
Abstract
Federated database systems are heterogeneous with re-

spect to data models and query languages but also with
repect to underlying operating systems and hardware plat-
forms. Besides transformations on the semantic level con-
versions on the data representation and communication
protocol level have to be done. In this paper, we present the
Remote Cooperation System RCS which provides client/
server communication procedures independent of hardware
and operating system aspects. Thus, the configuration of a
system  may change without affecting theparticipating data-
bases and application tools. The RCS allows for asynchro-
nous service invocation, thus enabling the simultaneous
querying of several databases by one application. Further-
more, it supports multi-tasking of server processes and the
element-wise transfer of results. Monitoring tools allow the
assessment of several choices in system configuration and
access algorithms embodied in the application processes.

1. Introduction

Database management systems (DBMSs) have become
indispensable tools in many application areas. Databases
have been established for many purposes, including public
databases (PDBs) accessible from all over the world. Fur-
thermore, within a single company there usually are several
different databases storing data concerning various aspects
of the company’s activities. These databases may vary in as-
pects of the DBMS used, the hardware they run on, the mod-
elling of data, etc. With the emerging need for an integrated
view to all data of a company or data from several PDBs,
there is a strong need for a uniform access to the data which
hides the differences in the underlying DBMS, thus provid-
ing a “single system image” to the database user. However,
it is not feasible to transfer all data of the various databases
into one single DBMS. To overcome this problem, the con-
cept of federated DBMS has been developed. A federated
DBMS is a “collection of cooperating but autonomous com-
ponent database systems” [7]. Autonomy means that every
DBMS in the federation is independent of the others and
may have its own algorithms, access protocols, etc. Hence,

cooperation can not be achieved by changing the DBMS but
by providing a uniform access interface to them which
transforms operations according to the specific DBMS’s
needs. The federation “… may involve a number of differ-
ent types of heterogeneity - computer hardware, operating
system, communication links and protocols,…” [10] which
must be handled by the transformation (Figure 1.1). Exam-
ples for federated DBMSs handling hardware and operating
system heterogeneity are Mermaid [9] and ADDS [1].

In general, one must assume that each of the participating
DBMSs runs on a separate processor, with the application
process (AP) providing a uniform data access interface run-
ning on yet another processor. In particular, the AP must be
able to run on a variety of platforms in order not to restrict
the access to the federated DBMS to a certain environment.
The AP acts as a client of all DBMS of the federation. In
many cases, access to more than one database will be nec-
essary in order to evaluate one query issued at the AP level.
In this case, the AP should be able to access the affected da-
tabases simultaneously in order to minimize response time
by introducing parallelism. Hence, an asynchronous request
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to the underlying DBMS must be possible (in contrast,
ADDS uses a synchronous RPC). The answers provided by
the DBMS consists of a set of data records (e.g. tuples). De-
pending on the DBMS, this set will be delivered as a whole
or element-wise. In the latter case, there is no need to wait
for the DBMS’s answer to be complete before transferring
parts of it to the AP.

When sending queries to the DBMSs or receiving data
from them, a conversion of the data representation might be
necessary if AP and DBMSs run on different hardware plat-
forms (for instance, the character codes or the representa-
tion of floating point numbers may differ). Furthermore, the
AP has to cope with several communication protocols.

The requirements mentioned so far make it difficult to
implement the AP. Furthermore, it is hard to evaluate the
choices concerning parallel work and mode of answer trans-
fer.

An obvious approach to the implementation of the AP is
to separate the aspects originating in differences in the data
models of the DBMS from communication aspects.

In this paper, we present the Remote Cooperation Sys-
tem (RCS) developed at the University of Kaiserslautern to
cope with the latter domain. The RCS provides mechanisms
for a client/server communication with the following fea-
tures:
• Requests are issued asynchronously. Thus, several re-

quests to the same or to different servers may run simulta-
neously.

• Results of requests may be transferred in several parts.
• The client program remains independent of several config-

uration aspects which are made transparent by the RCS:
- the hardware platform and operating system the client

runs on,
- the hardware platform and operating system the servers

run on.
As a consequence, the data representation transformations
are also handled by the RCS.

• Monitoring facilities showing the dynamic behavior of the
federated client/server system are available.

With the help of the RCS, the AP may be implemented
independent of the physical configuration of the federated
systems. The AP and each of the DBMSs may migrate to an-
other hardware platform or operating system without the
need for changes in the AP’s program. Furthermore, the
RCS may also be employed for the implementation of the
DBMSs themselves.

Several operating systems (OS) provide asynchronous
RPC services which have a functionality similar to that of
the RCS [2, 5, 6, 8, 11]. However, they are part of the OS
and therefore do not enable communication among hetero-
geneous OS. In addition, the RCS provides two features not
found in RPC proposals: the coupling of the communication
with a multi-tasking facility and the capability of sending
partial results which is needed to support pipelining paral-

lelism within the execution if results are large and are com-
puted part by part.

In the following section, we will detail the facilities for
client/server communication offered by the RCS. In section
3, we will then discuss how to cope with heterogeneity and
how to change the configuration of the federated system.
Section 4 presents a brief overview of implementation as-
pects. The monitoring tools are described in section 5. The
final section will give a short conclusion.

2. A Tool to Implement Client/Server Systems

The client/server concept is a generally used principle for
decomposing large software systems into small and com-
prehensible units, called servers. Each server provides a dis-
tinct set of operations, the services, to be used by other sys-
tem components. The execution of such a service is carried
out by its respective server and might involve further re-
quests to the same or to other servers. Beyond the pure in-
put-output functionality, performance is a major concern in
the development of contemporary applications and there-
fore the exploitation of parallelism is indispensable. To en-
able an implementation by concurrent programs, two differ-
ent servers must not share any common data and conse-
quently, all information passing between them is restricted
to the parameters and results of service calls. The RCS is de-
signed to facilitate the implementation of client/server ar-
chitectures as parallel systems. In this section, a brief over-
view is given of the RCS’s operations, their semantics and
usage.

Generally, client/server cooperation is characterized by
two-way communication: The client asks for some service
to be executed by passing the name of the service and the
appropriate parameters to the server. After completing the
necessary computations, the server returns the result to the
client. In the following, the term “task” is used to refer to the
course of computation performed by the server due to a ser-
vice invocation. To support the communication, the RCS
provides the following operations:
• Remote_Service_Invocation (<servicename>, <server-

name>, <arglist>) is used by the client to invoke the ser-
vice <servicename> with arguments <arglist> at the server
<servername>.

• Accept_Task (<servicename>, <arglist>, <context>) is
called by the server to receive the requested service code
along with its arguments. After a call of this operation, a
new task becomes active. The meaning of <context> will
be explained later in this section.

• Reply_Task (<result>) is called by the server after com-
puting the requested service in order to return the result to
the client. Thereafter, the respective task is finished.

Note that there is no argument telling the server the name
of its client. The RCS automatically keeps track from which
clients a server’s tasks have originated. When calling



Reply_Task, the RCS returns the result to the appropriate
client, who requested the currently active task. In this re-
spect, the RCS provides a task-oriented communication.

To take advantage of potential parallelism within an in-
dividual task, calls of Remote_Service_Invocation must not
block the execution, since blocking service invocations pre-
vents the client from requesting multiple services simulta-
neously and immediately resuming its own execution.
Thereby, both parallelism among multiple servers and cli-
ent/server parallelism is prevented with respect to the exe-
cution of an individual task. To overcome these limitations,
RCS implements an asynchronous communication protocol
by providing separate operations for invoking services and
receiving the results:
• Any call to Remote_Service_Invocation returns a unique

task number, which identifies the service invocation.
• Get_Service_Result (<taskno>, <result>) is then used to

receive the result of the service identified by the task num-
ber.

In order to facilitate smooth client/server parallelism, an
operation enabling the transmission of partial results is
needed. Clients invoking time consuming services might
prefer to receive the partial results as soon as possible. Us-
ing single result services for this purpose, client/server par-
allelism is interrupted after each single reply. In order to
avoid these unnecessary synchronization points between
client and server, the following operation is introduced:
• Reply_Part_Of_Task (<result>) is called by the server

after computing a partial result in order to return it to the
client. In contrast to Reply_Task, the respective task is not
finished and remains active.

In the above discussion, server and services were treated
as abstract concepts, which have to be mapped to concrete
processing units of the operating system, the processes. In
principle, there are two possible alternatives:
• Every individual task is executed within its own service

process, created for this purpose. This is called single-tas-
king, multi-processing.

• All tasks of the same server are executed within the same
server process. This is called multi-tasking, single-pro-
cessing.

With single-tasking, multi-processing, every call to
Remote_Service_Invocation triggers the creation of a new
instance of the respective service process. After completing
its computation and sending back the results, the service
process terminates and leaves the system. The problem with
this approach is the vast number of process switches in-
curred by every individual task. Obviously, there are at least
two additional process switches produced by one service in-
vocation: The first when the newly created process starts ex-
ecution and the second after its termination. Moreover, dur-
ing the execution of the service process situations may arise,
where the execution has to wait until specific events occur,

e.g. the termination of subtasks or the validation of global
data. Handling this with individual service processes means
to either block the process in busy-waiting mode and there-
by wasting the respective CPU resources until the event oc-
curs or to initiate a process switch and disable process exe-
cution until the reception of a signal (or some other method
of inter-process communication), telling the emergence of
the event. In case of long lasting waiting situations, the first
alternative incurs an extreme waste of CPU resources and
therefore the second alternative is the only reasonable ap-
proach in economical respect. Nevertheless, even the sus-
pension of service processes incurs additional costs: Two
additional process switches are necessary in a waiting situ-
ation.

Executing all tasks of the same server within the same
server process, as with multi-tasking, single-processing,
leaves the handling of waiting situations to just this process.
In order to avoid a waste of processing resources, the server
must be able to execute multiple tasks in a time-shared man-
ner. On the occurrence of a waiting situation, the server pro-
cess has to save the execution context (values of variables
etc.) of the current task and the event(s), the task is waiting
for, and to suspend the currently active task. Thereafter, a
resumable task has to be chosen and executed. In compari-
son to multi-processing, multi-tasking yields two advantag-
es: First, no process switches are necessary due to service
invocations or waiting situations. Instead, the RCS provides
operations to facilitate context switches between different
tasks. Compared to process switches, we expect the over-
head incurred by context switches to be less costly, since
many unnecessary activities (in our case), e.g. saving the
process registers, loading a new process image and initializ-
ing the run-time system of the programming language, can
be avoided. Second, it is possible to apply server specific
scheduling strategies rather than leaving the scheduling to
the operating system. Therefore, application dependant
preferences regarding the order of task execution may be re-
flected in the task scheduling.

For performance reasons, RCS implements the multi-ta-
sking approach while relaxing the single-processing para-
digm. With single-processing, of course, parallelism be-
tween the tasks of the same server is prevented. Therefore,
the RCS allows for a static replication of server processes.
The multi-tasking facility is to be controlled by the applica-
tion using the following operations:
• Break_Task (<set_of_subtasks>, <context>) is used to

inform the RCS that the current task is not to be resumed
until one of the specified subtasks are completed. The con-
text contains all the information about the current state of
execution, which is necessary to properly resume the
task’s execution. Note that this is a non-blocking opera-
tion: After calling Break_Task, the server process is re-
sponsible for activating another task by calling



Accept_Task. Its context parameter comprises the state in-
formation of a previously suspended task. Obviously, the
context data structure must contain detailed information
about where to resume the execution.

• Break_Task_Until_All_Terminated
(<set_of_subtasks>, <context>) serves the same purpose
as Break_Task with the only difference that task execution
will only be resumed, when all of the specified subtasks
are finished.

• Look_For_Service_Termination (<set_of_subtasks>)
and Wait_For_Service_Termination
(<set_of_subtasks>) are both used to inquire the RCS
which of the indicated subtasks are finished and return
their respective task numbers.
Wait_For_Service_Termination blocks the execution of
the server process in busy-waiting mode while
Look_For_Service_Termination produces a return value
telling the application whether there are finished subtasks.

Within one server, dependencies may occur between ar-
bitrary tasks due to shared global data structures. To enable
synchronization between those tasks, RCS provides a sim-
ple event mechanism. The operationWait_For_Event
(<event_no>, <context>) suspends the current task until the
specified event is raised. By callingSignal_Event
(<event_no>), all suspended tasks waiting for this event are
freed and might be resumed after a subsequent call to
Accept_Task.

Having explained the RCS’s task handling operations,
their semantics are summarized in a state-transition diagram
of the tasks (cf. Figure 2.1). Once a task is invoked, it is in
one of the statesactive, ready, orwaiting. When a client in-
vokes a new task by calling Remote_Service_Invocation, a
new task is created within the specified server and assigned
to the ready-queue. As soon as the server process calls
Accept_Task, one of theready tasks is selected according to
the scheduling strategy and becomesactive. The selected
task is then executed until one of the following happens:
• The execution completes and the server process calls

Reply_Task, in which case the task leaves the system.
Note, however, its result can still be accessed by the client
calling Get_Service_Result.

• The execution cannot proceed until one or more subtasks
have finished, in which case the server process calls one of
the Break_Task operations and the task’s state changes to
waiting.

• The execution cannot proceed due to a dependency to a
concurrent task. After calling Wait_For_Event, the task’s
state changes towaiting, too.

After suspension of the current task, the server process is
responsible for calling Accept_Task and thereby activating
another task from theready-queue. The transition from the
waiting to the ready state depends on the circumstances un-
der which the task was suspended. It becomesready again,

as soon as either one or all of the specified subtasks have
finished (when suspended by one of the Break_Task opera-
tions) or when the specified event is raised (when suspended
by Wait_For_Event). A task leaves the system, when its
state isactive and Reply_Task is called. In contrast, calls of
Reply_Part_Of_Task do not change the task’s state.

In conclusion of the RCS’s application interface a short
example is presented to demonstrate the use of the RCS’s
operations. Two server processes are introduced, named
CLPROC and SEPROC, which cooperate using the RCS’s
primitives. Obviously, CLPROC acts as a server process for
other processes not shown in the example. After initializa-
tion, CLPROC is looping through a program structure start-
ing with the activation of a task (*1*), in the following re-
ferred to as PRIMETASK. Depending on the operation the
task is supposed to perform, the control flow jumps to the
appropriate service label (*2*). Thereafter, the code follow-
ing the label “first_invoc” is executed (omitting how the
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Remote_Service
_Invocation

Accept_Task Break_Task

Reply_Task

Reply_Task /
Signal_Event

Figure 2.1: State-transition diagram for tasks

Reply_Part_Of_Task

active

Wait_For_Event

LOOP
Accept_Task (…); (*1*)
CASE service OF

opi : CASE context.state OF (*2*)

first_invoc:
t1 := RSI(… opj);
t2 := RSI (… opk);
state := second_invoc;
Break_Task_Until_

second_invoc:
Get_Service_Result (t1);
Get_Service_Result (t2);

Reply_Task (…);

ENDCASE;

ENDCASE;
ENDLOOP;
END CLPROC.

BEGIN CLPROC;

LOOP

Accept_Task (...);

CASE service OF

opj :

BEGIN SEPROC;

Reply_Task (…);
opk :

Reply_Task (…);

ENDCASE;

ENDLOOP;

END SEPROC.

Figure 2.2: Example with two servers

(*3*)
All_Terminated (t1,t2, context)



context has been initialized). Eventually, two services opj
and opk of SEPROC are invoked and some time later
PRIMETASK cannot proceed without having the results of
both subtasks. Before PRIMETASK can be suspended by
calling Break_Task_Until_All_Terminated, the appropriate
state information has to be set. After the suspension of
PRIMETASK, the control-flow loops back to Accept_Task
and goes on with a different task (if there is any).

Let us now look at SEPROC, which has just received the
two subtasks of PRIMETASK. Eventually, one of them be-
comes the active task, gets performed and sends back the
computed result. As soon as both tasks arefinished,
PRIMETASK changes fromwaiting to ready state and
eventually toactive state. This is the very moment, when the
control flow in CLPROC leaves Accept_Task with the con-
text from PRIMETASK. The control flow now jumps via
the appropriate service to the code following the label
“second_invoc” (*3*) (the label’s name must have been
saved in the context prior to the suspension of
PRIMETASK). After receiving the results of both subtasks
with Get_Service_Result the execution proceeds and finally
finishes by calling Reply_Task. After that, another task
might be activated and ever so on. PRIMETASK leaves the
system, as soon as its client receives the result by calling
Get_Service_Result. In Figure 2.2, the dotted arrows show
the information flow between the RCS primitives of the two
servers.

3. Configuration in Heterogeneous Environments

The RCS is designed to facilitate the implementation of
distributed client/server architectures. A substantial require-
ment for distributed applications is configurability, i.e., the
system may be executed on a single host as well as on mul-
tiple hosts of different machine types without any changes
to the application’s program code. Configurability of a cli-
ent/server system means to enable the user to specify a con-
figuration prior to system execution. In RCS-based systems
the user may specify:
• Which servers are to be executed within the same process

and
• how the processes are to be assigned to the hardware, i.e.

to the processors.
To render the application’s software independent of the

present configuration, the RCS’s operations have to hide all
configuration aspects from the application program. In or-
der to achieve this goal, the RCS is capable of transparently
taking advantage of the appropriate communication medi-
um. Servers within the same process pass their parameters
by simply copying them within the address space of the
common process. Servers within different processes run-
ning on the same host may use shared memory or resort to
some other inter-process communication facility provided
by the underlying operating system. Similarly, servers on

different hosts have to use network facilities for communi-
cation. Generally, the parameters passed between client and
server may comprise pointer-structured data, e.g. linked
lists or trees etc. To copy this kind of data, appropriate pro-
cedures are needed to traverse these data structures and re-
construct them in another address space. To manage the
transportation over a network, even linearization and delin-
earization routines and, in case of incompatible data repre-
sentations between the involved machine types, appropriate
conversion routines are needed.

In the RCS approach, the application programmer pro-
vides both the code for the server process and a procedural
interface, which is linked with the client process. The inter-
face contains procedure definitions for each service provid-
ed by the server and appropriate procedure definitions to re-
ceive the results from the server. The procedures’ imple-
mentation is automatically generated by a tool. The code
generated by that tool applies all the necessary transforma-
tions to the parameters with respect to the configuration at
run time. Finally, all clients are linked with these automati-
cally generated interfaces of all the services they want to co-
operate with. Note that there is no reason to re-compile the
system after changing the configuration. From the applica-
tion programmers point of view, a server’s interface is used
as if the service were executed within the clients address
space, no matter how the system actually is configured.

In the above discussion, we left out the question of how
to replicate a server. As long as all replicas reside on the
same host, the replication is invisible to the application pro-
grams and automatic load balancing is provided by the
RCS. All relevant data structures for load balancing are
maintained in the shared memory (cf. section 4). Converse-
ly, replication of servers among different hosts is not pro-
vided by the RCS. However, the same effect might be
achieved by configuring a server to multiple hosts, each
time using a different server name. By doing so, the RCS
treats them as different servers, which just happen to have
the same functionality. Consequently, the application pro-
grammer is responsible for load balancing, in that he has to
decide, which server is called for some service.

4. Implementation

The implementation of the RCS has to meet the concepts
we have presented in the previous sections, i.e. multi-tas-
king as well as asynchronous activation and parallel execu-
tion of tasks. Furthermore, it has to hide the communication
primitives to achieve location and architecture transparen-
cy. At the same time, it should select the most efficient com-
munication mechanism if there are several choices. In addi-
tion, the RCS has to manage all the tasks a server has to pro-
cess. In this section, we present the basic concepts of our
implementation of the RCS.



Communication mechanisms
First of all, we want to look at the communication mech-

anisms. We support communication via shared memory in a
closely coupled system as well as via messages in a loosely
coupled system. We assume that clients and servers on one
processor or in a closely coupled system of processors com-
municate via shared memory. This is the fastest communi-
cation mechanism, because we only have to manipulate
some data structures. There is no need to create connections
to send messages and to use sophisticated protocols to guar-
antee reliable communication between client and server.

As presented in section 2, communication between client
and server mainly occurs in task activation and result trans-
mission. Every process has central data structures in the
shared memory which may be manipulated by the RCS of
other processes. Figure 4.1 sketches this mechanism.

On the other hand, we have to implement communica-
tion in a distributed system via messages. There are two dif-
ferent ways to integrate message passing mechanisms:
• Message based mechanisms are included in each process.

Then the RCS internally has to distinguish between the
two communication modes and the code of the RCS be-
comes more sophisticated. Furthermore, the size of the
processes increases.

• The communication across host boundaries is done by a
separate process. Its main task is to accept service calls
from local clients for remote servers, to send the parame-
ters to the remote processor, to receive the answer, to ac-
cept tasks from and to send answers to remote clients. This
implementation has several advantages over the first one.
First of all, the client process can continue its work much
earlier because it does not have to take care about reliable
transmission of the parameters, decomposition of data into
small packages, composition of result messages, etc.
Moreover, we have a homogeneous view inside the RCS
of a client. This means that there is no difference in the
communication of a client with a local server and with a
remote server. Just as in the case of local communication
the client manipulates shared data structures, which are
then read by the communication process. After receiving a
result message, the communication process puts the result
into these data structures.

We have implemented the second mechanism. Figure 4.2
illustrates this architecture. We assume that the additional
process switches which only occur if there is communica-

tion across host boundaries are cheap compared to the time
for transmitting the data.

Note that the application of the RCS is not aware of the
communication mechanism employed and that the data ex-
change across processor boundaries is done in a hardware
independent format if necessary. Hence, from this point of
view we are independent from a concrete configuration.

Task management
The second duty of the RCS is to manage the tasks a

server has to process. In the following, we present the most
important data structures for implementing the task man-
agement (Figure 4.3).

The root of our data structure is a server vector. Each
server in the system has a unique number. Every entry in
this vector represents one server which may be realized by
multiple processes. These processes all have the same type,
i.e., they correspond to the same program represented by
process_type_control_blocks (ptcb). After initialization
each entry refers to the ptcb of the communication process.
If a process is running on a host it calls the functionRc_Init
to initialize necessary data structures. This function allo-
cates a ptcb if it does not yet exist. It assigns a pointer to the
servers’ entries in the vector, which refer to this ptcb. All
tasks from clients on this host must be sent to the process
type which is specified in a server’s entry.

The ptcb contains information about the servers this pro-
cess type implements, pointers to lists of
task_control_blocks (tcb) which represent the tasks these
servers have to process, a pointer to a list of received an-
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Figure 4.1: Communication via shared memory
host i

Process 1

Process 2

Process n

Communi-
cation

shared memory

...

Figure 4.2: Communication via shared memory
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Figure 4.3: Data structures for task management
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swers and some additional information for task manage-
ment. For each state tasks may have, there is a separate list.
It is easy to see that ptcbs represent types of processes but
not the processes themselves. This simplifies task adminis-
tration drastically as will be seen later. On the other hand,
this means that a server on a local host cannot be included
in more than one process type. Hence, we cannot combine
servers arbitrarily to processes. But this restriction holds
only for a single host, on different hosts we can integrate a
server in different process types. Since it does not make
sense to start a server more than once on the same processor
(because this causes unnecessary process switches) this is
not a restriction in a distributed system. In a system with
shared memory we can combine the servers into one pro-
cess. If this process is running more than once the code may
be shared.

Each tcb represents one task. It contains information
about the task’s parameters, its state, its supertask, i.e., the
task which has initiated it, and a list of received answers to
its subtasks. Furthermore, it contains a pointer to the context
which has been described in section 2. Storing the context
in the tcb allows the migration of tasks between processes
of the same process type running on the local host.

We illustrate the usage of these data structures by the ex-
ecution of PRIMETASK (cf. section 2).

The server vector and the ptcbs are already initialized.
By calling Remote_Service_Invocationa supertask initiates
PRIMETASK. It allocates a new tcb in the shared memory,
calculates the scheduling priority, and adds it to the process
type’s list ofready tasks, which is sorted by the scheduling
priority. All tasks for all servers in a process type for all pro-
cesses of this process type are treated equivalently. This
leads to a very simple scheme for load distribution on a sin-
gle host. The client will not assign the load to specific pro-
cesses, but the available resources (running processes) de-
termine the load distribution. They take a task for execution
when they have finished or suspended another one.

After returning from Accept_Task the server executes
the selected task (PRIMETASK). It analyses the parameters
and initializes a context. Later on PRIMETASK suspends
itself, because it has to wait for the results of its subtasks. Its
state changes towaiting. The tcb will be taken from the list
of active tasks and will be inserted into the list ofwaiting
tasks. Other tasks can be processed while the answers of
subtasks are being computed. For reasons of simplicity, the
answers of the subtasks will be connected to a list of re-
ceived answers in the ptcb for the moment. When perform-
ing the next Accept_Task the answers will be assigned to
the corresponding client task. If a task becomesready, its
scheduling priority is calculated and it is inserted into the
list of ready tasks. Afterwards, the first task of this list is se-
lected as the new task for activation. When PRIMETASK is
selected, the context contains all information for its contin-
uation.Using the function Look_For_Service_Termination,

PRIMETASK gets the number of a sub-task whose answer
exists. For this purpose, the function has to look for answers
in the list of answers in the ptcb as well as in the list of an-
swers in the tcb of PRIMETASK. With Get_Service_Result
the task gets the answer.

PRIMETASK terminates by calling Reply_Task which
sends the answer to the client. It creates the result parame-
ters in the shared memory, allocates an answer block and
adds it to the list of answer blocks of the client task’s ptcb.
Afterwards it erases the tcb.

The implementation of the RCS consists of two parts.
There is a special communication process which does all
message handling with remote servers and with remote cli-
ents. It offers a reliable communication between different
hosts. This process is transparent to the application. The
second part is embodied by the set of procedures at the in-
terface of the RCS which we have presented in section 2
(Accept_Task, Break_Task, etc.). They are easy to imple-
ment, because they do not have to distinguish whether a
server is located on the same host or on a remote host.

The main problem is to synchronize the access of differ-
ent processes to shared data structures by simultaneously
running processes. For synchronization, we must not be too
restrictive to enable as much parallelism as possible. In our
case the access of the RCS interface functions to the data
structures for the task management are critical. All these
functions only need a very short time to manipulate the data
structures. Therefore we use latches, which are busy wait-
ing, if they cannot immediately get the requested resource.
If an operating system does not support latches we use
semaphores instead. Another problem arises if an operating
system does not offer shared memory. Then the servers in
different processes always have to communicate via mes-
sages. Reliable message based mechanisms have to be in-
cluded in every process.

5. Monitoring

We need tools for monitoring and analyzing the systems
performance in order to evaluate the selected scheduling
strategies and priorities as well as the configuration. We
want to investigate
• the dynamics when working on one specific task in the

system,
• the load distribution, i.e. the number of tasks grouped by

their state, and
• the load dependencies between servers, processes, proces-

sors and hosts.
For this purpose, we have developed a measuring tool

which logs the calls of the RCS functions corresponding to
changes of a task’s state as illustrated in Figure 2.1. In ob-
serving the states of all tasks in the system and all calls of
interface functions of the RCS we get a detailed insight into
the system’s dynamics and task execution.



The architecture of our measuring tool is illustrated in
Figure 5.1. During run time, every process produces a log
file which contains the information mentioned above. For
this purpose, we use an event driven approach. On every call
of an interface function and on every change of a task’s
state, we write some log information. This log entry con-
tains a time stamp, the event type and special information
for single events. After terminating the measurement, these
local log files are merged to a global log file which contains
all events that have occurred. This global log file can be
used for further detailed interpretation.

The main problem is to get a correct global log file, if the
monitoring is done on a distributed system with indepen-
dent clocks, which are not synchronized. The ordering of
events from the different files cannot be done by only using
the time stamps. Therefore, we extend the architecture by a
new control process, which manages the start and the end of
a measurement. It sends a message to all processes of the ac-
tive configuration. After receiving this message each pro-
cess takes a time stamp (bom) before staringthe measure-
ment. To finish the measurement, the control process again
sends a message to the participating processes which then
again take a time stamp (eom) and finish their measurement.

Using these time stamps and the local log files, we define
a virtual time for the global log file of our measurement. We
suppose that the mean variation of time needed to send the
start and stop messages from the control process to the pro-
cesses of the configuration is very small compared to the du-
ration of our measurement. Therefore, we can assume that
the bom and the eom are recorded simulateously in each
process. Hence, on all processors the time stamp with the
smallest values at the beginning and at the end of the mea-
surement on each processor happen at the same time and de-
fine the local start and end time of the measurement, respec-
tively. Furthermore, we assume that the local clocks always
run with a constant speed, especially there is no adjustment
between the different clocks. This situation is illustrated in
Figure 5.2. The real time is given, the two clocks of the two
processors have different times, and the clock on a single
processor runs with constant speed.

With these assumptions we can define a virtual time
which reflects the real sequence of the recorded events
when their local time stamp is converted to this virtual time.

On all processors the local start time of a measurement (tls)
is defined as 0. To compensate the different speeds of the
clocks which is expressed by the differences of local end
(tle) and start time of the measurement on different hosts, we
calculate the virtual time tv of a local time tl:

Here tre and trb are the real end and real start time of the
measurement respectively. For simplicity we can use the be-
gin and the end time of one processor as trb and tre.

To verify whether our assumptions about the speed of the
clocks and the time for transferring the begin and the end
message are valid we investigate the merging of the local
log files. There are some logical precedence relationships
which must be true in the global log file. For example, a task
can only be accepted by Accept_Task if it has been initiated
by Remote_Service_Invocation and the answer can only be
received by Get_Service_Result if it already has been sent
by Reply_Task. If these relationships are never violated we
assume that the errors caused by time variations during our
measurement can be ignored.

The global log file can be used for further analysis. We
implemented a visualization tool to illustrate the task load
and the task relationships between servers. Each server is
represented by a visualization object which consists of three
fields indicating the total number of tasks in the represented
server, the number of tasks which are actual ready for exe-
cution and the number of actualactive tasks. The numbers
are represented by different colors. Beginning from blue for
zero tasks the color becomes more red the more tasks there
are. Furthermore, the number of super-task/sub-task rela-
tionships between servers is represented by arcs which con-
nect these servers. The thickness of the arcs expresses the
actual number of these relationships.

To support the user of this tool we have implemented a
few features to simplify the analysis. Servers in one process
type may be grouped together in one output object. This
combination may also be done for processes on one proces-
sor and for processors on one host. By using this feature the
user can concentrate on the interesting level of abstraction.
Furthermore, he can get curves which illustrate the chang-
ing of the load of a component over the time. The x-axis
shows the passed time, the y-axis shows the number ofac-
tive/ready/existing tasks for the server/process/processor/
host. The speed of the output may be increased, decreased
and it may be stopped by the user.

Figure 5.1: Architecture of the measurement tool
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Figure 5.3 gives an example of the output of this tool on
a monochrome display. In the upper right corner there is an
administration window to specify the input file and to con-
trol the speed of the output. The squares visualize servers on
the processors “processor 2” and “processor 3”. One square
visualizes all servers on “processor 1”. The lines between
the squares show where client/server relationships may oc-
cur. The arrows show actually existing client/server rela-
tionships. The size of the circles in the middle of the squares
visualize the number of existing tasks. The black portion in
the circle shows the part ofready tasks.

6. Conclusions

In this paper, we have presented the Remote Cooperation
System which provides a client/server communication
mechanism which makes system configuration and hetero-
geneity transparent to the programs using it. The RCS on the
client side offers functions to invoke a service asynchro-
nously, to look or wait for its termination, and to get its re-
sult (or results). On the server side, tasks may be accepted,
answered, or suspended. The RCS supports a multi-tasking
implementation of servers. Multiple servers may be com-
bined to one process. On the other hand, servers may be rep-
licated. On a multiprocessor system, load balancing among
replicas of a server is handled by the RCS.

The RCS chooses the cheapest communication mecha-
nism available between client and server. This varies from
copying within one address space over usage of shared
memory among processes to network based message-pass-
ing with data representation transformations. The decision
about the data transfer method is based on the RCS’s knowl-
edge about the actual configuration and is transparent to the
user (i.e., the client and server programs). An appropriate
implementation guarantees that the application processes
are not burdened with the communication overhead caused
by data transfer over a network.

Monitoring facilities integrated into the RCS allow for an

evaluation of configurations and strategies of service invo-
cations. Since the RCS may also be used to implement the
servers as cooperating groups of processes, the monitoring
allows for an evaluation of query processing strategies in
this context, too.

The RCS is an appropriate tool for the handling of com-
munication in a system of federated database management
systems, since it relieves the DBMSs and applications in-
volved from the need to observe heterogeneity in hardware
and data representation. An arbitrary DBMS may be includ-
ed into the federation by just providing a server program
which accepts the calls from an application and passes them
to the DBMS, and sends the results of DBMS operations
back to the application. If semantic transformations are
done by the application this server program is trivial when
using the RCS functionality.

The RCS has been implemented on various hardware and
operating system platforms, including SIEMENS BS2000,
SUN-OS (on SUN-3 and SUN-4 systems), AEGIS (on
Apollo workstations), and DYNIX (on SEQUENT Symme-
try), thus allowing client/server communication among
these heterogeneous systems. Its functionality has been
evaluated in the context of the PRIMA project at the Univer-
sity of Kaiserslautern [3, 4].
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