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Abstract

Knowledge Base Management Systems (KBMSs) are a grow-
ing research area finding applicability in different domains.
As a consequence, the demand for ever-larger knowledge
bases (KBs) is growing more and more. Inside this con-
text, knowledge sharing turns out to be a crucial point to
be supported by KBMSs. In this paper, we propose a way of
controlling knowledge sharing. We show how we obtain se-
rializability of transactions providing many different locking
granules, which are based on the semantics of the abstrac-
tion relationships. The main benefit of our technique is the
high degree of potential concurrency, to be obtained through
a logical partitioning of the KB graph and the provision of
lock types used for each referenced partition. By this way,
we capture more of the semantics contained in a KB graph,
through an interpretation of its edges grounded in the ab-
straction relationships, and make feasible a full exploitation
of all inherent parallelism in a knowledge representation ap-
proach.

1 Introduction

KBMSs are a new product generation which is finding ever
more applicability in many different areas. As expected due
to a growing applicability, the use of KBMSs is becoming
more and more widespread and, accordingly, the demand
for ever-larger KBs higher and higher. The main challenge
of the research in the direction of KBMSs nowadays is to try
the successful adaptation of such systems to real-life produc-
tion environments [MB90]. However, the complete success
of those systems in the market depends, among other things,
on their potential for applicability. For instance, it would
be very inefficient to obligate users of such systems to ac-
cess valuable resources and information in mutual exclusion.
Moreover, it would be neither viable (due to economical
reasons) nor desirable (due to restricted accesses) to have
some KB being accessed by just one user at a time. On
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the contrary, KBMSs should receive queries and updates in
an interleaved fashion and control their concurrent execu-
tion against some KB. Consequently, multiple transactions
should be able to run at the same time for better perfor-
mance of such systems. Finally, it is exactly in this point
that concurrency control (CC) techniques for KBMSs play
a crucial role, because they are among the most important
means for allowing large, multi-user KBs to be widespread.

In this paper, we present our approach for CC in KBMSs.
The main objective we have in mind is the provision of se-
rializability for ACID transactions. With serializability we
mean that our technique is governed by the Serializability
Theory of Gray et al. [GLPT76], which states that if an
execution produces the same output and has the same ef-
fect on the database as some serial execution of the same
set of transactions, it is correct, because serial executions
are also correct. With ACID transactions we mean that
the transactions running in our system have the proper-
ties of conventional ones, the ACID (atomicity, consistency,
isolation, and durability) properties pointed out by Harder
and Reuter [HR83]. In other words, our protocol neither
treats the semantic knowledge of transactions in order to
allow non-serializable executions to be produced, nor copes
it with long-duration transactions (in fact, the transactions
may span minutes and even hours, but are not in terms of
days or months). This paper is organized as follows. Af-
ter providing some particular CC issues in KBMSs (Sect.
2), we criticize related works (Sect. 3). Thereafter, we in-
troduce our protocol for allowing and above all controlling
knowledge sharing (Sect. 4). After the exposition of our
panacea, we finally conclude the paper (Sect. 5).

2 Particular Concurrency Control Issues in KBMSs

2.1 The Abstraction Concepts

Abstractions turned out to be fundamental tools for knowl-
edge organization. They are expressed as relationships be-
tween objects, and have as main purpose the organization
of such objects in some form. In the following, we provide
a brief description of the abstraction concepts. In order to
illustrate these concepts, we use as example a restaurant
application?.

1This restaurant example to be used throughout the paper is a
simplification of the first application modeled by means of the KBMS
prototype KRISYS [Ma8g9].



2.1.1 Classification

Classification is achieved by grouping simple objects (in-
stances) that have common properties into a new compos-
ite object (class) for which uniform conditions hold [Ma88].
Classification establishes an instance-of (i, for short) rela-
tionship between instances and class. Hence, it creates a
one-level hierarchy. For example, suppose our restaurant
offers four kinds of wines, namely, bordeauz, cote-du-rhone,
schwarzekatz, and liebfraumilch. In such a case, we can con-
gregate the common properties of all kinds of wines into a
composite object called, for example, wines (Fig. 1).

2.1.2 Generalization

Generalization allows a more complex composite object (su-
perclass) to be defined as a collection of less complex com-
posite ones (subclasses). It extracts from one or more given
classes, the description of a more general class that captures
the commonalities but suppresses some of the detailed differ-
ences in the description of the given classes [Ma88]. Gener-
alization establishes a subclass-of (sc) relationship between
subclasses and superclass. Since it may be applied recur-
sively, it creates an n-level hierarchy. Exemplifying, sup-
pose our restaurant offers, besides wines, also some aperitifs
and liquors. In this case, we can generalize these objects,
creating a superclass named, for example, beverages (Fig.
1). Since the properties described in the superclasses are
generalized properties of their subclasses, there is no need
to describe over again these properties in the subclasses.
This observation builds the most important characteristic of
generalization, namely inheritance, by means of which the
properties of the superclasses are reflected in the subclasses.
This is also valid for classification, i.e., the instances inherit
the properties of their classes, which inherit from their su-
perclasses, and so forth.
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Figure 1: Example of classification and generalization.

2.1.3 Association

There are two types of association, namely element- and
set-association [Mag88]. Element-association allows the in-
troduction of an object (set) to describe some properties
of a group of objects (elements). It suppresses the details
of the element objects whereas emphasizing the properties
of the group as a whole. Hence, element-association cre-
ates a one-level hierarchy, and between elements and set, an
element-of (e) relationship is established. For example, we
could group the objects bordeauz and cote-du-rhone of our
restaurant application into a set representing french-wines,
and schwarzekatz and liebfraumilch into a set representing
rhine-wines (Fig. 2). On the other hand, set-association
builds a more complex set object (superset) in order to rep-
resent properties of a group of set objects (subsets). Set-
association establishes a subset-of (ss) relationship between
subsets and superset. In addition, it may be applied recur-
sively, thereby building an n-level hierarchy. For example,
we could group the sets referenced in Fig. 2 into a superset
representing wine-origins.
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Figure 2: Example of element- and set-association.

2.1.4 Aggregation

Aggregation corresponds to the notion of property in the
sense of composition. Like above, it involves two types of ob-
jects: Simple and composite [Ma88]. Simple, atomic objects
(elements or parts) are the ones which cannot be further
decomposed. When they are aggregated in order to repre-
sent parts of a higher-level, composite object (component),
we are applying the element-aggregation concept, and the
relationship between the parts and the component object
is called part-element-of (part-of or p, for short). Element-
aggregation builds a one-level hierarchy. In turn, compo-
nent objects (subcomponents) may be used to build a more
complex higher-level object (supercomponent). This char-
acterizes the component-aggregation concept, and between
subcomponents and supercomponent, a subcomponent-of (c)
relationship is established. Since this concept may be ap-
plied recursively, it creates an n-level hierarchy. Neverthe-
less, aggregation is more stringently in the sense that it is
used to express the idea that an object must have some
necessary properties in order to exist consistently. For ex-
ample, suppose our restaurant offers mousse-au-chocolat as
a dessert. In turn, we could express that mousse-au-chocolat
is composed of mousse and cream (Fig. 3). Clearly, it is hard
to imagine a mousse-au-chocolat without either the mousse
or the cream. This characteristic makes aggregation quite
different from the other concepts.
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Figure 3: Example of element-aggregation.

2.1.5 An Example Knowledge Base

KBMSs manage complex and structured objects, and differ-
ent types of abstraction relationships. In fact, one of the
most important aspects of KBMSs is that objects can play
different roles at the same time. Consequently, the KB fea-
tures can be visualized as a superposition of the generaliza-
tion, classification, association, and aggregation hierarchies
(in fact graphs), building altogether the so-called KB graph.
To illustrate one such a KB graph, we introduce a more de-
tailed example in Fig. 4, complementing the ones we have
seen so far. In order to restrict the KB to a rooted and con-
nected graph, we have added the objects global, the only root
of the whole graph, sets, the root of the association graph,
classes, the root of the classification/generalization graph,
and finally aggregates, the root of the aggregation graph.
We provide such objects in order to have an adequate envi-
ronment for the appliance of our protocol. In addition, we
assume that all schemas are directly or indirectly related to
the root global. When a schema is neither a class/instance,
nor a set/element, nor a component/part, it is connected
as a direct instance of global. In turn, all classes/instances,
sets/elements, and components/parts are directly or indi-
rectly related to the predefined schemas classes, sets, and
aggregates, respectively. Moreover, we assume that the KB
graph automatically stays in this form (rooted and con-
nected) as changes undergo over time?.

2This representation and behavior are very similar to the ones used
by KRISYS [Ma89] to represent KBs.
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Figure 4: The restaurant knowledge base.

2.2 Methods

In the last years, there have been considerable efforts in or-
der to increase concurrency by means of the semantic knowl-
edge of transactions [Ga83, Ly83, FO89]. The main idea
behind this use of applications’ semantics is to allow non-
serializable schedules, which preserve consistency and are
acceptable to the system users. With respect to KBMSs,
the methods could be a starting point to the applicability of
such an approach. The semantics of user- or system-defined
methods could be considered in order to allow more general,
non-serializable schedules of transactions to be produced. At
the actual point of our work, we did not make any use of the
semantics of methods yet, in particular, due to the high cost
and difficulty of determining the commit order of methods’
operations. This research direction will be considered, in
our future work, as soon as we get the basis of our protocol
well-established and robust. Therefore, methods currently
compete for locks like any other transaction request in our
protocol (the same holds for the use of demons and rules).

2.3 Operations Types

In KBMSs, there are basically two main types of operations
that may be requested against a KB. The first type of op-
erations relates to a tiny granule, normally in the order of
an object. Those represent direct operations on objects, and
mostly refer to reads and writes of an object, its slots, meth-
ods, and aspects, not influencing the subhierarchies. On the
other hand, the second type of operations handles a coarse
granule, and refer mostly to an object and its subhierar-
chies, through navigational accesses to the objects one at
a time. Particularly, the operations involving inheritance
are a good example of this second type. Therefore, in sum-
mary, we can characterize the accesses to a KB as referring
either to an object, or to a set of objects related through
any abstraction relationships. Finally, a CC technique for
KBMSs should pay attention to such types of operations,
and provide adequate lock modes to cope well with them.

3 Related Work

To the best of our knowledge, there is only one CC protocol
tailored for KBMSs already published, namely the Dynamic
Directed Graph (DDG) policy of Chaudhri et al. [CHM92].
Due to space limitations, we will not provide an exhaustive
discussion about this protocol here®. Nevertheless, among
the main drawbacks of this protocol, we can cite [Re94]:
First, no difference is made between different abstraction
relationships, i.e., it does not treat, for example, neither a
class and its instances, nor an aggregate and its components,
etc., as a single lockable unit. Hence, the semantics of the
KB graph is not at all exploited to improve the concurrency.
Second, no kind of implicit locks is defined. Thus, using the
DDG protocol, to lock a class with thousands of instances,
thousands of locks will be necessary. This may jeopardize
the overall performance of this protocol. Third, phantoms
are not taken into consideration.

Now, due to the lack of publications in this area, let
us analyze some CC protocols of a related area, namely
Object-Oriented DBMSs (OODBMSs). Again, we will not
extensively discuss these protocols here*. ORION [Ki90] ex-
tended the Granular Locks Protocol (GLP, for short) of Gray
et al. [GLPT76] and by this way, it provides implicit locks
[GK88]. Nevertheless, the restricted number of lock types
used by ORION does not provide a teeming utilization of
the parallelism. In addition, ORION does not allow, for ex-
ample, a subclass of an object and an element of the same
object to be written simultaneously, not even a read on a
class to be performed in parallel with a write on an instance
of it.

The main benefit of CC in O [BDK92] is that reading
(but not writing) a class is compatible with either reading
or writing any of its instances. Implicit locks on instances
of a class are also provided. Nevertheless, Oy lacks of some
concepts. Aggregates and sets are not taken into consider-
ation. Thus, writes of a component or element of an object
must be made in mutual exclusion, although not necessarily

3The reader is asked to see [Re94] for a detailed discussion and
critical analysis of this protocol.

4See [Re94a] for a more detailed discussion about OODBMS CC
techniques and their behavior in the KBMS environment.



conflicting. In addition, no kind of implicit locks is provided
for subclasses of a class.

The OODBMS GemStone [BOS91] protects its concur-
rent transactions using a combination of optimistic and pes-
simistic CC techniques. First of all, optimistic methods may
show very poor performance due to, among other things,
the possibly very high percentage of transactions that must
be aborted when, at commit time, conflicts are detected
[H&84, PR83, M092]. In turn, the pessimistic method of
GemStone does not provide implicit locks, and so transac-
tions may need to acquire a large number of locks. Moreover,
its limited number of lock types restricts the parallelism,
and it is unaware about the semantics of the relationships
between objects.

4 Locks Using Abstraction Relationships’ Semantics

4.1 Generalization of Granular Locks

Granular locks were introduced by Gray et al. [GLPT76].
The basic idea of the GLP comes from the choice of differ-
ent lockable units, which are locked by the system to en-
sure consistency and to provide isolation. Moreover, this
protocol created the notion of implicit locks, stating that by
putting a lock on a granule, all descendants of it become im-
plicitly locked without the necessity of setting further locks.
Lastly, this protocol introduced the so-called intention locks
in order to prevent locks on the ancestors of a node which
might implicitly lock it in an incompatible mode. Those
locks are used to sign the intention of a transaction to set
locks at a finer granularity. Thus, the GLP has a basic set
of locks composed of the IS (Intention Share), IX (Intention
eXclusive), S (Share), SIX (Share Intention eXclusive), and
X (eXclusive) modes, which are then applied to the nodes
in a hierarchy or a Directed Acyclic Graph (DAG) (Fig. 5)

[GLPT76].
datﬁbase
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Figure 5: A non-hierarchical lock graph for granular locks.

4.2 Lock Modes and Compatibilities

As already discussed in Sect. 2.3, we have basically two main
types of operations in a KB. Accordingly, our protocol sup-
ports two main types of lock modes, the first one related to
a single object, and the second one to a set of them.

4.2.1 Conventional Locks

The first type of lock modes we have gives respect to an ob-
ject as a closed unit. These lock modes are the conventional
R (Read) and W (Write) locks (thus the name conventional
locks), and their semantics are presented in Fig. 6.

R | gives shared access to the requested object.

W | gives exclusive access to the requested object.

Figure 6: Conventional locks’ semantics.

In turn, the compatibility between these lock modes is
dictated by the matrix sketched in Fig. 7.

Granted Mode

-RW

Requested yes no
Mode W no no

Figure 7: Compatibility matrix for the conventional locks.
4.2.2 Typed Locks

As we have seen, a KB graph is built through the superpo-
sition of the classification/generalization, association, and
aggregation hierarchies (or in fact DAGs). However, many
accesses in a KB are directed to a particular hierarchy, and
not to the KB graph as a whole. Due to that, we are going to
logically partition the KB graph into those three main hier-
archies, named the classification (which includes also gener-
alization), association, and aggregation hierarchies. By this
way, we provide users with the possibility of looking at a KB,
and abstracting from it just the viewpoint to be worked out.
In addition, this logical division is mirrored in each object
of the KB. Exemplifying, suppose there are three transac-
tions running in our KB (Fig. 4). T1 wants to access all sets
and elements of the KB, whereas T2 the object menus as a
class and all its instances, and finally, T3 the object menus
as a component and all its parts. In such a case, the three
transactions are provided with respectively the viewpoints
a), b), and c) illustrated in Fig. 8.

a) T1: Lock (all sets)
Result: the whole association graph

wineriins

SS, Pid S $
|french -wines ||rh|newma |
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|bordeaux||cotedu rhone ||schwarzekatz ||I|ebfraum|IcH

b) T2: Lock (instances of menus)
Result: the classification graph w.r.t. menus
menus

sunday-menu

c) T3: Lock (parts of menus)
Result: the aggregation graph w.r.t. menus

[main-courses ||appet|zers | [desserts ]

Figure 8: Different transactions’ viewpoints.

Thus, for the second type of operations in a KB, we
have created three distinct sets of lock types, which are
based on the logical partitioning of the graph previously
introduced. Hence, similar to the GLP, we have a basic
set of lock modes, named: IR (Intention Read), IW (Inten-
tion Write), R (Read), RIW (Read Intention Write), and W
(Write). However, we have this basic set of lock modes to
each one of our logical partitions, i.e., to the classification
(recognized by a subscript ¢ () following the lock mode),
association (s), and aggregation (,) graphs. In contrast, the
GLP refers to a single structure roughly incorporating clas-
sification relationships. We named those locks as pertaining
respectively to the sets of C_type, S_type, and A_type locks
(in general, we call them typed locks). In Fig. 9, we present
the semantics of each one of them.

Compatibility of locks on the same sets of objects
With respect to the compatibility of the above mentioned
lock types, we have two distinct situations to cope with.

First, if the locks requested and granted give respect to the
same set of objects (either C_type vs. C_type, or S_type vs.



IRc gives intention shared access to the requested object and allows the requester to explicitly lock both direct subclasses of
thisobject in Rc, IRc, or R mode, and direct instancesin Rc or R mode.
IWe gives intention exclusive access to the requested object and allows the requester to explicitly lock both direct subclasses of
this object in Wc, RIWc, Re, IWc, IRc, W or R mode, and direct instancesin Wc, Rc, W or R mode.
RC | gives shared access to the requested object and implicitly to all direct and indirect subclasses and instances of this object.
gives shared and intention exclusive access to the requested object (i.e., implicitly locks all direct and indirect subclasses
RIWe | and instances of this object in shared mode and allows the requester to explicitly lock both direct subclassesin Wc, RIWc,
Rc, IWc, IRc, W or R mode, and direct instancesin Wc, Rc, W or R mode).
We | gives exclusive access to the requested object and implicitly to all direct and indirect subclasses and instances of this object.
IRs givesintention shared access to the requested object and allows the requester to explicitly lock both direct subsets of this
object in Rs, IRs, or R mode, and direct elementsin Rs or R mode.
IWs givesintention exclusive access to the requested object and allows the requester to explicitly lock both direct subsets of
thisobject in Ws, RIWSs, Rs, IWs, IRs, W or R mode, and direct elementsin Ws, Rs, W or R mode.
Rs | gives shared access to the requested object and implicitly to all direct and indirect subsets and elements of this object.
gives shared and intention exclusive access to the requested object (i.e., implicitly locks al direct and indirect subsets and
RIWS | elements of this object in shared mode and alows the r uester to explicitly lock both direct subsetsin Ws, RIWSs, Rs, IWs,
IRs, W or R mode, and direct elementsin Ws, Rs, W or R mode).
WSs | gives exclusive access to the requested object and implicitly to all direct and indirect subsets and elements of this object.
givesintention shared access to the requested object and allows the requester to explicitly lock both direct subcomponents
IRa U ) )
of thisobject in Ra, IRa, or R mode, and direct partsin Raor R mode.
W givesintention exclusive access to the requested object and allows the requester to explicitly lock both direct subcomponents
2 | of this object in Wa, RIWa, Ra, IWa, IRa, W or R mode, and direct partsin Wa, Ra, W or R mode.
Ra | gives shared access to the requested object and implicitly to all direct and indirect subcomponents and parts of this object.
gives shared and intention exclusive access to the requested object (i.e., implicitly locks all direct and indirect subcomponents
RIWa | and parts of this object in shared mode and allows the requester to @(plICI'[ly lock both direct subcomponentsin Wa, RIWa,
Ra, IWa, IRa, W or R mode, and direct partsin Wa, Ra, W or R mode).
Wa | gives exclusive access to the requested object and implicitly to all direct and indirect subcomponents and parts of this object.

S_type, or A_type vs. A_type), then the compatibility matrix

Figure 9: Typed locks’ semantics.

sunday-menu, instance of menus. Hence, T1 signs its in-

to be followed is identical to the GLP’s one known from the
literature [GLPT76, Gr78] (Fig. 10).

Granted Mode[ c|s|a]

B R [ w ][ R JRW] W

IR yes yes yes yes no
W yes yes no no no
Rala/lu(fdgeed R yes no yes no no
[ c | 5| a] RIW yes no no no no
w no no no no no

Figure 10: Compatibility matrix for locks of the same type.
Compatibility of locks on distinct sets of objects

The second situation with respect to the compatibility
of the typed locks is the one where both locks refer to dis-
tinct sets of objects (either C_type vs. {S_type or A_type},
or S_type vs. {C_type or A_type}, or A_type vs. {C_type
or S_type}). In this case, the compatibility between both
granted and requested mode is dictated by the matrix in
Fig. 11. There, we can clearly see that our technique allows
a much higher parallelism than the original GLP. The boxes
marked with darker shadows are where our technique offers
more concurrency, all of that due to the consideration given
to the semantics of the edges in a KB graph.

Granted Mode[ c|s|a]
R[Iw] R IJRW] W
IR | yes
Requested IW [ yes
Mode yes
[soralcoralcors] es

Figure 11: Compatibility matrix for locks of distinct types.

Let us provide an example (Fig. 12) to justify this com-
patibility matrix. Suppose we have two transactions oper-
ating in our KB (Fig. 4). T1 wants to modify the object

tention to write the object sunday-menu in its class menus
with an IW, lock. Thereafter, T1 is allowed to request a
W lock on the instance of menus, and so it does. In turn,
T2 wants to write the object menus itself and all parts of
it. To do that, T2 must request a W, lock on menus from
the lock manager. Now, the compatibility of both locks on
menus must be checked. In turn, we can notice that al-
beit T1 did sign an intention write in menus, the IW, lock
mode allows it to request write locks only on the instances
of menus, and not on its parts. On the other hand, the
write lock requested by T2 in menus does not embody any
of the objects to be accessed by T1, since it (W,) implies
implicit write locks only on the parts of menus, and not
on its instances. Consequently, both locks are compatible,
and may be simultaneously granted. Therefore, when ap-
plied to distinct sets of objects, intention write and write
lock modes are compatible. Our discussion has shown that
conflicting lock modes applied to requests of the same ab-
straction hierarchy may become compatible when issued for
different abstraction hierarchies, e.g., IW, and W,. In the
same manner, the remaining lock modes of Fig. 11 may be
shown to be compatible according to the given table. We
leave this task for the reader.

T1 IWc m us T2: Wa

T1: We [sunday-menu ||man -courses ||appa|zers | [desserts |

Figure 12: Concurrent transactions operating on different
sets of objects.

Compatibility of conventional and typed locks

The last compatibility matrix is the one for conventional
and typed locks. Fig. 13 presents the compatibility between
the conventional (R and W) locks and the typed (either
C_type, or S_type, or A_type) locks.



Granted Mode[ c|s|a]
B R [ w ][ R JRW] W
Requested | R | Yes | yes | yes | yes | MO
Mode W yes | yes no no no

Figure 13: Compatibility matrix for conventional and typed
locks.

We illustrate the meaning of the compatibility matrix
of Fig. 13 with an example (Fig. 14). Suppose, using our
restaurant KB (Fig. 4), that T1 wants to modify a slot of
the object offers. In addition, suppose that this slot is used
to represent a property of the own object, and not of its
subclasses. In other words, this slot should not be inherited
by its subclasses, like for example a slot comment, used to
describe some particularity of offers. T1 can modify this ob-
ject requesting a conventional W lock on it. In particular,
the deletion of offers by T1 would imply modifications on
other objects not covered by such a W lock, and would be
therefore not allowed. On the other side, T2 wants to mod-
ify the object liquors and its instances. It must then sign in
the objects offers and beverages its intention to write some
descendants of them. It starts then requesting an I, lock
on offers. Due to the fact that the conventional W lock on
offers hold by T1 refers to nothing but this object, the IW,
requested by T2 is compatible with it, and thus granted.
Thereafter, T2 acquires IW. on beverages, and finally W,
on liquors. At last, any operations of T1 touching the sub-
classes or instances of offers would require a W, lock on it
and, as a consequence, implicit locking and the detection of
conflicts by means of the intention locks.

TLW T2: IWe
sc

Figure 14: Transactions operating on an isolated object and
on a set of objects.

With respect to this example, there is an important point
to be considered. Suppose our protocol would not provide
the conventional locks. In this case, T1 would have to re-
quire a W, lock on offers. On one hand, T1 might have to
wait too long for receiving this lock. It would be granted
if, and only if, no other transaction is accessing any class
or instance of the KB, since offers is the only root of the
whole classification graph. On the other hand, once granted,
T1 would impede any other transaction from accessing any
other class and instance of the KB, and of course unneces-
sarily, because T1 in fact wants to modify only the object
offers, and nothing else. Therefore, this example ratifies the
importance of the conventional locks for allowing the execu-
tion of operations on isolated objects, and as a complement
for the typed locks.

4.3 Accessing Implicitly Locked Objects

As a matter of fact, multiple abstraction relations to an ob-
ject in a KB may lead to problems with the implicit locks,
so that the isolation property of transactions [HR83] may be
seriously corrupted. Actually, an interference arises when-
ever an object with two or more parents is implicitly locked
by one of them. The implicit lock on a child object is only
visible if it is accessed through a specific path of the graph.
To illustrate this problem, let us refer to Fig. 15. There,
both T1 and T2 required an IW, lock on beverages, and

were granted. Thereafter, T1 followed the path to aper-
itifs and locked it in W, mode. Then, it received auto-
matically write access rights not only to aperitifs, but also
to its instances (pernod, champagne, and cointreau). Fol-
lowing another path, T2 locked liquors in W, mode, and
received also write access rights to its instances (cointreau
and chantre) too. Here, T1 and T2 may get into troubles
with one another, and for example a lost update may happen
in the object cointreau. The problem is that none of those
transactions knows a priori which are the instances of those
objects due to the dynamism of the KB graph; hence, both
requested an explicit lock on a node in the hope that its
descendants were locked as a whole implicitly.

T1 IWc T2: IWc
sC sC
T1: We|gperitifs i Uliquors T2: We

i : ; i
[pernod] [champagne] [ cointreau | [chantre]

Figure 15: The problem with implicit locks in graphs.

In order to find out possible conflicts with implicitly
locked objects, we may access all ascendants or descendants
of an object. For this purpose, all relationships have to be
represented in a bidirectional way. Finally, we could follow
basically five possible approaches. Let us discuss all of them
separately.

1. Lock all referenced objects

The first and most simple approach is to explicitly lock
all referenced objects. In the example of Fig. 15, if either T1
or T2 locks all schemas explicitly, the interference in coin-
treau is detected. This practically vanishes the semantics
of implicit locks, but it solves the problem®. Nevertheless,
this method leads to a great overhead, since many locks are
required.

2. Search for conflicts

The second approach is, before accessing any implicitly
locked objects with multiple parents (i.e., the ones where
potential conflicts may arise), to climb up the structure in
order to find out possible conflicts. In this case, a conflict is
detected if any of those objects is already implicitly locked
by any other ascendant in a conflicting mode. In the above
example (Fig. 15), T1 needs to upward traverse the other
path coming in cointreau in order to look for conflicts. In
this particular case, it soon realizes a conflict in liguors. This
alternative requires less locks to be held than the first one,
but it requires testing locks. Of course, it is very expensive if
an object has multiple parents, which in turn have multiple
parents, and so on. In such a case, a transaction needs
to traverse very long paths in order to find out possible
conflicts. After all, it may happen that there is no conflict
at all. In addition, too many deadlocks may happen. In
the current example (Fig. 15), a deadlock easily happens if
T1 and T2 climb up the structure at nearly the same time.
Lastly, this approach is too pessimistic in the sense that
the object, although being implicitly locked, may be not
updated yet, or even not be updated at all, what slackens
the conflict and frees the transaction from any obligation of
detecting it.

3. Analysis of all descendants

The third approach is, before setting any explicit lock
on an object, to analyze all descendants of this object and
explicitly lock those with more than one parent®. In the

5This alternative is followed by ORION for its class lattices.
6This alternative was pointed out by Garza and Kim [GK88] for



current example (Fig. 15), this means that when T1 sets
a W, lock on aperitifs, it needs also to set the same lock
on cointreau, the only descendant of aperitifs with multiple
parents. When following the same proceeding, T2 detects
the conflict and must then wait until T1 terminates. This
approach is better than the previous one, but it still is too
expensive. In this case, the lock manager, always before
granting an explicit lock, needs to downward traverse all
paths affected by this explicit lock and to set an explicit lock
on all those descendants with multiple parents. In addition,
it is also pessimistic, because the transaction may not need
to access all those descendants. At last, it may also lead to
many deadlocks, like in the previous approach.

4. Lazy evaluation strategy

The fourth approach is to add to the previous one a kind
of lazy evaluation strategy for lock conflict resolution. In
this approach, a transaction may request and be granted an
explicit lock without further proceedings. However, before
effectively accessing an implicitly locked object with mul-
tiple parents, it must verify whether this object is already
locked in a conflicting mode by another transaction or not.
If so, it must wait until this lock is released. If not, it sets an
explicit lock on this object, signalling that it has accessed it.
This lock acts like a tag in the object indicating that it has
been already accessed via another parent of it. The main dif-
ference between this alternative and the previous one is that
a transaction needs to explicitly lock only those descendants
with multiple parents which it actually accesses, leaving the
others for the concurrent access by other transactions. In
the current example (Fig. 15), the W, lock on aperitifs by
T1 is immediately granted. T1 can access pernod and cham-
pagne without problems, but if, and only if, it accesses coin-
treau, it needs then to set an explicit lock on this object.
On the other side, T2 performs a similar proceeding, and
it only needs to set an extra lock if it wants to access coin-
treau. In this case, if the lock on this object by T1 is already
released, for example because T1 has already modified this
object and committed, T2 can receive the lock, but if T'1 still
holds the lock, T2 must wait. This proceeding is certainly
more precise than the others. In addition, it involves less
overhead because only the descendants with multiple par-
ents effectively accessed need to be explicitly locked. Those
which are not accessed are not locked, what minimizes the
overhead of the lock manager and increases the concurrency
because they may be accessed by other transactions in the
meanwhile. Apparently, this approach also leads to dead-
locks (to be discussed in Sect. 4.5.1). Let us summarize:
This approach requires, in a set of already implicitly locked
objects, explicit locks only for those objects that are actu-
ally accessed and that belong to more than one parent. For
these reasons, this is the best alternative to solve the prob-
lem with implicit locks in graph structures, and therefore we
are going to follow it in our protocol.

5. Semantic optimizations

As a last point for discussion, we briefly mention a fifth
approach, which represents an improvement in the previ-
ous one, by means of the addition of some semantic opti-
mizations. For example, if we state that when all possible
paths to an implicitly locked object with multiple parents
are already explicitly locked by a transaction, this transac-
tion does not need to set an explicit lock on this object when
accessing it. In fact, all paths reaching this object should
already be covered, and therefore, potential conflicts would

the class lattices in ORION, implemented for test purposes, but
discarded.

be already detected. However, this proceeding seems too
difficult to be realized and too expensive.

4.4 The Locking Rules

Having presented the general lines of our protocol, we are
finally able to expose its complete rules to be followed by
transactions when requesting locks on objects in a KB (Fig.
16).

The starting rule (1)

The first rule is clear when it states that transactions are
allowed to directly set locks in the root object in any mode,
without further requirements.

The rules for requesting typed locks (2-6)

The second rule, in turn, states that an intention read
lock (from the C_type, S_type, or A_type) on a non-root
object must be preceded by either intention read or intention
write locks (from respectively the C_type, S_type, or A_type)
on at least one parent of this object, and so recursively until
the root object is reached. The third rule has a similar
meaning, but for the intention write locks, requiring that
they must be preceded by intention read or read intention
write locks on at least one path from that object to the root
object.

There is an important point appearing in the third rule to
be considered. Whereas the GLP requires that all paths from
a node to the root must be covered by the corresponding
intention locks for writing [GLPT76], our protocol relaxes
this requirement, advocating that just one path to the root
object is enough for lock conflict resolution. The reason for
it is that our protocol, as part of our lazy evaluation strategy
discussed in Sect. 4.3, takes special care when dealing with
implicitly locked objects, requiring also explicit locks on such
objects which have more than one parent. This requirement
is coped with by the rules 4, 5, and 6. Therefore, since
our protocol does not rely solely on the intention locks for
conflict resolution, we do not need to set intention locks in
all the paths to the root, but just in only one (any) of them.

The fourth rule states that a read lock (from the C_type,
S_type, or A_type) on a non-root object must be covered by
intention read or intention write locks (from respectively the
C_type, S_type, or A_type) on at least one path from this
object to the root. Thereafter, it explicitly requires locks on
the descendants with multiple parents’. The fifth and sixth
rules have a similar meaning, but for the typed RIW and W
locks, respectively.

Before passing on to the explanation of the following
rules, we provide an example (Fig. 17), using again our
restaurant KB (Fig. 4). Suppose T1 wants to read the ob-
ject turtle-soup as a part of the object sunday-menu. To do
that, it must follow rules 2 and 4 for requesting, respectively,
IR, locks on the parents of turtle-soup, and an R, lock on
it. On the other side, T2 wants to write the object appe-
tizers together with its subclasses and instances. In turn, it
must follow rules 3 and 6 for requesting IW, locks on the
ascendants of appetizers and a W, lock on it, respectively.
However, when trying to access the object cold-dishes, T2
notices that this object has another parent, and, as stated
by the rule 6, it requests a W, lock on this object, and is

"There may be situations where a descendant may have two edges
pointing to the same ascendant. For example, when an object is at
the same time instance and element of the same object. In such sit-
uations, the object is considered to have multiple parents, no matter
if the parents are the same object.



1 | Theroot object can be locked directly in any mode.

IRsor IWs| IRaor IWamode.

Before requesting an IRc | IRs | IRamode lock on a non-root object, the requester must hold a path to the root in IRc or IWc |

RIWc | IWs or RIWs | IWaor RIWa mode.

Before requesting an IWc | IWs | IWa mode lock on a non-root object, the requester must hold a path to the root in IWc or

requester must set an Rc | Rs| Ralock oniit.

Before requesting an Rc | Rs | Ramode lock on anon-root object, the requester must hold a path to the root in IRc or IWc | IRs
4 | or IWs|IRaor IWamode. In addition, before accessing any implicitly locked descendant object with multiple parents, the

isanon-leaf object.

Before requesting an RIWc | RIWs | RIWa mode lock on a non-root object, the requester must hold a path to the root in IWc or
5 RIWc | IWsor RIWs | IWaor RIWamode. In addition, before accessing any implicitly locked descendant object with multiple
parents, the requester must set either a) an Rc | Rs| Ralock onit, if it isaleaf object, or b) an RIWc | RIWs | RIWalock, if it

the requester must set aWc | Ws| Walock onit.

Before requesting aWc | Ws | Wamode lock on a non-root object, the requester must hold a path to the root in IWc or RIWc |
6 IWsor RIWs | IWaor RIWamode. In addition, before accessing any implicitly locked descendant object with multiple parents,

An R mode lock can be directly set by the requester on a non-root object with multiple parents, but if it has only one parent, the
requester must hold the parent in IRc | IRs | IRa, IWc | IWs | IWa, Rc | Rs| Ra, RIWc | RIWs | RIWa, We | Ws | Wa, R or W mode.

8 A W mode lock can be directly set by the requester on a non-root object with multiple parents, but if it has only one parent, the
requester must hold the parent in IWc | IWs | IWa, RIWc | RIWs | RIWa, Wc | Ws | Wa, or W mode.

9 | Beforeinserting an object, the requester must hold the parent in IWc | IWs | IWa, RIWc | RIWS | RIWa, Wc | Ws | Wa, or W mode.

10 | Before deleting an object, the requester must hold it in Wc | Ws | Wa, or W mode.

111 \Wa, RIWC | RIWSs | RIWa, We | Ws | Wamode.

Before inserting an edge, the requester must hold the descendant in Wc | Ws | Wa, or W mode, and the parent in IWc | IWs|

12 | Before deleting an edge, the requester must hold the descendant in Wc | Ws | Wa, or W mode.

13 | Release dl locks as soon as the transaction terminates (either commits or aborts).

Figure 16: Locking rules.

granted because this object was free. The same may hap-
pen for the object turtle-soup as long as T2 tries to access
it. When trying this, either T2 must wait, if the R, lock on
this object is still held by T1, or it may be granted, if T1
has already terminated.

pi [Soups

N i ; :
T1: Raturtie-soup | [bouillabaisse | [salade-nicoise | [greek-salad | [fish-plate |[shrimp-cocktail
Figure 17: Avoiding conflicts with implicitly locked objects.

The rules for requesting conventional locks (7-8)

Proceeding with the rules, the seventh rule establishes
that a conventional read lock may be granted immediately
to the requester when the object in question has multiple
parents. The reason for that comes from the rules 4, 5, and
6, which state that those objects must be always locked ex-
plicitly. Hence, if the object is free from locks, it means
that no transaction is accessing it and the conventional read
lock may be granted. On the other hand, if some transac-
tion does access it, any conflict may be found directly in
the object because it is certainly locked, and so we do not
need to traverse a path to the root. Referring to the current
example above (Fig. 17), transaction T1 could request a con-
ventional R lock on the object turtle-soup, instead of an R,
lock. When requesting this lock, T1 may be immediately
granted without further requirements, because the object
turtle-soup has two parents and is currently free from locks.
In turn, as soon as transaction T2 tries to access this object,
it realizes that it has two parents, and explicitly requests a

W, lock on it, thereby detecting the conflict. However, if
the object has only one parent, one does not know whether
any other transaction has already implicitly locked and ac-
cessed this object in a conflicting mode, and hence one must
traverse a path to the root with intention locks looking for
possible conflicts. The type of those intention locks must be
requested in accordance to the relationship between the ob-
ject and its unique parent. Finally, conventional write locks
are dealt with in a similar way by the rule 8.

The rules for insertion/deletion of objects (9-10)

The ninth rule copes with the insertion of objects in
the KB. Before explaining it, it is convenient to notice that
firstly, we assume that an object is always inserted with at
least one relationship (when no relationship is provided by
the user, the object is considered to be an instance of global,
see Sect. 2.1), and secondly, when the user specifies many re-
lationships, our protocol treats such cases as being an inser-
tion of an object with one relationship, followed by as many
insertions of edges (governed by rule 11) as asserted by the
user. Hence, the ninth rule must always handle the object
and its single parent. Finally, it states that before inserting
an object, its parent must be held in at least intention write
mode (and so recursively until the root object is reached).
The type of such an intention write mode is dictated by the
abstraction relationship being inserted, i.e., C_type for clas-
sification/generalization, S_type for association, or A_type
for aggregation. Fig. 18 provides an example of the lock re-
quests needed for inserting an object. Suppose T1 wants to
insert the object cote-de-provence as an instance of wines.
To accomplish this task, T1 must request an IW, lock on
wines, the parent of cote-de-provence. In turn, this IW,
lock must be covered by IW, locks on the parents of wines.
Just after holding those locks, T1 is then able to insert the
object cote-de-provence. As soon as cote-de-provence is in-
serted, the lock manager grants a W, lock on this object to
T1, which holds it until it terminates. Particularly, this op-
eration is susceptible to phantoms (discussed in Sect. 4.5.2).



after insertion

fes inerion

Figure 18: Locks for the insertion of an object.

In turn, the tenth rule deals with deletion of objects in a
similar way, with the extra requirement that the object itself
must be held in write mode. Notice that such a write lock
implies intention write locks on a parent, on a parent of the
parent, and so forth until the root is reached. Also similar
to the insertion, when an object with many parents is to be
deleted, our protocol treats such cases as many deletions of
edges (governed by rule 12) as necessary, until the object has
only one parent. Finally, the type of such locks are dictated
by the abstraction relationship in question.

The rules for insertion/deletion of edges (11-12)

The eleventh rule copes with the insertion of edges in the
KB graph, i.e., the creation of new relationships between ob-
jects. It states that for inserting an edge, the object must be
held in write mode, and the parent in at least intention write
mode, according to the abstraction relation being inserted.
Fig. 19 illustrates the use of this rule, complementing the last
example. Suppose T1 wants to connect cote-de-provence as
an element of french-wines. Following the rule 11, T1 must
request a write lock on this object, preferentially a W lock,
since it is applying the association concept. However, this
object is not an element of any other object yet, what makes
impossible the acquirement of a W, lock on it. In such par-
ticular cases, a transaction is allowed to acquire a write lock
of another type. Since cote-de-provence is an instance of
wines, T1 acquires a W, lock on it (from the last example).
Thereafter, T1 must require an IW, lock on french-wines,
the new parent of it. In turn, this intention lock requires
intention on the parents, recursively. Finally, after holding
all the required locks, T1 creates the new relationship. As
we can see, the insertion of an edge is a bit more compli-
cated operation, because the transaction does not know a
priori which are the roles of the object itself and its parent
in the current state of the KB. The same does not happen
for the deletion of an edge, which is treated by the rule 12.
In such cases, the transaction does know the current roles
of the objects, and by this way the path it must traverse for
requesting locks.

T1: IWs g'g]oba"'g T1: IWc

LS ~X
T1: IWs {sets ' iClasses | T1: IWc

T1: IWSs [french-wines

~

newedge _—= €7
inserted by T1

Figure 19: Locks for the insertion of an edge.
The commit rule (13)

The thirteenth rule is responsible for always producing
strict ezecutions [BHG8T7], when it requires the locks of a
transaction to be released only at its end.

4.5 Final Considerations
4.5.1 Deadlocks

Our protocol is susceptible to deadlocks. However, it suffers
from a kind of deadlock which does not happen in the GLP,
namely, deadlocks with, additionally, implicit locks. There
are a lot of strategies to detect deadlocks. Timeout and
waits-for-graph [HoT72] are the most popular ones. Particu-
larly, we feel that timeout does not always offer an optimal
solution to deadlocks. Although being very easy to imple-
ment, the number of transactions that may be unnecessarily
aborted and restarted again may be unacceptably high, due
to the impreciseness of this technique. On the other side,
waits-for-graph shows a very good precision for all kinds
of transactions, independently of their duration. An im-
plementation and comparison between both techniques is
subject of our future work.

4.5.2 Phantoms

Another important point is that granular locks provide phys-
ical locks, and being so we have also problems with the so-
called phantoms in our protocol. The most reasonable solu-
tion we found is to delegate to the transactions the decision
about tolerating or not phantoms. If a transaction decides to
avoid phantoms at all, it must then request exclusive typed
locks on the object in the next higher level of the graph
it is currently working on (what is foreseen by our locking
rules). Taking this measure accordingly, no phantoms may
happen because no other transaction is able to access any
descendant of such an object, with respect to the working
graph. On the other hand, such a measure may significantly
decrease the concurrency because the object as well as a
certain subset of its descendants stay inaccessible to other
transactions for the time the insert or delete transaction is
running. Therefore, due to such pros and cons, we decided
to delegate to transactions the choice among either greater
concurrency with phantoms or lower concurrency without
phantoms.

4.5.3 Lock Conversion

In our protocol, lock conversions are handled accordingly to
the type of lock. To put it another way, a transaction may
upgrade a C_type lock to another one of this same C_type,
but not to one of A_type or S_type, for example. Fig. 20
shows the lock conversion tables for conventional and typed
locks. To give an example, if one has an IW, lock on an
object and requests an R. lock on it, then the new mode is
RIW.,.

Requested Mode
H R T w
R R W
Old Mode | W | W W

a) Conventional locks
Requested Mode[ c|s|a]

RIW | RIW | RIW | RIW | RIW
W W Wi w W

b) Typed locks
Figure 20: Lock conversion tables.

B R [ W] R [RW[W
R[IR|W][RJ[RW[W

W | W | W |RW |RW | W

OldMode = R |[RW| R |[RW ][ W
[clsl|a] W
W




4.5.4 Lock Escalation

Lock escalation is also taken into consideration by our pro-
tocol. By means of it, for example, if a transaction has
acquired an IW, mode lock on a class, and starts requesting
too many W, locks on its instances, our protocol will try to
grant a W, lock to this transaction on this class, implicitly
locking all its instances and alleviating its task of request-
ing so many explicit locks. Nevertheless, there is an aspect
our protocol must cope with. As stated by the locking rules
4, 5, and 6 of our protocol, the transaction must request
also explicit locks on implicitly locked objects with multiple
parents. Due to this requirement, a lock escalation in our
protocol alleviates the transaction from requesting locks just
on those descendants with a single parent, but the same is
not true for the objects with multiple parents. We believe
this aspect will not prejudice too much the performance of
lock escalation in our protocol. Notwithstanding, if our pro-
tocol is likely to be faced with situations like, for example,
a class has thousands of instances and all of them have any
other parent, then our protocol may labor under difficulties,
because even with a lock escalation, a transaction requesting
a lock on this class will be forced to request thousands of
locks on its instances, due to their other parents. A possible
solution to this possible problem is to provide a lock esca-
lation covering all the parents of the objects being locked,
and not only on the parent the transaction has acquired an
intention lock. However, this proceeding, besides the possi-
bility of being very costly, could also decrease the concur-
rency, because too many objects would be explicitly locked
by just one transaction. A detailed investigation of this as-
pect is also another point we will take into consideration in
our future work.

5 Conclusions

We have presented a CC technique tailored for KBMSs. The
most important point of our technique is the partition of the
KB graph into many logical ones, and the appliance of con-
ventional and granular locks to each one of these partitions,
providing many different lock types and taking the neces-
sary precautions with respect to the dynamism of the KB
graph. In this manner, we have captured more of the se-
mantics contained in the KB graph in the sense that we
do not consider descendants of an object as being simply
descendants of it, but, on the contrary, descendants with
special characteristics and significance, which are based on
the abstraction relationships of generalization, classification,
association, and aggregation. By means of this observation,
we can really obtain a high degree of concurrency, with a
full exploitation of all inherent parallelism in a knowledge
representation approach.

In summary, our protocol has four main characteristics.
First, it offers different granules of locks, varying from a sin-
gle object (handled by the conventional locks) to different
sets of objects (typed locks). Second, it considers implicit
locks, alleviating the task of managing too many locks due
to the high number of objects in real world applications.
Thirdly, it copes well with multiple abstraction relations to
objects, by means of the requirement of explicitly locking
objects with multiple parents, which, in turn, relaxes the
necessity of covering all paths to the root with intentions,
reducing it to only one path. Fourth, it interprets the re-
lationships between objects with respect to their semantics,
providing typed locks for all abstraction concepts. Finally,
such power, flexibility, and parallelism are by no means prof-

fered by the related works we criticized. At last, we are going
to use the KBMS prototype KRISYS [Ma89] as a practical
vehicle for the implementation.
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