on molecules. In most cases, those atom types which are expected to be used together in one

query will be connected by link types and hence do require the hierarchical join as mentioned before.

CSM Optimization

Besides this observation, we focus our discussion on the CSM operator for the following reasons:

• Since each leaf of a QEP must be of type CSM, this operator appears in every QEP. Thus, its optimi-

zation improves the performance of all queries.

• CSM is the only operator which (using the access system) directly reads atoms from the database.

Therefore, the problem of access path selection appears only here.

• Many operators just work on the result of CSM (typically in main memory) without performing very

complex computations. Therefore, their optimization is not a primary issue.

Example 3.4: Elimination of qualified projection on the root atom type.

SELECT (SELECT A (att1, att3),B(att1)
FROM RESULT
WHERE A.att2 = 7)

FROM A-B
WHERE A.att3 = 9;

SELECT A(att1, att3), B(att1)
FROM A-B
WHERE (A.att2 = 7) AND (A.att3 = 9);

≡

SELECT A(att1), B(att2) SELECT A(att1), B(att2)
FROM A-B FROM A-B
WHERE EXISTS B:(B.att3=7); WHERE EXISTS B:(B.att3=7) AND (A.b <> EMPTY);

Example 3.5: Restriction enhancement

≡

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

14

• Construction of recursive molecules (CRM) also is a critical operator. Basically, it consists of a com-

bination of non-recursive molecules, constructed by CSM. Thus, it also takes advantages from CSM

optimization. To discuss the applicability of more enhanced optimization techniques developed for re-

cursive queries to CRM goes beyond the scope of this paper.

Specific Optimization Problems of CSM

Although CSM performs a specialized join operation (“hierarchical join” [32]) and evaluates conditions on

the result, its optimization differs from optimization in the relational model in various aspects:

While the selection of join orders and join methods is a main task in the relational model [34], these prob-

lems partially disappear for CSM, because the molecule structure defined in the FROM clause strongly

reduces the number of meaningful orders for the refinement. The basic operation which is used to build

up molecules is a join operation ("hierarchical join") with specific properties:

• Only atom types which are connected by a link type may be combined by a hierarchical join. Hence,

the number of possible join sequences decreases compared to the relational join.

• Our hierarchical join is an n:m join, i.e. each atom a of type A within a molecule may have several de-

scendants di of type D (besides the descendants of other types) which may be shared with other atoms

of type A. The join condition is "ID of di is contained in a.rd", where rd is a REFERENCE attribute of A

pointing to atoms of type D. Thus, a sort-merge strategy cannot be applied. Instead, we use a nested

loop algorithm of the following form:

Foreach atom a of type A

Foreach entry e in a.rd

Call all atoms d of type D from the access system via condition d.ID = e

Note that “Find d with d.ID = e” is a very efficient operation, by far faster than any value-based restric-

tion on atoms, because the access system is optimized for an identifier-based access. This is the rea-

son why we do not use the semantically equivalent form:

Foreach atom a of type A

Call all atoms d of Type D from the access system via condition a.ID IN d.ra,

where ra is the REFERENCE attribute pointing from D atoms to A atoms.

• In contrast to the relational join, the result of a hierarchical join does not consist of a set of tuples, but

of a set of molecules, i.e. a set of structured sets of atoms. Hence, we have to consider the case,

where an atom is shared among several molecules of a result set or is descendant of more than one

atom within a molecule. In either of these cases, it will not be redundantly contained in the data output

(cf. Example 2.4). As a consequence, the algorithm for the hierarchical join has to be refined as fol-

lows:

Foreach atom a of type A

Foreach entry e in a.rd

If atom d with d.ID=e is not yet contained in the result’s atom set

call d from the access system via condition d.ID = e

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

15

Note that the result’s atom set may contain atoms of different atom types.

• The asymmetry of the hierarchical join should be stressed. If building a molecule of type A-D, each A

atom will be included in a molecule, even if it has no D descendants. On the other hand, a D atom

which does not have an A ancestor will not belong to any molecule of the type A-D. A relational join

would exclude both the A and the D atom. This is a reason, why the reduction of the size of interme-

diate results is not a primary optimization objective for CSM. There are no tuples which fall aside be-

cause they do not fulfil the join condition when building a molecule top-down. This is independent of

the order in which atoms are joined to the molecule, as long as it is compatible with the semi-order

imposed by the direction of links in the molecule. Some optimization algorithms for CSM therefore re-

semble to those developed for the network model [9].

Restriction evaluation

CSM does not only perform the hierarchical join, but also evaluates restricting conditions on the resulting

molecules. Hence, we may have a certain amount of atoms which were fetched from the access system,

but do not belong to any molecule of the result set, because the corresponding molecule did not qualify

with respect to the restricting condition. The minimization of this amount obviously is one goal of CSM

optimization. We call this goal: “Detect molecule disqualification as early as possible”, i.e. with as few

access system calls as possible. In order to accomplish early disqualification, we must investigate the

restriction clause Q. It may contain several expressions which can be evaluated of different atoms, and

are combined by AND or OR. Obviously, in order to detect disqualification, one should examine the stron-

gest condition first, i.e., the condition, which is most likely to be not fulfilled. The hierarchical structure of

a molecule, however, complicates this problem. One has to decide for a starting point within the molecule

structure, and then the choices where to continue are limited. Thus, the choice of a starting point also

influences the time when molecule disqualification can be detected. It seems to be a good heuristic to

start with an atom type scan, which is restricted by a condition. For such scans, access paths (e.g. indi-

ces) may be used. We investigate the effects of this heuristic for several shapes of Q in the following.

Assume, Q is in conjunctive form, i.e. consists only of quantified terms ti connected by "AND". We denote

q(A, B, C) if an expression q can be evaluated regarding only occurrences of atom types A, B, C.

• If there is a term ti=q(R), where R is the root atom type of the molecule, only molecules starting with

atoms fulfilling ti can be members of the result set. In this case, we can scan R restricted by ti using

the access system and then build up molecules top-down. The order of the top-down construction

must be directed by the rest of the restriction clause. Those atoms, which have the highest probability

to lead to molecule disqualification are fetched first. However, none of the terms still to be evaluated

can be passed on to the access system because of our molecule semantics.

• If there is a term ti of the form EXISTS q(A), where A is not the root atom type of the molecule, each

molecule of the result set has to contain at least one A atom fulfilling ti. In this case, we can start by

an access system scan on A restricted by ti, then retrieving the molecule’s root atom by following the

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

16

type graph bottom up. Then, we have to build the molecule top down, knowing that it fulfils ti. Note that

the existence of a root molecule is not guaranteed. The restriction on A can be enhanced by the con-

dition that the REFERENCE attribute pointing to the parent must not be empty, to guarantee the ex-

istence of a parent at least.

• Terms with the quantifiers EXIST_AT_LEAST(n) q(A) n≠1, EXIST_AT_MOST (n) q(A),

EXIST_EXACTLY (n) q(A), and FOR_ALL q(A) are more difficult to handle. Here, one can use identi-

fier manipulation algorithms working on the reference attributes pointing to the ancestors of those A

atoms which fulfil ti. For example, an identifier manipulation algorithm for the query

SELECT ALL

FROM A-B

WHERE FOR ALL B: q(B);

could work as follows: Fetch all B atoms which fulfil q(B) using an access system scan. Compute B*

as the union of the identifier values of these atoms. For each A atom which is referenced by at least

one of the B atoms, check whether A.b is a subset of B*. Only in this case, the corresponding molecule

qualifies.

• Terms depending on more than one atom type cannot be delegated to the operations of the access

system.

The top-down molecule construction builds up one molecule after the other. Thus, a pipelined processing

of a CSM’s result is easy to achieve. This is not true for the bottom up approach, where large sets of

molecules are identified at a time.

If several of the choices are selectable, one has to find the most promising one. This decision is often

driven by the existence of appropriate access paths. The problems of selectivity and access path selec-

tion are well known from relational query optimization [20]. In the case of quantified terms, the cardinality

of the reference attributes also has to be taken into account. Here, a flavor of semantic query optimization

appears, because the cardinality restrictions imposed in the schema declaration can be used in this con-

text. For example, the existence of a root atom can be guaranteed, if the lower bound of all ancestor ref-

erence attributes in the corresponding path is greater than zero (cf. Example 2.2).

Things become even more complicated through the existence of atom clusters [43]. Atoms of various

types are clustered according to a molecule type definition. The costs of an access to such an atom clus-

ter is much less than the sum of the single-atom accesses. In the context of CSM, atom clusters can be

used to construct whole (or parts of) molecules. This, however, may conflict with the goal of early dis-

qualification. If the atom cluster type is not a sub-graph of the molecule type, but overlaps only partially,

one has to contrast the benefits of using the atom cluster access to the cost of useless atom accesses.

Some hints to the use of atom clusters are given in [43].

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

17

Cost estimations

The costs of a QEP are estimated in a similar way to the optimizer of System R [40], where a weighted

sum of I/O costs and CPU utilization is computed. Nevertheless, things are little bit more complicated due

to some properties of complex object processing, and in our case, due to properties of PRIMA and MAD:

• The number of atoms accessed in order to retrieve a set of molecules depends on how many atoms

have to be fetched to state molecule disqualification.

• Selectivity estimations are done in analogy to [40]. Nevertheless, we have to take into account the fact

that some attributes are multi-valued, and that operations like “value IN attribute value” have to be con-

sidered, e.g. for REFERENCE attributes.

• In order to estimate the number of atoms of a specific type which are involved in a query, we have to

estimate the fan-out of all levels of atom types leading to this type (and have to consider the redun-

dancy due to shared atoms therein).

• Due to the data types supported by the MAD model, which include variable length and repeating group

attribute types (e.g. the REFERENCE type), atoms of the same type may strongly vary in size. Hence,

in order to estimate the number of pages needed to retrieve a specific set of atoms, one has to know

the average size of atoms of this type and the corresponding variance.

• Page sizes in PRIMA may vary between 0.5 and 8 kilobytes [17], but are fixed within one atom type.

Furthermore, the notion of “page sequences” is supported to physically cluster a set of pages, for

which I/O is more efficient than it would be for single pages. Thus, the knowledge of the number of

bytes to be read is not sufficient to estimate I/O costs. Of course, basic statistic data to be held are

number of pages per atom type and clustering factor. Additionally, number and average size of page

sequences are to be known.

• Atom clusters are handled in a different way: here we consider the atom cluster as a whole when com-

puting the I/O costs.

Optimizer architecture

To guarantee extensibility with respect to new optimization techniques as well as to new operators, op-

timization of QEPs will be performed by a rule-driven optimizer, similar to those proposed by [10, 37, 12],

or better [24] which is superior with respect to evaluation simplicity. While it has been shown that such

an optimizer can be generated from a given set of rules [12], the complexity of our rules is the main prob-

lem. Even in the relational case, very complex rule structures are reported [18]. The structures which

have to be taken into account in our model are much more complex than those in the relational case.

Hence, the language for rules used to deal with these structures also becomes more complex [14].

3.3 The Execution of Statements

The QEP of a query is an operator graph that describes an evaluation sequence at quite an abstract level.

During the execution phase, the operator graph is interpreted node by node. Together with the data of

the specific database it is used to compute the query's result. Obviously, there are several ways to em-

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

18

ploy concurrent computation in this process: There can be pipelining of results between parent nodes

and child nodes in the operator graph (data driven execution) as well as concurrent execution of nodes

in the same level of the graph. Furthermore, even concurrent computation within one operator is possi-

ble. These issues are discussed in [19].

The aspect of sharing within a result set has already been mentioned: There may be several references

pointing to the same atom within a set of molecules or even within one molecule. Hence, we had to de-

velop a representation of the resulting molecule set which does not contain multiple copies of the same

data, but nevertheless allows for a separate handling of each molecule. For this purpose, we separated

the representation of a molecule’s structure from the representation of its data (cf. Figure 3.6). Thus, the

data of an atom is not redundantly included in the result.

* * * Figure 3.6 * * *

4. Concluding Remarks

The management of complex objects occurring in advanced applications is an important new direction in

current database research. Especially, efficient processing of queries on complex objects seems to be a

‘hot’ topic.

In this paper we addressed the problem of how to process complex-object queries. That is, basic con-

cepts concerning query compilation, optimization and execution were investigated. A data system that

transforms queries on sets of complex objects (molecules) into lower level programs for efficient execu-

tion has been introduced. Due to the dynamic derivation of complex objects from structured and hetero-

geneous sets of tuples, a couple of important aspects was identified concerning efficient processing:

• Our operator graph consists of nodes incorporating powerful functions; it serves as a flexible interme-

diate data structure that supplies optional optimization and subsequent execution.

• The efficient implementation of the hierarchical join is very important.

• The number of atom accesses, and hence the overall performance, strongly depends on a careful de-

termination of the sequence of restriction evaluations (leading to disqualification of a molecule as early

as possible).

• Depending on the restricting conditions, bottom-up or top-down construction of complex objects may

be superior. In the case of bottom-up processing, a final top-down traversal may be necessary in order

to complete the molecule. The choice of a strategy also influences the applicability of pipeline process-

ing.

• Non-redundant complex-object representation requires the separation of structure from data due to

the property of overlapping sub-components.

• Our concepts of enriched operator graph supports relevant extensibility measures concerning lan-

guage enhancements, optimization issues, evaluation strategies, and exploitation of new access-path

types (cf. [16]).

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

19

Currently, we are addressing query processing issues using our prototype system PRIMA as a test-bed

for refined evaluation of these ideas and for gaining more practical experience concerning performance

aspects.

In the future, special emphasis has to be placed on optimization objectives. This is of eminent importance

because of the complexity of dynamic derivation and the heterogeneity of complex objects as well as the

symmetric link concept and the different evaluation strategies applicable. A special aspect of optimization

is the use of the parallelism inherent in complex object processing. For example, various ways of inter-

preting the operator graph show a different impact on the parallelism in query evaluation.

Acknowledgment

The helpful comments of W. Käfer are gratefully acknowledged.

References

[1] S. Abiteboul and N. Bidoit, Non First Normal Form Relations to Represent Hierarchically Organized
Data, in: Proc. PODS Conf. (1984) 191-200.

[2] M.M. Astrahan et al., SYSTEM R: A Relational Approach to Database Management, ACM TODS
1 (1976) 97-137.

[3] D.S. Batory and A.P. Buchmann, Molecular Objects, Abstract Data Types and Data Models: A
Framework, in: Proc. 10th Int. Conf. on Very Large Data Bases VLDB ’84, Singapore (1984) 172-
184.

[4] F. Bancilhon and S. Koshafian, A Calculus for Complex Objects, in: Proc. PODS Conf. (1986) 53-
59.

[5] M.J. Carey, et al., The Architecture of the EXODUS Extensible DBMS, in: [8], 52-65.

[6] M.J. Carey, D. DeWitt, and S. Vandenberg, A Data Model and Query Language for EXODUS, in:
Proc. ACM SIGMOD Int. Conf. on Management of Data, Chicago, (1988) 413-423.

[7] G. Copeland and D. Maier, Making Smalltalk a Database System, in: Proc. ACM SIGMOD Int.
Conf. on Management of Data, Boston, Ma (1984) 316-325.

[8] K.R. Dittrich and U. Dayal (eds.), Proc. Int. Workshop on Object-Oriented Database Systems, Pa-
cific Grove (1986).

[9] U. Dayal and N. Goodman,, Query Optimization for CODASYL Database Systems, in: ACM SIG-
MOD Int. Conf. on Management of Data, Orlando, Florida (1982) 138-150.

[10] K.R. Dittrich, W. Gotthard, and P.C. Lockemann, DAMOKLES - the database system for the UNI-
BASE software engineering environment, IEEE Data Engineering 10 (1987) 37-47.

[11] J.C. Freytag, A Rule-Based View of Query Optimization, in: Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, San Francisco (1987) 173-180.

[12] J.C. Freytag, The Basic Principles of Query Optimization in Relational Database Management Sys-
tems, in: Proc. 11th IFIP World Computer Congress, San Francisco (1989) 801-807.

[13] G. Graefe and D.J. DeWitt, The EXODUS Optimizer Generator, in: Proc. ACM SIGMOD Int. Conf.
on Management of Data, San Francisco (1987) 160-172.

[14] R.A. Ganski and H.K.T. Wong,, Optimization of Nested SQL Queries Revisited, in: Proc. ACM SIG-
MOD Int. Conf. on Management of Data, San Francisco (1987) 23-33.

[15] L. Haas, et al., Starburst Mid-Flight: As the Dust Clears, Data & Knowledge Engrg. 2 (1990) 143-
160.

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

20

[16] T. Härder,, The PRIMA Project - Design and Implementation of a Non-Standard Database System,
Research Report No. 26/88, SFB 124, University Kaiserslautern, 1988.

[17] L. Haas et al., Extensible Query Processing in Starburst, in: Proc ACM SIGMOD Conference on
Management of Data, Portland (1989) 377-388.

[18] T. Härder et al., PRIMA - A DBMS Prototype Supporting Engineering Applications, in: Proc. 13th
Int. Conf. on Very Large Data Bases VLDB ’87, Brighton, United Kingdom (1987) 433-442.

[19] W. Hasan and H. Pirahesh, Query Rewrite Optimization in Starburst, IBM Research Report
RJ6367, 1988.

[20] T. Härder, H. Schöning, and A. Sikeler, Parallelism in Processing Queries on Complex Objects, in:
Jajodia, S., Kim, W., Silberschatz, A. (eds.), Proc. Int. Symp. on Databases in Parallel and Distrib-
uted Computing, Austin, Texas (1988) 131-143.

[21] M. Jarke and J. Koch, Query Optimization in Database Systems, in: Computing Surveys 16 (1984)
111-152.

[22] W. Kim, On Optimizing an SQL-like Nested Query, in: ACM TODS 7 (1982) 443-469.

[23] W. Kim,, A Model of Queries for Object-Oriented Databases, in: Proc. 15th Int. Conf. on Very Large
Data Bases, VLDB ’89, Amsterdam (1989) 423-432.

[24] V. Linnemann, Non First Normal Form Relations and Recursive Queries: An SQL-based Approach,
in: Proc. 3rd IEEE Conf. on Data Engineering, Los Angeles (1987) 591-598.

[25] M.K. Lee, J.C. Freytag, and G.M. Lohman, Implementing an Interpreter for Functional Rules in a
Query Optimizer, in: Proc. 14th Int. Conf. on Very Large Data Bases VLDB ’88, Los Angeles, CA
(1988) 218-229.

[26] V. Linnemann et al., Design and Implementation of an Extensible Database Management System
Supporting User Defined Data Types and Functions, in: Proc. 14th Int. Conf. on Very Large Data
Bases VLDB ’88, Los Angeles, CA (1988) 294-305.

[27] B. Lindsay, J. McPherson, and H. Pirahesh, A Data Management Extension Architecture, in: Proc.
ACM SIGMOD Int. Conf. on Management of Data, San Francisco (1987) pp. 220-226.

[28] R.A. Lorie et al., Supporting Complex Objects in a Relational System for Engineering Databases,
in: Kim, W., Reiner, D.S., Batory, D.S. (eds), Query Processing in Database Systems (Springer-
Verlag, New York, 1985) 145-155.

[29] C. Lécluse, P., Richard, and F. Velez, F., O2, an Object-Oriented Data Model, in: Proc. ACM SIG-

MOD Int. Conf. on Management of Data, Chicago (1988) 424-433.

[30] Z. Manna, Z., Mathematical Theory of Computation (McGraw-Hill, 1974).

[31] B. Mitschang, Towards a unified view to design data and knowledge representation, in: Proc. 2nd
Int. Conf. on Expert Database Systems, Tysons Corner VA (Benjamin/Cummings Publ. Co., 1988)
33-49.

[32] B. Mitschang, Extending the relational algebra to capture complex objects, in: Proc. 15th Int. Conf.
on Very Large Data Bases, VLDB ’89, Amsterdam, Netherlands (1989) 297-306.

[33] A. Meier, and R. Lorie, Implicit Hierarchical Joins for Complex Objects, IBM Research Laboratory
Jan Jose, Research Report RJ3775, 1983.

[34] D. Maier et al., Development of an Object-Oriented DBMS, in: Proc. of ACM Conf. on Object-Ori-
ented Programming Systems, Languages, and Applications (1986).

[35] K. Ono and G. Lohman, Measuring the Complexity of Join Enumeration in Relational Query Opti-
mization, in: Proc. 15th Int. Conf. on Very Large Data Bases, VLDB ’90, Brisbane, Australia (1990)
314-325.

[36] Z.M. Ozsoyoglu and L.-Y. Yuan, A Normal Form for Nested Relations, in: Proc. PODS Conf.
(1985) 251-260.

[37] H.-B. Paul et al., Architecture and Implementation of the Darmstadt Database Kernel System, in:
ACM SIGMOD Conf., San Francisco (1987) 196-207.

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

21

[38] A. Rosenthal and P. Helman, Understanding and Extending Transformation-Based Optimizers, in:
Database Engineering 9 (1986) 44-51.

[39] M.A. Roth, H.F. Korth, and A. Silberschatz, Extended Algebra and Calculus for ¬ 1NF Relational
Databases, Technical Report TR-84-36 of Univ. of Texas at Austin, 1985.

[40] H. Schöning, Integrating Complex Objects and Recursion, in: Proc. First Int. Conf. on Deductive
and Object-Oriented Databases, Kyoto, Japan (1989) 535-554.

[41] B. Schiefer and S. Rehm, A Query Language for a Structural Object-Oriented Data Model (in
German), in: T. Härder (Ed.), Database Systems in Office, Engineering, and Science, Informatik
Fachberichte 204 (Springer-Verlag, Berlin, 1989) 373-388.

[42] P.G. Selinger et al., Access path Selection in a Relational Database Management System, in: ACM
SIGMOD Conf, Boston (1979), 23-34.

[43] M. Stonebraker and L.A. Rowe, The Design of POSTGRES, in: Proc. ACM SIGMOD Conf., Wash-
ington, D.C. (1986) 340-355.

[44] H.-J. Schek and M.H. Scholl,, The Relational Model with Relation-Valued Attributes, in: Information
Systems 2 (1986) 137-147.

[45] H. Schöning and A. Sikeler, Cluster Mechanisms Supporting the Dynamic Construction of Complex
Objects, in: Proc. 3rd Int. Conf. on Foundations of Data Organization and Algorithms FODO’89,
LNCS 367, Paris, France (1989) 31-46.

[46] G. Shaw and S. Zdonik, A Query Algebra for Object-Oriented Databases, in: Proc. 6th Int. Conf.
on Data Engineering, Los Angeles, CA (1990) 154-162.

[47] Private communication with members of the STARBURST project at IBM Almaden Research Cen-
ter, CA, 1990.

[48] SQL Addendum-2, Doc. ISO/TC97/SC21/WG3/ N143, ANSI X3 H2-86-61, 1986.

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

22

data system

access system
atom-oriented interface

MAD interface
(molecule-set oriented)

Figure 2.1: Multi-layered architecture of PRIMA

logical database
processor

physical database
processor

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

23

CREATE ATOM_TYPE C
(ID : IDENTIFIER;
att1 : INTEGER;
b : REFERENCE TO (B.c) (1,5));

Example 2.2: Sample database schema definition and sample database

a1 a21 29 a3 10 a4 130

b1 1 b2 7 b3 4 b4 6 b5 3 b6 0

c1 3 c2 0 c3 11 c4 5 c5 30ID att1

sample database (atom network)
resulting

C

ID att1B

ID att1A

CREATE ATOM_TYPE A
(ID : IDENTIFIER;
att1 : INTEGER;
b : REFERENCE TO (B.a) (2,*));

CREATE ATOM_TYPE B
(ID : IDENTIFIER;
att1 : INTEGER;
a : REFERENCE TO (A.b) (1,*);
c : REFERENCE TO (C.b) (0,*));

Schema definition statements

database schema
(atom type network)

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

24

b3b1 b2

c3c1 c4

a1

b3b2

c3

a3

b6b5

c4

a4

Example 2.3: Sample molecule structure and corresponding molecule set based on Example 2.2

A

B

C

molecule structure corresponding molecule set

c2 c5

b5b4

c4

a2

c5 c4c2

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

25

A

B

B

AC

A

B C

D

A

B

C

Example 2.4: Two generic kinds of molecule structures

a1

b1 b2 c1

d1

a1

b1 c1 c2

b1

a1 a3

a1

b1 b2

c1 c2 c3

a2 a3

b3 b4 b5

c4 c5 c6 c7 c8

a4 a6a5

level 0

level 1

level 2..

molecule structures

corresponding molecules

component
molecule
type

A-(B, C)-D A-(B, C) B-A A-B-C RECURSIVE C-A

a2

b3 b4

although no C atoms are
present in this molecule,

it belongs to the molecule
type A-(B, C)

a) network-like molecule types b) recursive molecule type

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

26

b3b1 b2

c3c1 c4

a1

b3b2

c3

a3

b5b4

c5

a2

Please note the different children sets of b2 in the first and

sample query that reads as follows:
- retrieve those molecules that are constructible using

A, B, and C atoms and the corresponding links, and
which further satisfy the qualification B.att1>5 for
at least one B atom (molecule derivation and restriction), and

- show (or project) its A atoms and all B atoms, and
only those C atoms that fulfill the qualification
C.att1>A.att1(qualified projection)

SELECT A, B, (SELECT C (* qualified projection *)
FROM RESULT
WHERE C.att1 > A.att1)

FROM A-B-C (* molecule-type definition *)
WHERE EXISTS B: (B.att1 > 5); (* molecule-set restriction *)

Example 2.5: Sample query and corresponding result set based on Example 2.2

A

B

C

molecule structure result molecule set

 second molecule which are the result of the qualified projectionthe

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

27

qualified projection:

evaluate left child; value1 ← A.att1;

For each B: evaluate right child;
reference (B, C) ← value2

Query:
SELECT A, B, (SELECT C

FROM RESULT
WHERE C.att1 > A.att1)

FROM A-B-C
WHERE EXISTS B: (B.att1 > 5);

construction of simple
molecules within qualified projection:
SELECT C.ID
FROM C
WHERE C in surrounding molecule

and C.att1 > value1

Aggregation:
value2 ← {C.ID}

Example 3.1: The QEP-representation (operator graph) for the query of Example 2.5

construction of simple molecules:
SELECT A, B, C
FROM A-B-C
WHERE EXISTS B:(B.att1 > 5)

operators
working

on
molecules

operator
constructing
molecules

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

28

Figure 3.6: The two components of molecule set representation: structure and data

b3b1 b2

c3c1 c4

a1

b3b2

c3

a3

b5b4

c5

a2

structural view to the molecule set:

a1

each entry in the structure contains the

to the data tables shown on the right side

<data>

a2 <data>

a3 <data>

b1 <data>

b2 <data>

b3 <data>

b4 <data>

b5 <data>

c1 <data>

c3 <data>

c4 <data>

c5 <data>

data tables

corresponding structure building pointers as well as a pointer

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

29

Theo Haerder

Theo Haerder received the M.Sc. degree (Dipl.-Ing.) in electrical engineering and the Ph.D.

degree (Dr.-Ing.) in computer science from the Technical University of Darmstadt, Germany, in

1971 and 1975, respectively.

Since 1980 he is a Professor of Computer Science at the University of Kaiserslautern, Germany,

where he is the head of the Database Research Group and responsible for database education.

His current research projects include the PRIMA project on advanced database systems for engi-

neering applications, the KRISYS project on knowledge base management, and a project on

high performance transaction systems. From 1977-1980 he was a Lecturer and later on a Profes-

sor of Computer Science at the Technical University of Darmstadt with a teaching and research

assignment in data management topics. During the year 1976, he was a postdoctoral fellow at

IBM Research in San Jose, Calif. and participated in the System R project.

Dr. Haerder is a member of ACM, ACM SIGMOD, IEEE Computer Society, IEEE TC on Data

Engineering, and GI (German Computer Society). He is currently the head of the center of com-

puter-based engineering systems at the University of Kaiserslautern.

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

30

Bernhard Mitschang

received the M.Sc. degree (Dipl.-Inform.) and the Ph.D. degree (Dr.-Ing.) both in Computer Sci-

ence from the University of Kaiserslautern, Germany, in 1982 and 1988, respectively.

Currently he manages a project in a special research program of the national science foundation

(Sonderforschungsbereich 124 der Deutschen Forschungsgemeinschaft) located at the Univer-

sity of Kaiserslautern where he is also teaching. From October 1989 to December 1990 he was

a visiting scientist in the IBM post-doctoral fellowship program at the IBM Almaden Research

Center, San Jose, CA where he participated in the STARBURST project.

His research interests include various areas of database management systems, including object-

oriented support, semantic modeling, query languages, query processing and optimization, and

parallelism as well as application-oriented areas such as engineering information systems and

knowledge base management systems.

Dr. Mitschang is a member of the Association for Computing Machinery, IEEE Computer

Society, and German Computer Society (Gesellschaft für Informatik).

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

31

Harald Schöning

received the M.Sc. degree (Dipl.-Inform.) in Computer Science from the University of Kaisers-

lautern, Germany, in 1987. Currently he is working in a project in a special research program of

the national science foundation (Sonderforschungsbereich 124 der Deutschen Forschungsge-

meinschaft) located at the University of Kaiserslautern.

His research interests include query optimization in complex-object database systems, parallel-

ism in query execution, and the mapping of advanced applications to new data models. H.

Schöning is a member of the German Computer Society (Gesellschaft für Informatik).

appeared in: Data and Knowledge Engineering 7, 1992, No. 3, pp. 181-200

32

