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Abstract

KRISYS is a prototype of a Knowledge Base Management System whose first implementation was completed at
the University of Kaiserslautern in 1989. Since then, the system has been used for the development of various ap-
plications which allowed us to perform a well-founded evaluation of the system. In this paper, we summarize our
evaluation by describing the major lessons we have learned from the design and implementation of KRISYS and,
above all, from its use in the development of these applications. We address issues related with the concepts avail-
able for application modeling and processing, the support of designing an application, as well as the overall means
for efficient processing in a workstation/server environment. Additionally, we point out in how far these experiences
validate our approach or stimulate improvements and future research.

1. Introduction

In the last years, substantial research efforts in the area of Database Management Systems (DBMS) have
been conducted to support advanced or so-called non-standard database applications [HR85]. This research
was, among other things, sparked by the lack of semantic expressiveness in current DBMS [HK87, KDE90].
They do not support the following modeling concepts, which are indispensable in obtaining a more accurate
model of complex application domains:

• Abstraction concepts [BMW84,Br81,Ma88a,SS77] are primarily important for the support of a semantically
enriched object description. Additionally, they define means for object organization [MM89] which, in turn,
can be used to describe distinct application aspects [MDL91].

• There is a need for the integration of behavior into the application model in the form of procedural at-
tributes, user-defined functions, or methods [At89,MMM92]. Such procedures can be used to describe ac-
tions in which application objects are involved, thereby permitting the integration of application-oriented
operations into the system [DHMM89].

• Reasoning facilities [DK76,Fr86] are necessary to exploit intensional information, to deal with incomplete
specifications as well as to control the overall application process, thereby also supporting an active sys-
tem behavior [DHMM89].

Besides the drawbacks of their modeling concepts, current DBMS also fail to support the process of devel-
oping a complex application. This deficiency is becoming even more apparent due to the increasing costs that
originate from the use of different models and tools in the development phase (e.g., ER model) and the op-
eration phase (e.g., relational model), which is required when current DBMS are applied as the underlying
management system. The need for a single, uniform tool for modeling support has a significant impact on the
functionality of future DBMS: they have to be able to act not only as management systems, but also as mod-
eling tools for developing complex applications!

Finally, the processing needs of the applications have to be fulfilled in an efficient and reliable manner, requir-
ing also the consideration of an appropriate runtime environment for non-standard applications [HM90,Ma91].
While ‘classical’ DBMS technology was largely based on a centralized system architecture, workstation/serv-
er environments have emerged as typical for advanced application systems. Therefore, the overall architec-
ture of future DBMS should be suitable for such a hardware environment [DFMV90, HHMM88, KDG87,
Ma91]. In this setting, locality of reference should be exploited as far as possible; buffering objects close to
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the application seems to be the only means to achieve efficient object references. Also, coupling some kind
of 'DBMS' and 'XPS' components in existing architectures is responsible for cumbersome handling and for
quite poor performance in most cases [Ma90]. For this reason, the integration of knowledge-based and DBMS
techniques in an effective way is one of the main issues to be addressed.

The enhancement of DBMS according to the above mentioned requirements resulted in so-called Knowledge
Base Management Systems (KBMS) [BM86,Ma89,ST89]. In such systems, pieces of applications in form of
user-defined functions, methods on abstract data types, abstraction relationships, and inference rules are
moved inside the KBMS for better performance and higher flexibility.

Along these lines, the KBMS KRISYS (Knowledge Representation and Inference System) was developed at
the University of Kaiserslautern [Ma89]. More than thirty diploma and project thesis works were involved in
the overall project. The system became completely operational in 1989 [Kr89], when we started to develop
several applications from different areas with it. Since 1991, KRISYS is also successfully used in a practical
semester course on KBMS and object-orientation at our university.

The experiences gained with the development of these applications as well as the feedback received by using
KRISYS in this practical course served as a broad and solid basis for evaluating the system from various
points of view. While some of the results consolidated our approach towards KBMS, others helped to reveal
some deficiencies. The goal of this paper is to summarize the results of this evaluation and present the ‘con-
crete lessons learned’ in the KRISYS project so far. After this introduction, Section 2 gives a brief overview
of the architecture of KRISYS and of its main components. In Section 3, the main part of the paper, we present
the results of our evaluation followed by some conclusions and an outlook which are given in Section 4.

2. A Brief Overview of KRISYS

2.1 Overall System Architecture of KRISYS

From a conceptual point of view, there are three orthogonal ways of looking at KBMS [BL86,Ma88b], corre-
sponding to the different kinds of requirements that should be supported by these systems: the needs of the
applications (i.e., knowledge manipulation means for solving problems), knowledge engineering support (i.e.,
modeling concepts for KB construction), and suitable resources and implementation aspects (i.e., mecha-
nisms for efficiently coping with knowledge storage and retrieval). The support of these three classes of re-
quirements leads to a natural division of the KBMS architecture in three layers, which were denoted in the
KRISYS project as application, engineering, and implementation layer [Ma89] (Figure 1a).

KRISYS follows this conceptual architecture of KBMS, refining it in order to become suitable for a workstation/
server environment: The implementation layer is divided into the working-memory system residing at the
workstation (together with the application and engineering layer components) and the DBMS kernel manag-
ing the KB on the server side (Figure 1b) [Ma88b, Ma91]. Considering the overall system architecture, KRI-
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SYS can therefore be seen as an ‘incarnation’ of the DBMS-kernel architecture for non-standard DBS pro-
posed in [HR85]. In the following, we give a short description of the different system components.

2.2 KOBRA

The KOBRA knowledge model [Ma89], corresponding to the engineering layer, provides an object-centered
representation of the application world for the KB designer. It supports the specification of descriptive, orga-
nizational, and operational knowledge in an integrated manner. That is, all these kinds of knowledge are in-
corporated in one basic concept, called schema (not to be confused with a DB schema), which is used to
represent the entities of the world being modeled. A schema (others call it object) is uniquely identified by a
name (or object identifier), and contains a set of attributes to describe its characteristics. Attributes are used
for the representation of descriptive knowledge, i.e., properties of a schema and its relationships to other
schemas (in this case, they are called slots), as well as for the specification of operational knowledge, i.e.,
behavioral aspects of an entity (in this case, they are called methods). In order to characterize a schema in
more detail, attributes can be further described by aspects (possible-values, cardinality, etc.). For example,
the object ‘mercedes-500’ shown in Figure 2 has slots such as ‘price’ or ‘has-motor’, and methods such as
‘order’. The slot ‘price’ is further described by a 'possible-values' aspect and 'unit' as a user-defined aspect.

For representing organizational knowledge, KOBRA supports the abstraction concepts of classification, gen-
eralization, association, and aggregation [Ma88a] which are incorporated into the model by means of special,
system-controlled attributes. That is, these concepts are seen as special, predefined relationships between
objects, defining the overall organization of a KB as a kind of complex network of objects. Hence, each sche-
ma can be related to other schemas by means of any abstraction concept. Classification/generalization as
well as association and aggregation each form a directed acyclic graph rooted in a system-defined schema.
Since each schema can be a node in each of these graphs, the KB can be seen as the superposition of three
graphs. The same object can, for example, represent a class with respect to one object and a set or even an
instance with respect to another. In other words, KOBRA supports an integrated view of KB objects, i.e., there
are no separate representations for sets, classes, instances, or complex objects. For example,
‘mercedes500’ in Figure 2 is at the same time an instance of ‘automobiles’, an element of ‘german products’
and an aggregate consisting of ‘motor1’, ‘body1’, and ‘wheel1’. Therefore, the separation of data and meta-
data, which is a characteristic of existing data models, is eliminated in KOBRA so that meta-information is
integrated into the KB [MM89]. A similar approach can for example be found in the language F-Logic [KL89].
The semantics provided by the abstraction concepts [Ma88a,RHMD87] are guaranteed by the system by
means of built-in reasoning facilities which also enforce the integrity constraints inherent in the abstraction
concepts [De90]. The best known of these reasoning facilities, inheritance, is built into the classification and
generalization concepts, and allows the system to derive the structure of classes and instances based on the
definition of their (super-) classes and to control model-inherent integrity by refusing attempts to delete inher-
ited attributes (for a description of other built-in reasoning facilities see [Ma88a, MM89, De90]).

(mercedes-500
(instance-of (automobiles)

(cardinality [1 1]))
(element-of (german products)

(possible-values (or (instance-of product sets)
(one-of expensive-cars cheap-cars))))

(price (50000)
(possible-values (and (integer) (interval <1000 100000>)))
(unit (US$))

(producer (mercedes)
(possible-values (instance-of auto companies))
(cardinality [1 1]))

(sell (begin “ transfer price to producer “
“change ownership” end)

(comment (operation to sell the automobile)))
(has-motor (motor1)

(possible-values (instance-of auto-motors))
(cardinality [1 1])
(diametric-reference (motor-of))))

german
products

i

automobiles

e
ii

p pp

motor1 wheel1 body1

 Figure 2: Example description of the schema 'mercedes-500'

i: instance e:  element p: part
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Besides the support of methods, KOBRA provides the concepts of demons and rules for the specification of
operational knowledge [Ma89, De90]. This allows the KB designer to utilize different programming paradigms
(object-oriented, data-oriented, and rule-based) when implementing applications. Demons allow for the at-
tachment of procedures to attributes, which are (similar to triggers in DBMS) automatically activated when the
attributes are accessed. General reasoning facilities are supported by rules defined in terms of conditions (if-
part) and actions (then-part), which are specified by means of KOALA (see Sect. 2.3). Rules can be flexibly
grouped together into rule sets according to reasoning tasks. KOBRA provides methods for forward and back-
ward reasoning which are activated with respect to such rule sets. In order to influence the course of inference
processes, the user can specify flexible control parameters, like conflict resolvers, search strategies, termi-
nation conditions. Demons as well as rules and rule sets are themselves represented as objects of the KB
and are organized by means of the abstraction concepts.

Finally, the KOBRA model provides means for maintaining the semantic integrity of a KB [De91]. In order to
specify constraints for attribute value consistency, the possible values and cardinality aspects can be used to
restrict the value domain and number of values allowed for an attribute. More complex constraints can be re-
alized by employing the concepts of rules and demons, which also allows to incorporate reactions on con-
straint violations. Additionally, the KOBRA model regards methods as units of integrity, similar to (nested)
transactions in DBMS. If an integrity violation occurring during the execution of a method cannot be resolved,
a roll-back operation is initiated for the method. Roll-back continues in a cascading manner up to the top level
of the (arbitrarily nested) method invocation, unless some method within the hierarchy requests to handle in-
tegrity violations internally. If so, the roll-back operation is terminated at this point, and control is returned to
the requesting method.

In order to support not only the description of an application model using the above mentioned concepts, but
also the process of application development, KRISYS allows the interactive construction of a KB in a stepwise
fashion [MM89]. After each design operation (e.g., the definition of a class, the reorganization of a class hier-
archy, the creation of an attribute, etc.) immediate feedback is provided in the sense that the consequences
of a design decision (as, e.g., the inheritance of attributes to existing classes or instances) are directly reflect-
ed in the KB state. At any point during the design process, the KB designer may validate the application model
by performing operations on the knowledge base (e.g., by activating methods or starting a reasoning pro-
cess). A design environment [Kr89] offers the possibility to save design states and restore them later in case
some design decisions turn out to be wrong, and allows the user to test operational knowledge (as for exam-
ple methods or demons) without having to fear an erroneous behavior of them.

2.3 KOALA

KRISYS provides as its user and application interface KOALA, a high-level, descriptive language for retrieving
and manipulating KB contents. (A detailed description of this language is given in [DLM90].) Information is
retrieved from a KB using the ASK statement. For example, the statement

retrieves the names and prices of all instances of ‘automobiles’, which have ‘motor1’ as motor. The selection
part of the ASK statement is expressed as a formula using logical connectives and predefined predicates
(e.g., IS-INSTANCE) and functions (e.g., SLOTVALUES) that embody the semantics of the KOBRA model.
Set-oriented queries are specified by using so-called query variables (e.g., ?car) in the selection formula,
which are then instantiated during query evaluation. The variables may be used in the projection clause in
order to precisely describe the desired information.

It is also possible to specify implicit and explicit joins in a selection by nesting SLOTVALUE-functions and
using more than one query variable. Furthermore, queries may involve additional logical connectives (disjunc-
tion, conjunction), negation, quantifiers, as well as special predicates and functions for expressing (general-
ized) transitive closure queries, making the language in some aspects more powerful than SQL [DLM90].

(ASK ((?car SLOTS price))

(AND (IS-INSTANCE ?car automobiles *)

(IS-IN motor-1 (SLOTVALUES has-motor ?car))))

Projection-Part

Selection-Part
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The TELL statement is used to manipulate KB contents. For example, the statement

will make sure that all cars costing more than 20.000 dollars are direct elements of the set ‘expensive-cars’.
Again, set-oriented changes are easily achieved using corresponding query variables in the selection and the
assertion part. Note that changes are not specified in terms of insert, update, and delete operations, but in a
state-oriented manner by describing the goal state of the KB in the assertion part [Ma89, DLM90]. It is the
task of the system to figure out how to achieve this goal. For example, the above statement may involve the
insertion of objects into a set, as well as the creation of the object ‘expensive-cars’ if it does not exist already.
Moreover, (parts of) the goal state may already be contained in the current state (before the execution), so
that there might be no changes necessary at all. Thus, state-oriented changes free the user or application
from knowing the exact state of the KB, when specifying updates. However, only a subset of KOALA can be
used to describe the goal state in the TELL statement so that ambiguities can not arise. TELL statements may
also contain multiple assertions within the same statement. Additionally, it is possible to access meta-infor-
mation within both ASK and TELL statements through special predicates and functions. (These two latter is-
sues also make KOALA go beyond SQL [DLM90].)

In KRISYS, rules are defined by a TELL statement, meaning that the rule condition part (the if-part) corre-
sponds to a TELL selection, and the conclusions (the then-part) to the TELL assertions. KOALA is therefore
the language used to write queries as well as to specify rules.

2.4 The DBMS Kernel PRIMA

The DBMS kernel chosen for KRISYS, named PRIMA (PRototype Implementation of the MAD model), con-
centrates on efficient and reliable KB management on secondary storage at the server side and provides ap-
plication independent data management functions at its interface. PRIMA was developed for supporting ap-
plications that require a suitable representation of complex objects, i.e., those whose inner structures (the
components) are also objects of the DB [Hä88, HMMS87].

The basic modeling constructs of the MAD (Molecule Atom Data) model [Mi89a] are called atoms, which, in
analogy to tuples in the relational model, are composed of attributes and have their structure determined by
an atom type. Atoms possess an identifier which is used for a direct and symmetric representation of relation-
ships (1:1, 1:n, n:m) by means of links, providing a view of the DB as a complex network of atoms. For each
specified link, there is always a corresponding back-reference in the related atom, whose mutual referential
integrity is automatically maintained by the system. Complex objects are dynamically defined by the specifi-
cation of so-called molecules as a graph having atoms as nodes and relationships (i.e., links) as edges. Thus,
molecules are dynamically derived views of the atom network.

KOBRA knowledge structures (i.e., schemas representing real world objects, attributes expressing their prop-
erties and relationships, and aspects describing the attributes) are mapped to MAD in a straightforward man-
ner [Mi88,Ma90a]. The MAD schema contains three atom types (‘Schema’, ‘Attribute’, and ‘Aspects’) con-
nected via the references (i.e., relationships) has_attributes and has_aspects2. The abstraction relationships
are represented as recursive MAD references involving the atom type ‘schema’ (see Figure 3).

2. The MAD schema can be seen as a kind of meta-schema, reflecting the basic modelling concepts of KOBRA, and not
the application domain (i.e., specific classes, sets, etc.)

(TELL (IS-ELEMENT ?car expensive-cars 1)

WHERE

(AND (IS-INSTANCE ?car  automobiles *)

(> (SLOTVALUE price ?car) 20000)))

Assertion-Part

Selection-Part

schema attribute

0:n
0:n

0:n
0:n

1:n 1:n

1:1 1:n
aspect

Figure 3: MAD-schema diagram
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2.5 The Working-Memory System (WMS)

The task of the WMS [LM89] is the support of a processing model based on the ‘nearby application locality’
concept. The WMS provides two mechanisms in order to fulfil this task.

First, it maintains an application buffer called Working Memory (WM), which temporarily holds the objects be-
ing used by the application in order to avoid long execution paths of KB accesses (involving workstation/ serv-
er communications) as well as time-consuming requests to secondary storage. The WM represents KOBRA
objects in a format similar to the MAD structures described above (i.e., separated in ‘schema’, ‘attribute’, and
‘aspect’ parts) and offers access to the stored objects via hash tables.

Second, the WMS provides the concept of processing contexts representing the knowledge needed by an
application during a specific processing phase. In principle, contexts are composed of several KB objects (in
general of different types) and objects may be elements of several contexts. They have to be defined by the
KB designer and are represented explicitly as KOBRA schemas and specified by means of KOALA. During
application processing, the WMS exploits the specification of a context to generate a complex set-oriented
access to the kernel in order to prefetch required objects and store them in the WM as a new application pro-
cessing phase is entered. Thereafter, most or perhaps all objects referenced during the processing phase are
found in the WM, so that only a few or no further calls to the kernel are necessary. At the end of the processing
phase, the corresponding context is then discarded from the WM and the context requested by the following
phase is loaded.

3. What have we learned?

The KRISYS system became fully operational in 1989, when a number of applications from different areas
began to be developed (see Table 1 for examples).

While some applications were restricted in functionality, size, and depth and were developed either for dem-
onstration purposes or to evaluate specific modeling concepts, others (esp. the first six applications in Table
1) can be more or less seen as ‘realistic’ in the sense that they cover a ‘real-world’ problem in sufficient depth
and generality. The variety of realized applications mentioned above on one hand allowed to validate in how
far the modeling and processing requirements of the applications were met by KRISYS, and on the other hand
permitted to evaluate the techniques for supporting an efficient overall processing within a workstation/server
environment. Since these aspects do not primarily depend on an increased KB size, we usually refrained from
populating the KBs with a large amount of data, but concentrated on the realization of the overall application
functionality. A fairly large amount of data/knowledge was only collected once for a KB for car repair diagnosis
[Bo83] with the MED2 XPS-shell [Pu88], which contained over 2500 deductive rules, besides a larger number
of other objects, representing symptoms, diagnoses, technical analyses, etc.

Title Application Area / Problem Class References

MED2 XPS-shell [Pu86] Diagnosis Mi89b
XPS for Trip Planning Classification Rh89
Real-Estate Valuation Support Decision Support in Finance Mö91
‘Intelligent’ CAD Architectural Design DHMM89, MDL91, Th90
TechMo Mechanical Design DHMS90, DHMS91, Du91
Mapping Generator Physical DB Design Sch91, Su91, Kn92
3D Objects Spatial Reasoning and Integrity Sch89, Mö90
Restaurant (sample KB for practical course and demos) DD91
Dialogue Component Tool XPS DK91
Integrated Product Model Environment Design Re90
Publication Management Information Retrieval Kr90
Multi-Media Application Multi-Media Zi91

Table 1: Applications of the KBMS KRISYS
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In the following, we will present our evaluation by stating the concrete ‘lessons’ we have experienced. The
lessons are grouped into subsections according to the main topics of our evaluation. While the first group cov-
ers representation and application processing aspects, the second is mainly concerned with our experiences
in providing a modeling tool functionality in addition to the support of knowledge management tasks. The third
group contains the lessons about the overall concepts for knowledge processing in KRISYS w.r.t. a worksta-
tion/server environment.

3.1 Application Modeling and Processing

Modeling Concepts

Lesson 1: The support of modeling constructs for representing descriptive, operational, and structural
knowledge is essential [DHMM89].

Besides the concepts for representing descriptive aspects of the application domain (i.e., schemas and slots),
constructs for specifying structural and operational information (i.e., the abstraction concepts as well as meth-
ods, demons, and rules) were widely used in all KRISYS applications3. This observation, which comes to no
surprise, again emphasizes the need for advanced data and knowledge modeling facilities in order to support
the construction of more precise and complete application models.

Lesson 2: The four abstraction concepts (classification, generalization, association, and aggregation) are at
the heart of knowledge modeling [MM89].

The complete support and the clear distinction of the abstraction concepts has turned out to be the funda-
mental concept for modeling our application KBs. Especially the distinction between the notion of a class
(generalization) and a set (association), and the support of an integrated view on the abstraction concepts,
i.e., the possibility to model an object as playing different roles (e.g., a class, a set, or even an instance) at
the same time, have helped to improve the clarity of the application domain description4. Without an integrat-
ed view, redundancy would have to be introduced into the KB (e.g., different schemas for representing the
object as a class, set, and instance) and would have to be handled by the application.

Operational Concepts

Lesson 3: The (sum of) constructs for operational knowledge should be computationally complete.

When looking at the ‘amount’ of application processing realized within the representational framework of KRI-
SYS, compared to the processing performed in an application program outside the KB, significant differences
between the applications became apparent. While in some applications only basic processing tasks were per-
formed in the KB, others were realized completely with the modeling constructs of KRISYS. The question
‘Where does the KB end and where does the application program begin?’ can only be answered by the KB
designer. Therefore, a KBMS must not anticipate the answer by limiting the expressive power of its opera-
tional concepts (e.g., to sequences of DML statements), thereby restricting the amount of application process-
ing that can be integrated into the KB.

Lesson 4: A KBMS should support different programming paradigms.

We had chosen to support in KRISYS several concepts for representing operational information (methods,
demons, and rules), which allow the application designer to use different programming paradigms (object-
oriented, data-oriented, and rule-based) when realizing the application. In our evaluation we found out that a
‘typical’ application (w.r.t. the paradigm(s) used) does not exist. Methods were used in many applications, but
were usually combined with either demons or rules, or both. As certain paradigms may be more suitable for
certain problem classes than others, a KBMS should allow the application designer to flexibly choose the par-
adigms that fit best.

3. Note, that this is not necessarily the case for the operational aspects, since an application designer might choose to
dispense some of the operational constructs of KRISYS completely, and realize application processing outside the
KB by embedding KRISYS statements for interacting with the KB in application programs written in a general pro-
gramming language (CommonLisp).

4. Note, an integrated view does not contradict the clear separation of distinct abstraction concepts [Ma88a, MM89]!
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Integrity Constraints

Lesson 5: A uniform, powerful and flexible concept for modeling integrity constraints must be provided
[De90].

Our applications, especially the ones from the area of design such as the intelligent CAD system and TechMo,
posed ambitious requirements w.r.t. constraint modeling. In these systems, various kinds of application con-
straints ranging from physical laws to legal regulations and (user-defined) design restrictions (i.e., goals) had
to be represented, requiring an increased flexibility, concerning

- the constrained objects, i.e., if a constraint should be valid for all objects of a certain class, or only for
specific instances (like a design goal),

- reactions on constraint violations, which have to include corrective actions, user interaction, or even tol-
erating/recording the inconsistencies, besides the (usual) roll-back operation,

- the specification of checking operations and reactions, which can sometimes become very complex,
making procedural specifications necessary,

- the time of activation, which must not be restricted to the immediate/deferred activation scheme, but
should be relatable to arbitrary units or levels of integrity, as well as

- the ‘usage’ of a constraint: While in some cases a constraint has to be used to check consistency (e.g.,
of a design object), the same constraint is used in a different situation in a rule-like fashion to derive or
compute new information (e.g., if a design object is not completely specified by the user)5.

In all, the KRISYS concepts used for constraint modeling (i.e., special aspects, demons, rules) left a lot to be
desired w.r.t. the above requirements. Additionally, the fact that several modeling concepts can (and some-
times have to) be used for representing constraints, which sometimes have different notions of activation,
possible reactions, etc., rendered the modeling of an application more difficult (from an integrity point of view).

Lesson 6: Low-level concepts (e.g., triggers, demons) do not offer a satisfactory modeling of constraints.

Although event-based or trigger-like concepts usually provide the flexibility required to fulfil several of the
above mentioned points, they are not suitable as modeling concepts for constraints, but should only be seen
as an internal basis for their implementation. As the number of constraints of an application exceeded a cer-
tain limit, the semantics of the set of demons used for their realization was hard to capture. Several demons
were necessary to realize a single constraint, and the overall effect of their activation was hard to foresee.

Lesson 7: An object-centered framework offers various opportunities for the integration of concepts for in-
tegrity constraints into the knowledge model [De91].

The decision to represent constraints uniformly as special (first-class) objects of the KB turned out to be es-
pecially good. This approach offered the advantage that constraints were represented explicitly and could be
organized in the KB according to various criteria, using the abstraction concepts. In KRISYS, we have repre-
sented demons as well as rules in this way. In our applications, we could therefore easily locate certain con-
straints, and modify or extend them. Also, the ability to introduce new attributes for the constraints as an ad-
ditional description turned out to be a useful selection criterion for querying the KB w.r.t. its constraints, which
contributed to increase the modifiability of the constraint set.

Another opportunity was given by the possibility to associate the activation of integrity constraints with the
execution of methods, allowing a flexible specification of activation time. In this context, the methods could
be seen as (arbitrarily nested) units of integrity, allowing the realization of various integrity levels (for a de-
tailed description of how methods and demons can be used to model different levels of integrity, see [De91]).
Moreover, update operations in object-oriented systems usually involve only single attributes (and not com-
plete tuples or records as in relational systems). This granularity of updates, which is consequently reflected
in the definition of update events, is more suitable for initiating integrity checks than in conventional DBS, be-
cause most constraints are specified for (combinations of) attribute values.

5. This requirement questions to some extent the difference between rules and integrity constraints, which is usually
made in KBMS!
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Query Language

Lesson 8: Access to KB contents should rely on a declarative, set-oriented query language.

KRISYS provides two separate external interfaces6: KOALA, a declarative query language, and a functional
interface embedded in LISP7, which offers a predefined set of functions for basic interactions (e.g., accessing
slotvalues, creating and deleting objects, calling methods, etc.) based on object identifiers (i.e., schema
names). While KOALA can be used for ad-hoc queries and for KB interaction within methods or application
programs in a declarative fashion, the functional interface is more suitable for programming in a more object-
oriented, navigational style.

Our experiences concerning the usage of these interfaces were the following:

- The ‘navigational’ interface proved to be appropriate and sufficient for some, but not all types of appli-
cation methods. Obviously, associative access could be addressed only inadequately, therefore requir-
ing a declarative language.

- Even in cases where the navigational language was sufficient to implement some tasks, it required quite
complex programming efforts that could be expressed in KOALA without any difficulties, leading to sim-
pler and more readable method definitions. We observed that specially for this purpose the features of
KOALA that go beyond SQL [DLM90] (e.g., multiple updates on multiple classes within one single TELL
statement) were very useful.

- In spite of the ‘superiority’ of KOALA when compared to the navigational interface, KB designers started
realizing methods using only the navigational language and often stayed with this interface as long as
possible (some applications were even realized without using KOALA at all [Th90]). Basically, the fol-
lowing two reasons were given by the KB designers to justify this. First, getting familiar with a new lan-
guage based on a different semantics or paradigm than the procedural one requires efforts that should
not be underestimated. However, in cases in which the KB designers became familiar with KOALA, they
appreciated its advantages and found the use of KOALA in methods more appropriate then using the
navigational interface. Second, KOALA was conceived primarily as an ad-hoc query language, and little
effort was put into the development of a satisfactory coupling or integration with the host language (i.e.,
CommonLisp). Therefore, the well-known problems of impedance mismatch between query and host
language occurred, and additional programming efforts were necessary to interpret the results of an
ASK statement within the Lisp program or to pass parameters into a TELL statement, thereby discour-
aging the use of KOALA in methods.

All in all, our experience proved that the support of a declarative, set-oriented query language in a KBMS en-
vironment, even in combination with an object-oriented representation, is necessary and useful8. However,
significant efforts have to be put into an appropriate integration of declarative and object-oriented program-
ming languages in order to harmonize these two paradigms as far as possible.

Lesson 9: For using a query language as a basis for rule definition, a state-oriented language semantics is
desirable.

Another argument for supporting a query language is that a declarative query language can resemble an ad-
equate basis for the definition of deduction rules in a KBMS environment. In contrast to deductive DBS where
rules can only be used to derive intensional information, rules in KRISYS can also be used to modify the ex-
tension of the KB upon their activation. For this purpose, the notion of state-oriented changes as supported
by KOALA, which was briefly introduced in Section 2, has shown to simplify the specification of rule-based
systems significantly [DLM90, Rh89]. Without state-orientation, one would have to clearly identify in the con-
clusion-part of the rules the exact operation that has to be performed on the KB upon rule activation (e.g.,

6. The reason for providing two alternative interfaces is mainly a historical one: The implementation of KOALA was com-
pleted after the ‘object-oriented’ interface had already been realized. Nevertheless, this double effort of implementa-
tion gave us the opportunity to provide completely different interfaces for the KB designer, and the chance to find out
which one is more suitable for his/her purposes.

7. This interface is also provided as part of a graphical environment running on X-Windows.
8. Note, that these observations have only considered the needs of the users and KB designers. Efficiency considera-

tions will be discussed in subsequent parts of this section.
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insertion of a new object or modification of an existing one)9. Because this operation is dependent on the KB
state at the time of activation and is not necessarily known when the rule is being specified, it leads to the
multiplication of the number of rules: Predicates for determining the actual state of the KB (e.g., existence or
inexistence of an object) would have to be included into the condition part in order to apply the correct oper-
ation, causing additional rule definitions for each distinguished state.

3.2 Knowledge Modeling vs. Knowledge Management

Support of modeling activities

Lesson 10: Support of application development and processing within the same framework is necessary.

KRISYS was constructed to appropriately support both the design and the operation of applications within the
same representational and operational framework. The possibility to develop the application in a stepwise
fashion and to immediately validate design decisions was greatly appreciated by all application designers.
Moreover, we learned during several practical courses based on KRISYS that the possibility to interactively
develop and run applications facilitated getting acquainted with the system and sped up the development of
these applications. Instead of being forced to define the structure of a knowledge base before actually working
with the system, users could immediately try out the features of KRISYS without any previous specification.

Lesson 11: The KB design process has to be supported by an appropriate system environment that enables
(re-)designs, taking back design decisions, saving and restoring design states.

Throughout the application developments, we made the experience that the user should not be forced to de-
finitively integrate his design decisions or even whole design steps into the KB because in a lot of cases he/
she is not yet sure about the correctness of his/her decisions. KBMS should allow an easy reverting of such
activities whenever necessary.

To this end, KRISYS offers the design environment [Kr89], which proved to be essential in the design of our
applications. When design decisions turned out to be wrong, a consistent, earlier design state could be re-
stored by simply going back to the corresponding KB state. Moreover, this feature allowed the user to validate
operational knowledge, as for example methods or demons, without having to fear an erroneous behavior of
them. By allowing the user to save the state of the KB prior to execution, the design environment relieved the
user from the gravity of decisions and allowed him or her to use KRISYS more freely as a modeling tool. With-
out such kind of support, the designers would have been forced to either keep copies of the complete KB or
issue complex compensating actions to restore a consistent KB state in case of an erroneous action.

Lesson 12: The dynamic behavior of the abstraction concepts, providing built-in reasoning and consistency,
proved to be the basis for stepwise, interactive KB design [MM89].

The abstraction concepts are the means to organize a KB, i.e., to define its structure. As already pointed out
in Section 2, built-in reasoning facilities (e.g., inheritance) and consistency conditions are associated with
these concepts, describing their semantics. In KRISYS, the semantics of the abstraction concepts is guaran-
teed dynamically after each operation, which turned out to be very effective for supporting an easy modeling
of a KB. As the designers changed abstraction relationships, defined new attributes, and created or special-
ized aspect definitions, the built-in reasoning facilities were automatically activated to reflect the consequenc-
es of such operations (e.g., changes in the object structure through inherited attributes) or detect and prevent
inconsistencies, such as cyclic abstraction relationships or inheritance conflicts. This behavior proved to be
essential for an immediate validation of design decisions.

Lesson 13: Eliminating the difference between regular and meta-information is advantageous for supporting
modeling activities.

In KRISYS, this elimination, which is reflected in the knowledge model as well as in the query language, has
shown to be an important support for KB design in several ways. First of all, the integration of meta-informa-
tion and ‘regular’ information provides the KB designer with a uniform operational and representational plat-

9. This type of definition is comparable to the specification of the action-part in ECA rules or triggers.
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form for defining the structure of a KB as well as for effectively validating and testing applications. In KOBRA,
the schema is the representational basis for structural information (e.g., a schema as a class) as well as for
regular knowledge (e.g., a schema as the instance of a class), and all operations are carried out on schemas
of the KB. Second, the integrated access to meta-information within the query language KOALA provides a
useful means for retrieving meta-information and reorganizing KB contents during KB design. KOALA turned
out to be a good support for the designer when he/she needed to keep track of the current KB structure or to
perform restructuring measures.

Additionally, the implementation of the design environment was greatly facilitated by the fact that meta infor-
mation is stored in the KB and can be treated just like regular knowledge. We could easily use the mecha-
nisms already implemented for effective data management (like transactions and savepoints) in order to keep
track of design decisions and to make them revertible.

Relationship between Design and Operation Phase

Lesson 14: Design phase and operation phase can be distinguished [Ma91].

XPS tools (e.g.,KEE [FK85,Fi88], Knowledge Craft [FWA85]), which support applications comparable to
those of KBMS, assume that an application is subject to design changes continuously throughout its life time.
For this reason, these systems do not distinguish between the design phase and the operation phase of an
application. Contrary to this assumption, we have found that for the applications we have developed with KRI-
SYS, it was reasonable to distinguish between the two phases since there was a dramatic shift of interest
when moving from one phase to the other. In the design phase the KB designer(s) were interested in flexibly
structuring the application. When processing (parts of) the application in this phase, he/she was interested in
the validation of the KB, aiming at the redesign of the KB if the application did not exhibit a desired behavior.
In the operation phase, the user of the application (who was in most cases not the KB designer) was interest-
ed in an efficient processing of the application. Therefore, in each application we developed, we observed a
certain point at which the design phase ended and the operation phase started because the KB designer be-
came satisfied with the behavior of the application. At this point, efficiency, and not flexibility, became the ma-
jor issue (see also lesson 16).

Lesson 15: A strict separation of the design phase from the operation phase without the possibility to perform
redesigns is however undesirable.

During the complete life-cycle of our applications, we have observed points, where even in the operation
phase a reconsideration of the KB structure was necessary (e.g., new requirements became apparent or
structural changes in the KB became necessary). In such situations, a return to the design phase was then
needed. However, these situations were not frequent (compared with the iterations in the initial design phase)
and usually had only limited effects on the running application, leaving large parts of the structure of the KB
untouched. Nevertheless, they were enough to show another argument for integrating the functionality of both
a knowledge modeling tool and a knowledge management system within the same environment. A strict sep-
aration, as prescribed in DBMS by the need to define and maintain DB schema and actual database in differ-
ent locations or even in different representational frameworks, is a severe obstacle in the fulfillment of the
above stated requirement.

Lesson 16: Design and operation phase differ fundamentally in the kinds of operations applied [Ma91].

We have performed an in-depth analysis of the different phases of the applications’ life cycle w.r.t. to the op-
erations performed during each phase. Thereby, we observed that during the design phase operations pro-
voking changes in the KB structure were prevailing, as for example the generation of classes, the creation of
attributes, the restructuring of sets or the definition of aggregation hierarchies. Also, the operational knowl-
edge represented in the KB (i.e., methods, rules, demons) was frequently changed until it was free of errors
and exhibited the desired behavior. On the other hand, during application processing (i.e., in the operation
phase) these kinds of operations occurred only very rarely (or not at all). In this phase, objects were selected
by conditions based on the value of certain attributes or on their relationships to other objects. Attribute values
were manipulated by the system, instances and elements were created and/or deleted [Sch91]. Also, opera-
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tional constructs (e.g., methods) were activated, but only rarely modified. Therefore, the flexibility needed dur-
ing the design phase was no longer required in the operation phase. This observation to some extent contra-
dicted the assumption made by XPS tools, as stated in lesson 14.

Lesson 17: After the design phase is finished, optimizations have to be performed.

As demonstrated above, the operational phase does not require the functional flexibility of the design phase
because the operations performed in these two phases differ. Therefore, we learned that switching from the
design phase to the operational phase also allows changing the emphasis of system support to improve per-
formance. To reach this goal, an additional phase, the so-called optimization phase, has to be introduced be-
tween design and operational phase, which can be initiated explicitly by the KB designer at the end of the
design phase. A prime candidate for an optimization to be performed in this phase is the optimization of the
mapping scheme used to map KOBRA to MAD because it greatly influences the performance of the opera-
tions of the application. We observed that the mapping described in Section 2.4 (Figure 3) was ideal for the
design phase, since any design operation, even structural changes, did not provoke any changes in the MAD
schema, but only the insertion, deletion or modification of tuples (instances) in one (or several) atom types.
However, this kind of mapping caused a significant overhead for select operations (which were prevailing in
the operation phase) since each object had to be constructed from its components (attributes and their as-
pects), leading to a rather complex query even if the object was selected by means of its object identifier. In
the optimization phase, the system should therefore be switched to a more specific mapping, which reflects
the application domain and does not exhibit the above described drawbacks.

However, changes on the mapping between KOBRA and MAD are not the only optimization actions that can
take place after finishing the design phase. We also concluded that it was then possible and necessary (for
performance reasons) to compile and therefore optimize all operational concepts used in the application,
thereby going out of an interpretative mode into a compiled and consequently more efficient mode. For ex-
ample, queries contained within methods should be optimized and compiled. Integrity constraints should be
transformed into an internal format and necessary integrity checks for update operations should be generated
and placed into the code of methods which perform the corresponding updates. Rule processing should be
supported by means of building dependency graphs for each ruleset as well as improved by compiling and
optimizing the rules themselves.

KRISYS clearly failed to fulfil the requirements formulated in this lesson because none of the above described
means for optimizations were supported.

Lesson 18: The structure of the KB and the processing characteristics of each application are application de-
pendent and determine an optimal mapping scheme between KOBRA and MAD [Ma91].

A thorough analysis of our applications has shown that the structure of their KBs differed very much. They
differed for example in the number of hierarchies, in the kind of abstraction hierarchies (generalization, asso-
ciation, aggregation), their height, their shape (only trees or even graphs), in the distribution of the instances
in the hierarchy, etc. [Sch91, Ma91]. Furthermore, we observed that the processing characteristics of the ap-
plications were also very different. They showed differences in the programming paradigm they were using
(object-oriented, data-driven, rule-based, hybrid), in the exploitation of context definitions, in the kinds of que-
ries, frequency of updates, existence of schema evolution, etc. We finally observed that all the characteristics
strongly influenced the shape of an optimal mapping scheme between KOBRA and MAD.

Lesson 19: KBMS cannot be based on a fixed mapping scheme, but have to be able to handle distinct, appli-
cation-dependent mappings [Ma91].

Based on the above lessons, we could then conclude that the mapping between KOBRA and MAD should be
adapted to the requirements of each specific application after the completion of the design phase, when such
requirements are well defined because the KB structure as well as the processing characteristics of an appli-
cation are application dependent. Naturally, in order to exploit specific mapping schemes, the MAD schema
and the corresponding transformation process of KOBRA objects to MAD atoms must not be fixed to a certain
mapping scheme, but have to be adaptable to distinct, application-dependent mappings. Therefore, the opti-
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mization phase has to support the generation of an application-specific mapping and allow the transformation
of the KB into the new format.

Lesson 20: Most of the work done during in the generation of an appropriate mapping can be done by the
system during the optimization phase.

The main goal of the optimization phase is the generation of an application-oriented and consequently effi-
cient mapping scheme for a certain application. Once an appropriate mapping has been found the transfor-
mation of the KB into the derived MAD schema can be performed automatically by the system. We had ex-
perienced in our attempts to find optimal mappings for our applications that this task involves the consider-
ation of a lot of information and requires complex decisions to be made. However, most of the information
needed for this task can be derived by the system because it is already somehow stored in or can be inferred
from the KB, mainly from information about the KB structure (e.g., the number of hierarchies, their height, their
shape, etc.). Also, some information concerning the processing characteristics of the application can be de-
rived by the system from the rules in rulesets, from the kinds of demons, their activation time, etc. Only infor-
mation not represented in the KB like the number of expected instances per class, elements per set, the rel-
evance of membership stipulations for access purposes, etc., has to be specified by the knowledge engineer.
Therefore, the system is able to perform most of the work necessary to generate an optimal mapping. How-
ever, because of the large amount of relevant information and the enormous number of potential mappings
that can be generated, one cannot expect that a fixed procedure can be followed by the system in order to
derive the appropriate mapping for an application. The system has to make use of a number of existing heu-
ristics to automatically derive an adjusted MAD schema for each application.

3.3 Overall Processing Support of KRISYS

General Architectural Considerations

Lesson 21: A layered system architecture with well-defined interfaces is useful and facilitates physical distri-
bution of system components.

Considering the functionality provided by KRISYS, the system consists of several hierarchically ordered lay-
ers, thereby following general design rules known from existing DBMS [HR85]. The advantages of this archi-
tectural approach (ease of implementation, maintenance, and extension) became apparent during the imple-
mentation of KRISYS, especially because the system was continuously under extension and improvement
. In the special case of KRISYS, the approach also enabled us to design the system in such a form that the
layers of the system naturally reflected the three major classes of requirements of KBMS. All in all, it permitted
us to realize well-defined interfaces providing modularity, data independence and extensibility in the various
layers. It also facilitated the assignment of system components to workstation and server.

Lesson 22: ‘Loose coupling’ of workstation and server components with the support of locality of reference is
necessary to reduce communication and transfer overhead.

As mentioned in Section 2, the KRISYS architecture was designed to fit into a workstation/server environment
with decentralized and autonomous processors. In such an environment, the kind of interaction between the
server and the client is a very important design issue [Hä89, Ma90a]. Regarding this issue, we learned that a
close ‘coupling’ between server and workstation results in a huge amount of communication between the
server and the workstation component combined with high transfer cost, since every user action can provoke
‘thousands’ of accesses to the KB. Furthermore, this kind of coupling results in a failure dependence, which
is a very critical design issue, because the users may be affected by any kind of failure throughout their typ-
ically long-term activities. Therefore, we strongly believe that the only reasonable approach for a system like
KRISYS is to rely on loosely coupled system components with interfaces that minimize communication traffic
and KB accesses. We learned that this approach can only be successful if accompanied by the support of a
high degree of locality of reference on the workstation side for performance reasons calling for an application
buffer in the workstation, as will be discussed in lesson 25.
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Lesson 23: In order to exploit the advantages of a workstation/server environment, knowledge model seman-
tics and application-oriented processing should be shifted towards the workstation [De91, Ma91].

Considering the constructs underlying KOBRA at the workstation and the MAD model at the server, it should
become clear that KOBRA is located at a higher semantic level than MAD. Upon realizing the existence of
this gap in the KRISYS architecture, one would directly conclude that this was a problem and try to come up
with the idea of enhancing MAD with KOBRA semantics to equal both models. However, we have learned
that efforts to equal MAD and KOBRA do not promise to offer solutions (see [De91, Ma91] for a detailed dis-
cussion on this topic). By placing the ‘borderline’ between workstation and server on the enhanced MAD in-
terface, all the functionality of KOBRA would be completely delegated to the server, otherwise KOBRA se-
mantics would have to be duplicated at the workstation (implying that the MAD enhancement is meaningless).
Such a complete delegation would hopelessly overload the server component of KRISYS with additional pro-
cessing since the maintenance of abstraction concepts, the execution of their built-in reasonings, the evalu-
ation of methods, demons, and rules are now completely undertaken by the server. Processing at the work-
station would be limited to a minimum, leading to a more or less centralized system architecture that neglects
the advantages provided by workstation/server environments. Consequently, only basic, application indepen-
dent tasks should be delegated to the server component. The server has to treat knowledge structures simply
as a kind of network of complex objects to be consistently, reliably, and efficiently managed. It has to provide
flexible means to select sets of objects and transfer them to the workstation or to write them back into the KB.
In summary, the division of the system architecture of KRISYS with KOBRA and KOALA at the workstation
side and the DBMS kernel at the server side proved to be correct.

Lesson 24: The NDBS-kernel approach is the appropriate architectural environment for KBMS.

The architecture of KRISYS follows the principles of the NDBS-kernel approach that has been proposed in
[HR85]. The proposal claimed that NDBS should be constructed by a loose coupling of workstation and serv-
er, implementing the functionality required by a specific application class on the workstation and using the
NDBS kernel for general data-management tasks. Although KRISYS is not restricted to an application class
but rather offers a general platform for developing applications, it was yet another example of the advantages
of the approach mentioned above, as can also be seen from lessons 21, 22, and 23. Thus, we can conclude
that the affirmations in [HR85] could be demonstrated in practice by the KRISYS implementation.

Application Buffer

Lesson 25: An application buffer to support locality of reference is a key concept for efficient workstation/serv-
er processing.

In all applications developed we have observed locality of reference, i.e., there are many timely related ac-
cesses to the same object and even to the same attribute of an object [Ma90b]. This observation, which was
not surprising during the operation phase, was also valid during the modeling phase of an application (sub-
sequent modeling activities often involved the same hierarchy and even the same object) and the optimization
phase. As already argued in lesson 21, this locality of reference must be supported to improve the perfor-
mance of the application. For this reason, the integration of the working memory into the KRISYS architecture
has proven to be the right decision. We performed several measurements with each of the developed appli-
cations and we observed that the use of the WM led to a significant reduction in application run-time by a
factor 10 - 30 (i.e., from hours to some minutes). Therefore, it is absolutely necessary to support application
processing in workstation/server environments efficiently.

Lesson 26: Pure hashing is inappropriate for accessing objects in the application buffer.

In our applications, parts of an object’s structure (e.g., attributes or aspects) were usually accessed several
times in the WM within a certain phase [Ma90b]. However, we observed that a pure hashing method for or-
ganizing the application buffer did not support these repeated references in a satisfactory way. Instead of be-
ing able to exploit the current position of an object for a faster relative access, KRISYS always had to compute
the absolute position of the next relevant part of that object from scratch. Moreover, a hash method could nei-
ther support navigation through hierarchies nor set-oriented access of related objects. Because we also ob-



15

served that these two kinds of operations were performed intensively in each application ‘phase’ (e.g., navi-
gational access to support the inheritance of a new defined attribute to all subclasses and instances and set-
oriented access to perform selections on instances of a class and its subclasses), we concluded that hash
methods are not sufficient to appropriately support the kinds of accesses performed in the WM.

Lesson 27: An object representation in the buffer closer to the knowledge model and the support of naviga-
tional as well as set-oriented processing of buffer objects are essential for efficient processing.

In a first version of the application buffer, we had chosen an internal representation similar to the one used
inside the DBMS kernel to speed up the load and unload tasks. No transformation was necessary when ob-
jects were brought into the WM or written back. However, since the knowledge model needed a different rep-
resentation of the objects (both to support modeling activities and query processing [TMMD92]), the objects
had to be converted each time they were accessed by a KOBRA or KOALA operation. Measurements showed
that this conversion had consumed a lot of time (up to 30% of the workstation processing time). Thus, we
concluded that objects should be represented in the application buffer in a form close to the knowledge model
of KRISYS, resembling a direct representation of the hierarchies formed by the abstraction concepts (e.g., by
means of main-memory links). The kind of representation of the objects stored in the application buffer is very
important for the efficiency of the operations of the knowledge model and the processing of queries. Pursuing
this observation and the observations of the previous lesson, we can then summarize our conclusions by say-
ing that an application buffer should provide an internal representation of objects that is as close as possible
to the knowledge model and that efficiently supports both navigational and set-oriented processing [La91].

Lesson 28: Query processing must fully exploit the application buffer.

We learned from the query processing in KOALA that in order to adequately support the processing of queries
in the workstation, the application buffer has to provide means for the explicit representation of results of sub-
queries delegated to the DBMS kernel as well as intermediate results of the query evaluation (i.e., sets of
objects or parts of them). Otherwise, the query processor has to maintain structures containing copies of the
qualified objects or object parts leading to a redundant representation of objects in the workstation. Based on
these access structures, the application buffer should provide (in addition of both kinds of accesses given in
the previous lesson) a powerful, explicit cursor concept to scan over the objects, allowing value-based selec-
tions of objects as well as operations concerning an object set as a whole (e.g., sorting objects by some cri-
teria or merging two object sets).

Lesson 29: Support of main-memory indices on the application buffer is needed to increase efficiency.

In our investigations, we also observed (even in the smallest applications) that the ‘amount’ of data that had
to be processed and consequently had to be passed to the workstation during the operation phase was grow-
ing rapidly. Supported by modern workstations, which are equipped with several MB of main memory with
strong growing tendency, this will cause the size of the application buffer, the number of objects stored within
it, and the size of the intermediate results to grow rapidly as well. Thus, the application buffer has to provide
a number of different main-memory indices [La91] to accelerate the processing of these large sets of objects
by the query processor [Hä91, TMMD92] (e.g., a value-based scan over the objects) similar to main-memory
DBMS.

Processing Contexts

Lesson 30: Processing contexts are a useful means for further reduction of server calls through prefetching.

Our measurements have shown that the definition of processing contexts and their exploitation to generate a
set-oriented access to the server in order to prefetch the corresponding objects and store them within the ap-
plication buffer was an adequate means for further improving the efficiency of application processing. The
number of server calls could be reduced by a factor of 2-5 and the time consumed by the server component
decreased by 15-30% resulting in a 10-20% acceleration of application processing [Ma90b].
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Lesson 31: The system should support the KB designer in the definition of such processing contexts by ana-
lyzing the queries, operational concepts, and constraints.

The development of our applications also revealed insights regarding the practical handling of processing
contexts. We observed that the concept was rarely used by the KB designers although they were the persons
who knew best about the details of an application. Even for those experts, it was hard to ‘locate’ contexts with-
in the application, i.e, objects required in certain phases of the application, as they were often hidden in the
specification of queries, methods, problem solving strategies, integrity constraints, etc. For this reason, even
when the KB designers specified such contexts, they proved to be inexact, i.e., did not contain all objects re-
ally needed in the corresponding phase of the application. A factor that contributed to this problem was that
the choice of the most appropriate ‘point in time’ for the specification of contexts proved to be rather difficult.
When defining the contexts during the modeling of the application, they had to be adapted each time the al-
gorithm was changed because of necessary reformulations and redesigns. When defining the contexts after
finishing the modeling phase, an additional deep analysis of all parts of the applications was required which
was then hard to perform and also very time consuming. However, we realized that most of these contexts
could be extracted from queries, rules, and demons, a task of which the system could easily take care. It be-
came then clear that it is possible to support the KB designer in his/her task of defining contexts by providing
the functionality to automatically analyze the specification of rules, demons, and queries in methods in order
to be able to find out which objects are needed in each phase of an application.

Lesson 32: Internal contexts should be exploited automatically by the system.

Independent of processing contexts that can be derived from the phases of an application, the internal pro-
cessing of KRISYS also revealed the existence of sets of objects which are needed for processing system
operations. During the inheritance of a newly defined attribute, for example, all objects in the generalization
hierarchy below the corresponding class were accessed by the system. Also each query and subquery im-
plicitly defined a context, containing the query results. Another example was the evaluation of rules in which
every ruleset (the set of corresponding rules) together with the rules themselves (which can be seen as a que-
ry) defined a context. The system should, of course, make use of this to automatically define processing con-
texts in order to prefetch the required objects and to reduce the number of server calls.

Query Processing

Lesson 33: Query processing should rely on an algebraic framework, allowing the exploitation of optimization
techniques known from (relational) DBS.

In the first version of KRISYS, KOALA was implemented with the primary goal of making it available for use.
The internal representation of KOALA queries permitted only local optimizations and did not allow the use of
any standard optimization techniques known from the field of databases. However, a detailed study of these
techniques revealed that they are very useful in the KRISYS architecture, if adapted to the issues of a server/
workstation environment [Hä91, Ro92, TMMD92]. This made us conclude that KOALA should be reimple-
mented based on an algebraic approach and oriented at the framework of general query processing [JK84]
that permits to apply some of the existing (especially relational) optimization techniques [TMMD92].

Lesson 34: For query processing, a set-oriented, declarative server interface is required, otherwise a prese-
lection of transferred objects is not possible.

KOALA is a set-oriented query language relying on a declarative description of its referenced objects. Due to
the expressive power of KOBRA, large ‘pieces’ of a KOALA query have to be executed in the workstation
requiring a large number of relevant objects to be installed in working memory [De91]. Instead of requesting
single objects upon reference to the server, a better and far more efficient approach is to load the objects into
the WM prior to executing the corresponding parts of the query. For this purpose, a set-oriented, declarative
interface to the server DBMS is essential. Only then, it is possible to preselect the objects requested by (some
part of) a query giving way to the exploitation of a very efficient two-staged query evaluation (as outlined in
[TMMD92]): parts of the query evaluation are performed in the workstation and parts in the server.
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Lesson 35: A declarative description of the buffer contents is a prerequisite for optimizing queries in this
framework.

Due to the application’s locality of reference, some or even all objects needed to process a query in the work-
station may already reside in the WM because they were previously referenced by another query. Those ob-
jects can directly be used for query processing and need not be loaded from the server. Therefore, the con-
sideration of the contents of the application buffer is an important measure to increase the efficiency of query
evaluation. To reach this end, KRISYS should maintain a declarative description of the objects currently being
installed in the WM in groups corresponding to the way such groups are referenced by KOALA. Thus, the
KOALA processing system could make full use of the contents of the WM. As a simple example consider a
KOALA query where all schemas that are elements of a certain set are referenced via the IS-ELEMENT pred-
icate, and the same set has been referenced in a previous query, so that the required schemas are already
in the WM. If the WM contents were only described by a list of identifiers of the contained schemas, the query
processing component would still have to evaluate the KOALA predicate (requiring access to the server) in
order to determine the names of the requested schemas, before being able to decide whether they are al-
ready in the WM. However, if the WM contents were described by the IS-ELEMENT predicate (meaning that
the elements are completely contained in the WM), this decision could be made by comparing the query pred-
icate with the WM description, requiring no additional server access.

4. Conclusions and Outlook

The KBMS KRISYS - developed at the University of Kaiserslautern - has been operational since 1989. Since
then a lot of applications coming from different application classes were modeled with KRISYS to evaluate its
adequacy for application design and operation. The experiences we drew from these works were presented
in this paper.

We have shown that many concepts offered by KRISYS proved to be well-suited to support the requirements
of both the design phase and the operational phase of the applications.

• First of all, this is true for the knowledge representation framework offered by KRISYS. The KOBRA knowl-
edge model, characterized by object-centered approach, allows a uniform representation of descriptive,
procedural, and structural facets of an application domain by attributes. Especially, the abstraction con-
cepts of classification, generalization, association, and aggregation are major features for organizing the
knowledge base.

• The integration of regular and meta information into the knowledge base made up the second positive ex-
perience we had. The difference between structuring and use of a KB on a physical level and on an oper-
ational level is eliminated respectively because all information about the knowledge base including schema
information is stored there and because the same set of operations applies for manipulating the knowledge
base and the meta-information. We observed that this is a major prerequisite to support an incremental
development process which is typical for all application classes. Therefore, KRISYS proved to offer integral
system support throughout an application’s life cycle.

• KOALA, the query language of KRISYS, supports KB access in a set-oriented and declarative fashion and
was used in many applications because of its expressive power and its easy use. The latter is due to the
fact that KOALA is a state-oriented language that enables the user to manipulate the knowledge base (ei-
ther by ad-hoc queries or by rules) by only describing the state expected from the result of the operation.
Thus, the specification of queries and rules can be done independently from the current state of the knowl-
edge base, resulting in an easier modeling and in a reduction of the number of rules.

• Moreover, the system architecture showed a good support for the applications running on workstation/
server environments. The appropriate distribution of tasks between workstation and server and the inte-
gration of an application buffer into the workstation enabled most of the semantics offered by KRISYS to
be realized in the workstation. The server, hosting the DBMS, is only responsible for providing general
management of the data that make up the KB. By integrating an application buffer (the working memory)
into the workstation, the applications’ locality of reference could be exploited, thus minimizing the commu-
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nication between workstation and server. In addition, this architecture makes possible a two-staged pro-
cessing scheme characterized by first loading the relevant knowledge into the working memory and sub-
sequently processing it there.

We have also demonstrated that our evaluation revealed that some of the features offered by KRISYS are
not yet sufficient to support the applications in an optimal way. This especially applies for the optimization of
KOALA queries, its embedding into a programming language, for integrity management, for the internal struc-
ture of the working memory, and for the mapping scheme used by KRISYS. While we were aware of some of
these shortcomings from the start (e.g., those related to the implementation of KOALA), there were several
observations that became apparent only over time. For this reason, these experiences turned out to be the
most important for us.

• KOALA must be integrated into an algebraic framework that provides the basis for applying query process-
ing techniques from the field of (relational) databases, after adapting them to the ‘problems’ of a worksta-
tion/server environment.

• A new mechanism for supporting integrity constraints that is more flexible concerning the definition of con-
straints, their scope, and their activation is required to better fullfil the needs of applications.

• The working memory must provide a representation closer to the knowledge model, navigational as well
as set-oriented accesses to its contents. All these measures aim at an efficient mapping of higher-level
operations (e.g., KOBRA and KOALA operations) on the working memory without the need to perform any
transformations on the knowledge residing there or to maintain copies of the objects or intermediate re-
sults.

• It is also worth increasing the functionality of the working memory to make its contents available for query
processing through declarative descriptions that can directly be exploited by the query optimizer. By doing
so, the transfer of information between workstation and server can be deduced by testing whether the
knowledge already residing in the application buffer subsumes parts of the knowledge required by a query.

• For the different phases of an application, appropriate mapping schemes from the knowledge model of
KRISYS to the data model of the database system must be supplied. These schemes must be based on
a detailed analysis of the knowledge base underlying an application. A change in the mapping occurs each
time a new design cycle has been concluded and the application is going into its operational phase.

Based on the experiences described in this paper, a new KRISYS architecture has been designed and is cur-
rently being implemented. In this new design, we tried to take into consideration all the lessons we learned
from the old system. The current state of the implementation is such that the tasks relating to the working
memory - except the maintenance of a declarative description of its contents - and the realization of the com-
ponent responsible for providing and generating appropriate mappings between knowledge model and data
model have been completed. The implementation of the algebraic framework for KOALA is currently being
undertaken, as well as that of the new component for integrity control. We have also extended KRISYS to
support advanced transaction facilities for cooperative design applications [IRLM92]. In addition, we are con-
sidering the exploitation of parallelism in the scope of query processing, since the workstation/server environ-
ment of KRISYS and the distribution of tasks between those components offer a good framework for this
[Th92, TMMD92].

We believe that we have accumulated enough experiences and knowledge from the first version of KRISYS,
that it is now time to ‘start all over again’ to build an even ‘better’ system that will hopefully show the benefits
but not the problems described in this paper. These issues will however be the subject of forthcoming papers.
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