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AbstractKnowledge Base Management Systems (KBMSs) are a grow-ing research area �nding applicability in di�erent domains.As a consequence, the demand for ever-larger knowledgebases (KBs) is growing more and more. Inside this con-text, knowledge sharing turns out to be a crucial point tobe supported by KBMSs. In this paper, we propose a way ofcontrolling knowledge sharing. We show how we obtain se-rializability of transactions providing many di�erent lockinggranules, which are based on the semantics of the abstrac-tion relationships. The main bene�t of our technique is thehigh degree of potential concurrency, to be obtained througha logical partitioning of the KB graph and the provision oflock types used for each referenced partition. By this way,we capture more of the semantics contained in a KB graph,through an interpretation of its edges grounded in the ab-straction relationships, and make feasible a full exploitationof all inherent parallelism in a knowledge representation ap-proach.1 IntroductionKBMSs are a new product generation which is �nding evermore applicability in many di�erent areas. As expected dueto a growing applicability, the use of KBMSs is becomingmore and more widespread and, accordingly, the demandfor ever-larger KBs higher and higher. The main challengeof the research in the direction of KBMSs nowadays is to trythe successful adaptation of such systems to real-life produc-tion environments [MB90]. However, the complete successof those systems in the market depends, among other things,on their potential for applicability. For instance, it wouldbe very ine�cient to obligate users of such systems to ac-cess valuable resources and information in mutual exclusion.Moreover, it would be neither viable (due to economicalreasons) nor desirable (due to restricted accesses) to havesome KB being accessed by just one user at a time. On�Financially supported by the CNPq (National Council for theScienti�c and Technological Development) of the Secretary for Scienceand Technology of Brazil.

the contrary, KBMSs should receive queries and updates inan interleaved fashion and control their concurrent execu-tion against some KB. Consequently, multiple transactionsshould be able to run at the same time for better perfor-mance of such systems. Finally, it is exactly in this pointthat concurrency control (CC) techniques for KBMSs playa crucial role, because they are among the most importantmeans for allowing large, multi-user KBs to be widespread.In this paper, we present our approach for CC in KBMSs.The main objective we have in mind is the provision of se-rializability for ACID transactions. With serializability wemean that our technique is governed by the SerializabilityTheory of Gray et al. [GLPT76], which states that if anexecution produces the same output and has the same ef-fect on the database as some serial execution of the sameset of transactions, it is correct, because serial executionsare also correct. With ACID transactions we mean thatthe transactions running in our system have the proper-ties of conventional ones, the ACID (atomicity, consistency,isolation, and durability) properties pointed out by H�arderand Reuter [HR83]. In other words, our protocol neithertreats the semantic knowledge of transactions in order toallow non-serializable executions to be produced, nor copesit with long-duration transactions (in fact, the transactionsmay span minutes and even hours, but are not in terms ofdays or months). This paper is organized as follows. Af-ter providing some particular CC issues in KBMSs (Sect.2), we criticize related works (Sect. 3). Thereafter, we in-troduce our protocol for allowing and above all controllingknowledge sharing (Sect. 4). After the exposition of ourpanacea, we �nally conclude the paper (Sect. 5).2 Particular Concurrency Control Issues in KBMSs2.1 The Abstraction ConceptsAbstractions turned out to be fundamental tools for knowl-edge organization. They are expressed as relationships be-tween objects, and have as main purpose the organizationof such objects in some form. In the following, we providea brief description of the abstraction concepts. In order toillustrate these concepts, we use as example a restaurantapplication1.1This restaurant example to be used throughout the paper is asimpli�cation of the �rst application modeled by means of the KBMSprototype KRISYS [Ma89].



2.1.1 Classi�cationClassi�cation is achieved by grouping simple objects (in-stances) that have common properties into a new compos-ite object (class) for which uniform conditions hold [Ma88].Classi�cation establishes an instance-of (i, for short) rela-tionship between instances and class. Hence, it creates aone-level hierarchy. For example, suppose our restauranto�ers four kinds of wines, namely, bordeaux, cote-du-rhone,schwarzekatz, and liebfraumilch. In such a case, we can con-gregate the common properties of all kinds of wines into acomposite object called, for example, wines (Fig. 1).2.1.2 GeneralizationGeneralization allows a more complex composite object (su-perclass) to be de�ned as a collection of less complex com-posite ones (subclasses). It extracts from one or more givenclasses, the description of a more general class that capturesthe commonalities but suppresses some of the detailed di�er-ences in the description of the given classes [Ma88]. Gener-alization establishes a subclass-of (sc) relationship betweensubclasses and superclass. Since it may be applied recur-sively, it creates an n-level hierarchy. Exemplifying, sup-pose our restaurant o�ers, besides wines, also some aperitifsand liquors. In this case, we can generalize these objects,creating a superclass named, for example, beverages (Fig.1). Since the properties described in the superclasses aregeneralized properties of their subclasses, there is no needto describe over again these properties in the subclasses.This observation builds the most important characteristic ofgeneralization, namely inheritance, by means of which theproperties of the superclasses are reected in the subclasses.This is also valid for classi�cation, i.e., the instances inheritthe properties of their classes, which inherit from their su-perclasses, and so forth.
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sc sc scFigure 1: Example of classi�cation and generalization.2.1.3 AssociationThere are two types of association, namely element- andset-association [Ma88]. Element-association allows the in-troduction of an object (set) to describe some propertiesof a group of objects (elements). It suppresses the detailsof the element objects whereas emphasizing the propertiesof the group as a whole. Hence, element-association cre-ates a one-level hierarchy, and between elements and set, anelement-of (e) relationship is established. For example, wecould group the objects bordeaux and cote-du-rhone of ourrestaurant application into a set representing french-wines,and schwarzekatz and liebfraumilch into a set representingrhine-wines (Fig. 2). On the other hand, set-associationbuilds a more complex set object (superset) in order to rep-resent properties of a group of set objects (subsets). Set-association establishes a subset-of (ss) relationship betweensubsets and superset. In addition, it may be applied recur-sively, thereby building an n-level hierarchy. For example,we could group the sets referenced in Fig. 2 into a supersetrepresenting wine-origins.
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eeeeFigure 2: Example of element- and set-association.2.1.4 AggregationAggregation corresponds to the notion of property in thesense of composition. Like above, it involves two types of ob-jects: Simple and composite [Ma88]. Simple, atomic objects(elements or parts) are the ones which cannot be furtherdecomposed. When they are aggregated in order to repre-sent parts of a higher-level, composite object (component),we are applying the element-aggregation concept, and therelationship between the parts and the component objectis called part-element-of (part-of or p, for short). Element-aggregation builds a one-level hierarchy. In turn, compo-nent objects (subcomponents) may be used to build a morecomplex higher-level object (supercomponent). This char-acterizes the component-aggregation concept, and betweensubcomponents and supercomponent, a subcomponent-of (c)relationship is established. Since this concept may be ap-plied recursively, it creates an n-level hierarchy. Neverthe-less, aggregation is more stringently in the sense that it isused to express the idea that an object must have somenecessary properties in order to exist consistently. For ex-ample, suppose our restaurant o�ers mousse-au-chocolat asa dessert. In turn, we could express that mousse-au-chocolatis composed of mousse and cream (Fig. 3). Clearly, it is hardto imagine a mousse-au-chocolat without either the mousseor the cream. This characteristic makes aggregation quitedi�erent from the other concepts.
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p pFigure 3: Example of element-aggregation.2.1.5 An Example Knowledge BaseKBMSs manage complex and structured objects, and di�er-ent types of abstraction relationships. In fact, one of themost important aspects of KBMSs is that objects can playdi�erent roles at the same time. Consequently, the KB fea-tures can be visualized as a superposition of the generaliza-tion, classi�cation, association, and aggregation hierarchies(in fact graphs), building altogether the so-called KB graph.To illustrate one such a KB graph, we introduce a more de-tailed example in Fig. 4, complementing the ones we haveseen so far. In order to restrict the KB to a rooted and con-nected graph, we have added the objects global, the only rootof the whole graph, sets, the root of the association graph,classes, the root of the classi�cation/generalization graph,and �nally aggregates, the root of the aggregation graph.We provide such objects in order to have an adequate envi-ronment for the appliance of our protocol. In addition, weassume that all schemas are directly or indirectly related tothe root global. When a schema is neither a class/instance,nor a set/element, nor a component/part, it is connectedas a direct instance of global. In turn, all classes/instances,sets/elements, and components/parts are directly or indi-rectly related to the prede�ned schemas classes, sets, andaggregates, respectively. Moreover, we assume that the KBgraph automatically stays in this form (rooted and con-nected) as changes undergo over time2.2This representation and behavior are very similar to the ones usedby KRISYS [Ma89] to represent KBs.
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Figure 4: The restaurant knowledge base.2.2 MethodsIn the last years, there have been considerable e�orts in or-der to increase concurrency by means of the semantic knowl-edge of transactions [Ga83, Ly83, FO89]. The main ideabehind this use of applications' semantics is to allow non-serializable schedules, which preserve consistency and areacceptable to the system users. With respect to KBMSs,the methods could be a starting point to the applicability ofsuch an approach. The semantics of user- or system-de�nedmethods could be considered in order to allow more general,non-serializable schedules of transactions to be produced. Atthe actual point of our work, we did not make any use of thesemantics of methods yet, in particular, due to the high costand di�culty of determining the commit order of methods'operations. This research direction will be considered, inour future work, as soon as we get the basis of our protocolwell-established and robust. Therefore, methods currentlycompete for locks like any other transaction request in ourprotocol (the same holds for the use of demons and rules).2.3 Operations TypesIn KBMSs, there are basically two main types of operationsthat may be requested against a KB. The �rst type of op-erations relates to a tiny granule, normally in the order ofan object. Those represent direct operations on objects, andmostly refer to reads and writes of an object, its slots, meth-ods, and aspects, not inuencing the subhierarchies. On theother hand, the second type of operations handles a coarsegranule, and refer mostly to an object and its subhierar-chies, through navigational accesses to the objects one ata time. Particularly, the operations involving inheritanceare a good example of this second type. Therefore, in sum-mary, we can characterize the accesses to a KB as referringeither to an object, or to a set of objects related throughany abstraction relationships. Finally, a CC technique forKBMSs should pay attention to such types of operations,and provide adequate lock modes to cope well with them.

3 Related WorkTo the best of our knowledge, there is only one CC protocoltailored for KBMSs already published, namely the DynamicDirected Graph (DDG) policy of Chaudhri et al. [CHM92].Due to space limitations, we will not provide an exhaustivediscussion about this protocol here3. Nevertheless, amongthe main drawbacks of this protocol, we can cite [Re94]:First, no di�erence is made between di�erent abstractionrelationships, i.e., it does not treat, for example, neither aclass and its instances, nor an aggregate and its components,etc., as a single lockable unit. Hence, the semantics of theKB graph is not at all exploited to improve the concurrency.Second, no kind of implicit locks is de�ned. Thus, using theDDG protocol, to lock a class with thousands of instances,thousands of locks will be necessary. This may jeopardizethe overall performance of this protocol. Third, phantomsare not taken into consideration.Now, due to the lack of publications in this area, letus analyze some CC protocols of a related area, namelyObject-Oriented DBMSs (OODBMSs). Again, we will notextensively discuss these protocols here4. ORION [Ki90] ex-tended the Granular Locks Protocol (GLP, for short) of Grayet al. [GLPT76] and by this way, it provides implicit locks[GK88]. Nevertheless, the restricted number of lock typesused by ORION does not provide a teeming utilization ofthe parallelism. In addition, ORION does not allow, for ex-ample, a subclass of an object and an element of the sameobject to be written simultaneously, not even a read on aclass to be performed in parallel with a write on an instanceof it.The main bene�t of CC in O2 [BDK92] is that reading(but not writing) a class is compatible with either readingor writing any of its instances. Implicit locks on instancesof a class are also provided. Nevertheless, O2 lacks of someconcepts. Aggregates and sets are not taken into consider-ation. Thus, writes of a component or element of an objectmust be made in mutual exclusion, although not necessarily3The reader is asked to see [Re94] for a detailed discussion andcritical analysis of this protocol.4See [Re94a] for a more detailed discussion about OODBMS CCtechniques and their behavior in the KBMS environment.



conicting. In addition, no kind of implicit locks is providedfor subclasses of a class.The OODBMS GemStone [BOS91] protects its concur-rent transactions using a combination of optimistic and pes-simistic CC techniques. First of all, optimistic methods mayshow very poor performance due to, among other things,the possibly very high percentage of transactions that mustbe aborted when, at commit time, conicts are detected[H�a84, PR83, Mo92]. In turn, the pessimistic method ofGemStone does not provide implicit locks, and so transac-tions may need to acquire a large number of locks. Moreover,its limited number of lock types restricts the parallelism,and it is unaware about the semantics of the relationshipsbetween objects.4 Locks Using Abstraction Relationships' Semantics4.1 Generalization of Granular LocksGranular locks were introduced by Gray et al. [GLPT76].The basic idea of the GLP comes from the choice of di�er-ent lockable units, which are locked by the system to en-sure consistency and to provide isolation. Moreover, thisprotocol created the notion of implicit locks, stating that byputting a lock on a granule, all descendants of it become im-plicitly locked without the necessity of setting further locks.Lastly, this protocol introduced the so-called intention locksin order to prevent locks on the ancestors of a node whichmight implicitly lock it in an incompatible mode. Thoselocks are used to sign the intention of a transaction to setlocks at a �ner granularity. Thus, the GLP has a basic setof locks composed of the IS (Intention Share), IX (IntentioneXclusive), S (Share), SIX (Share Intention eXclusive), andX (eXclusive) modes, which are then applied to the nodesin a hierarchy or a Directed Acyclic Graph (DAG) (Fig. 5)[GLPT76].
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Figure 5: A non-hierarchical lock graph for granular locks.4.2 Lock Modes and CompatibilitiesAs already discussed in Sect. 2.3, we have basically two maintypes of operations in a KB. Accordingly, our protocol sup-ports two main types of lock modes, the �rst one related toa single object, and the second one to a set of them.4.2.1 Conventional LocksThe �rst type of lock modes we have gives respect to an ob-ject as a closed unit. These lock modes are the conventionalR (Read) and W (Write) locks (thus the name conventionallocks), and their semantics are presented in Fig. 6.
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gives exclusive access to the requested object.Figure 6: Conventional locks' semantics.In turn, the compatibility between these lock modes isdictated by the matrix sketched in Fig. 7.
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ModeFigure 7: Compatibility matrix for the conventional locks.4.2.2 Typed LocksAs we have seen, a KB graph is built through the superpo-sition of the classi�cation/generalization, association, andaggregation hierarchies (or in fact DAGs). However, manyaccesses in a KB are directed to a particular hierarchy, andnot to the KB graph as a whole. Due to that, we are going tologically partition the KB graph into those three main hier-archies, named the classi�cation (which includes also gener-alization), association, and aggregation hierarchies. By thisway, we provide users with the possibility of looking at a KB,and abstracting from it just the viewpoint to be worked out.In addition, this logical division is mirrored in each objectof the KB. Exemplifying, suppose there are three transac-tions running in our KB (Fig. 4). T1 wants to access all setsand elements of the KB, whereas T2 the object menus as aclass and all its instances, and �nally, T3 the object menusas a component and all its parts. In such a case, the threetransactions are provided with respectively the viewpointsa), b), and c) illustrated in Fig. 8.
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gives intention shared access to the requested object and allows the requester to explicitly lock both direct subclasses of
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Figure 9: Typed locks' semantics.S type, or A type vs. A type), then the compatibility matrixto be followed is identical to the GLP's one known from theliterature [GLPT76, Gr78] (Fig. 10).
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Figure 11: Compatibility matrix for locks of distinct types.Let us provide an example (Fig. 12) to justify this com-patibility matrix. Suppose we have two transactions oper-ating in our KB (Fig. 4). T1 wants to modify the object

sunday-menu, instance of menus. Hence, T1 signs its in-tention to write the object sunday-menu in its class menuswith an IWc lock. Thereafter, T1 is allowed to request aWc lock on the instance of menus, and so it does. In turn,T2 wants to write the object menus itself and all parts ofit. To do that, T2 must request a Wa lock on menus fromthe lock manager. Now, the compatibility of both locks onmenus must be checked. In turn, we can notice that al-beit T1 did sign an intention write in menus, the IWc lockmode allows it to request write locks only on the instancesof menus, and not on its parts. On the other hand, thewrite lock requested by T2 in menus does not embody anyof the objects to be accessed by T1, since it (Wa) impliesimplicit write locks only on the parts of menus, and noton its instances. Consequently, both locks are compatible,and may be simultaneously granted. Therefore, when ap-plied to distinct sets of objects, intention write and writelock modes are compatible. Our discussion has shown thatconicting lock modes applied to requests of the same ab-straction hierarchy may become compatible when issued fordi�erent abstraction hierarchies, e.g., IWc and Wa. In thesame manner, the remaining lock modes of Fig. 11 may beshown to be compatible according to the given table. Weleave this task for the reader.
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i p p pFigure 12: Concurrent transactions operating on di�erentsets of objects.Compatibility of conventional and typed locksThe last compatibility matrix is the one for conventionaland typed locks. Fig. 13 presents the compatibility betweenthe conventional (R and W) locks and the typed (eitherC type, or S type, or A type) locks.
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Granted Mode [ c | s | a ]Figure 13: Compatibility matrix for conventional and typedlocks.We illustrate the meaning of the compatibility matrixof Fig. 13 with an example (Fig. 14). Suppose, using ourrestaurant KB (Fig. 4), that T1 wants to modify a slot ofthe object o�ers. In addition, suppose that this slot is usedto represent a property of the own object, and not of itssubclasses. In other words, this slot should not be inheritedby its subclasses, like for example a slot comment, used todescribe some particularity of o�ers. T1 can modify this ob-ject requesting a conventional W lock on it. In particular,the deletion of o�ers by T1 would imply modi�cations onother objects not covered by such a W lock, and would betherefore not allowed. On the other side, T2 wants to mod-ify the object liquors and its instances. It must then sign inthe objects o�ers and beverages its intention to write somedescendants of them. It starts then requesting an IWc lockon o�ers. Due to the fact that the conventional W lock ono�ers hold by T1 refers to nothing but this object, the IWcrequested by T2 is compatible with it, and thus granted.Thereafter, T2 acquires IWc on beverages, and �nally Wcon liquors. At last, any operations of T1 touching the sub-classes or instances of o�ers would require a Wc lock on itand, as a consequence, implicit locking and the detection ofconicts by means of the intention locks.
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iiFigure 14: Transactions operating on an isolated object andon a set of objects.With respect to this example, there is an important pointto be considered. Suppose our protocol would not providethe conventional locks. In this case, T1 would have to re-quire a Wc lock on o�ers. On one hand, T1 might have towait too long for receiving this lock. It would be grantedif, and only if, no other transaction is accessing any classor instance of the KB, since o�ers is the only root of thewhole classi�cation graph. On the other hand, once granted,T1 would impede any other transaction from accessing anyother class and instance of the KB, and of course unneces-sarily, because T1 in fact wants to modify only the objecto�ers, and nothing else. Therefore, this example rati�es theimportance of the conventional locks for allowing the execu-tion of operations on isolated objects, and as a complementfor the typed locks.4.3 Accessing Implicitly Locked ObjectsAs a matter of fact, multiple abstraction relations to an ob-ject in a KB may lead to problems with the implicit locks,so that the isolation property of transactions [HR83] may beseriously corrupted. Actually, an interference arises when-ever an object with two or more parents is implicitly lockedby one of them. The implicit lock on a child object is onlyvisible if it is accessed through a speci�c path of the graph.To illustrate this problem, let us refer to Fig. 15. There,both T1 and T2 required an IWc lock on beverages, and

were granted. Thereafter, T1 followed the path to aper-itifs and locked it in Wc mode. Then, it received auto-matically write access rights not only to aperitifs, but alsoto its instances (pernod, champagne, and cointreau). Fol-lowing another path, T2 locked liquors in Wc mode, andreceived also write access rights to its instances (cointreauand chantre) too. Here, T1 and T2 may get into troubleswith one another, and for example a lost update may happenin the object cointreau. The problem is that none of thosetransactions knows a priori which are the instances of thoseobjects due to the dynamism of the KB graph; hence, bothrequested an explicit lock on a node in the hope that itsdescendants were locked as a whole implicitly.
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T1: Wc T2: WcFigure 15: The problem with implicit locks in graphs.In order to �nd out possible conicts with implicitlylocked objects, we may access all ascendants or descendantsof an object. For this purpose, all relationships have to berepresented in a bidirectional way. Finally, we could followbasically �ve possible approaches. Let us discuss all of themseparately.1. Lock all referenced objectsThe �rst and most simple approach is to explicitly lockall referenced objects. In the example of Fig. 15, if either T1or T2 locks all schemas explicitly, the interference in coin-treau is detected. This practically vanishes the semanticsof implicit locks, but it solves the problem5. Nevertheless,this method leads to a great overhead, since many locks arerequired.2. Search for conictsThe second approach is, before accessing any implicitlylocked objects with multiple parents (i.e., the ones wherepotential conicts may arise), to climb up the structure inorder to �nd out possible conicts. In this case, a conict isdetected if any of those objects is already implicitly lockedby any other ascendant in a conicting mode. In the aboveexample (Fig. 15), T1 needs to upward traverse the otherpath coming in cointreau in order to look for conicts. Inthis particular case, it soon realizes a conict in liquors. Thisalternative requires less locks to be held than the �rst one,but it requires testing locks. Of course, it is very expensive ifan object has multiple parents, which in turn have multipleparents, and so on. In such a case, a transaction needsto traverse very long paths in order to �nd out possibleconicts. After all, it may happen that there is no conictat all. In addition, too many deadlocks may happen. Inthe current example (Fig. 15), a deadlock easily happens ifT1 and T2 climb up the structure at nearly the same time.Lastly, this approach is too pessimistic in the sense thatthe object, although being implicitly locked, may be notupdated yet, or even not be updated at all, what slackensthe conict and frees the transaction from any obligation ofdetecting it.3. Analysis of all descendantsThe third approach is, before setting any explicit lockon an object, to analyze all descendants of this object andexplicitly lock those with more than one parent6. In the5This alternative is followed by ORION for its class lattices.6This alternative was pointed out by Garza and Kim [GK88] for



current example (Fig. 15), this means that when T1 setsa Wc lock on aperitifs, it needs also to set the same lockon cointreau, the only descendant of aperitifs with multipleparents. When following the same proceeding, T2 detectsthe conict and must then wait until T1 terminates. Thisapproach is better than the previous one, but it still is tooexpensive. In this case, the lock manager, always beforegranting an explicit lock, needs to downward traverse allpaths a�ected by this explicit lock and to set an explicit lockon all those descendants with multiple parents. In addition,it is also pessimistic, because the transaction may not needto access all those descendants. At last, it may also lead tomany deadlocks, like in the previous approach.4. Lazy evaluation strategyThe fourth approach is to add to the previous one a kindof lazy evaluation strategy for lock conict resolution. Inthis approach, a transaction may request and be granted anexplicit lock without further proceedings. However, beforee�ectively accessing an implicitly locked object with mul-tiple parents, it must verify whether this object is alreadylocked in a conicting mode by another transaction or not.If so, it must wait until this lock is released. If not, it sets anexplicit lock on this object, signalling that it has accessed it.This lock acts like a tag in the object indicating that it hasbeen already accessed via another parent of it. The main dif-ference between this alternative and the previous one is thata transaction needs to explicitly lock only those descendantswith multiple parents which it actually accesses, leaving theothers for the concurrent access by other transactions. Inthe current example (Fig. 15), the Wc lock on aperitifs byT1 is immediately granted. T1 can access pernod and cham-pagne without problems, but if, and only if, it accesses coin-treau, it needs then to set an explicit lock on this object.On the other side, T2 performs a similar proceeding, andit only needs to set an extra lock if it wants to access coin-treau. In this case, if the lock on this object by T1 is alreadyreleased, for example because T1 has already modi�ed thisobject and committed, T2 can receive the lock, but if T1 stillholds the lock, T2 must wait. This proceeding is certainlymore precise than the others. In addition, it involves lessoverhead because only the descendants with multiple par-ents e�ectively accessed need to be explicitly locked. Thosewhich are not accessed are not locked, what minimizes theoverhead of the lock manager and increases the concurrencybecause they may be accessed by other transactions in themeanwhile. Apparently, this approach also leads to dead-locks (to be discussed in Sect. 4.5.1). Let us summarize:This approach requires, in a set of already implicitly lockedobjects, explicit locks only for those objects that are actu-ally accessed and that belong to more than one parent. Forthese reasons, this is the best alternative to solve the prob-lem with implicit locks in graph structures, and therefore weare going to follow it in our protocol.5. Semantic optimizationsAs a last point for discussion, we briey mention a �fthapproach, which represents an improvement in the previ-ous one, by means of the addition of some semantic opti-mizations. For example, if we state that when all possiblepaths to an implicitly locked object with multiple parentsare already explicitly locked by a transaction, this transac-tion does not need to set an explicit lock on this object whenaccessing it. In fact, all paths reaching this object shouldalready be covered, and therefore, potential conicts wouldthe class lattices in ORION, implemented for test purposes, butdiscarded.

be already detected. However, this proceeding seems toodi�cult to be realized and too expensive.4.4 The Locking RulesHaving presented the general lines of our protocol, we are�nally able to expose its complete rules to be followed bytransactions when requesting locks on objects in a KB (Fig.16).The starting rule (1)The �rst rule is clear when it states that transactions areallowed to directly set locks in the root object in any mode,without further requirements.The rules for requesting typed locks (2-6)The second rule, in turn, states that an intention readlock (from the C type, S type, or A type) on a non-rootobject must be preceded by either intention read or intentionwrite locks (from respectively the C type, S type, or A type)on at least one parent of this object, and so recursively untilthe root object is reached. The third rule has a similarmeaning, but for the intention write locks, requiring thatthey must be preceded by intention read or read intentionwrite locks on at least one path from that object to the rootobject.There is an important point appearing in the third rule tobe considered. Whereas the GLP requires that all paths froma node to the root must be covered by the correspondingintention locks for writing [GLPT76], our protocol relaxesthis requirement, advocating that just one path to the rootobject is enough for lock conict resolution. The reason forit is that our protocol, as part of our lazy evaluation strategydiscussed in Sect. 4.3, takes special care when dealing withimplicitly locked objects, requiring also explicit locks on suchobjects which have more than one parent. This requirementis coped with by the rules 4, 5, and 6. Therefore, sinceour protocol does not rely solely on the intention locks forconict resolution, we do not need to set intention locks inall the paths to the root, but just in only one (any) of them.The fourth rule states that a read lock (from the C type,S type, or A type) on a non-root object must be covered byintention read or intention write locks (from respectively theC type, S type, or A type) on at least one path from thisobject to the root. Thereafter, it explicitly requires locks onthe descendants with multiple parents7. The �fth and sixthrules have a similar meaning, but for the typed RIW and Wlocks, respectively.Before passing on to the explanation of the followingrules, we provide an example (Fig. 17), using again ourrestaurant KB (Fig. 4). Suppose T1 wants to read the ob-ject turtle-soup as a part of the object sunday-menu. To dothat, it must follow rules 2 and 4 for requesting, respectively,IRa locks on the parents of turtle-soup, and an Ra lock onit. On the other side, T2 wants to write the object appe-tizers together with its subclasses and instances. In turn, itmust follow rules 3 and 6 for requesting IWc locks on theascendants of appetizers and a Wc lock on it, respectively.However, when trying to access the object cold-dishes, T2notices that this object has another parent, and, as statedby the rule 6, it requests a Wc lock on this object, and is7There may be situations where a descendant may have two edgespointing to the same ascendant. For example, when an object is atthe same time instance and element of the same object. In such sit-uations, the object is considered to have multiple parents, no matterif the parents are the same object.



Before deleting an object, the requester must hold it in Wc | Ws | Wa, or W mode.

Before deleting an edge, the requester must hold the descendant in Wc | Ws | Wa, or W mode.

Release all locks as soon as the transaction terminates (either commits or aborts).

10

11
Before inserting an edge, the requester must hold the descendant in Wc | Ws | Wa, or W mode, and the parent in IWc | IWs |
IWa, RIWc | RIWs | RIWa, Wc | Ws | Wa mode.

12

13

The root object can be locked directly in any mode.

6

An R mode lock can be directly set by the requester on a non-root object with multiple parents, but if it has only one parent, the

Before requesting a Wc | Ws | Wa mode lock on a non-root object, the requester must hold a path to the root in IWc or RIWc |
IWs or RIWs | IWa or RIWa mode. In addition, before accessing any implicitly locked descendant object with multiple parents,
the requester must set a Wc | Ws | Wa lock on it.

5

Before requesting an RIWc | RIWs | RIWa mode lock on a non-root object, the requester must hold a path to the root in IWc or
RIWc | IWs or RIWs | IWa or RIWa mode. In addition, before accessing any implicitly locked descendant object with multiple
parents, the requester must set either a) an Rc | Rs | Ra lock on it, if it is a leaf object, or b) an RIWc | RIWs | RIWa lock, if it
is a non-leaf object.

4

3

Before requesting an Rc | Rs | Ra mode lock on a non-root object, the requester must hold a path to the root in IRc or IWc | IRs
or IWs | IRa or IWa mode. In addition, before accessing any implicitly locked descendant object with multiple parents, the
requester must set an Rc | Rs | Ra lock on it.

Before requesting an IWc | IWs | IWa mode lock on a non-root object, the requester must hold a path to the root in IWc or
RIWc | IWs or RIWs | IWa or RIWa mode.

2
Before requesting an IRc | IRs | IRa mode lock on a non-root object, the requester must hold a path to the root in IRc or IWc |
IRs or IWs | IRa or IWa mode.

1

7

8
A W mode lock can be directly set by the requester on a non-root object with multiple parents, but if it has only one parent, the
requester must hold the parent in IWc | IWs | IWa, RIWc | RIWs | RIWa, Wc | Ws | Wa, or W mode.

Before inserting an object, the requester must hold the parent in IWc | IWs | IWa, RIWc | RIWs | RIWa, Wc | Ws | Wa, or W mode.9

requester must hold the parent in IRc | IRs | IRa, IWc | IWs | IWa, Rc | Rs | Ra, RIWc | RIWs | RIWa, Wc | Ws | Wa, R or W mode.

Figure 16: Locking rules.granted because this object was free. The same may hap-pen for the object turtle-soup as long as T2 tries to accessit. When trying this, either T2 must wait, if the Ra lock onthis object is still held by T1, or it may be granted, if T1has already terminated.
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shrimp-cocktailFigure 17: Avoiding conicts with implicitly locked objects.The rules for requesting conventional locks (7-8)Proceeding with the rules, the seventh rule establishesthat a conventional read lock may be granted immediatelyto the requester when the object in question has multipleparents. The reason for that comes from the rules 4, 5, and6, which state that those objects must be always locked ex-plicitly. Hence, if the object is free from locks, it meansthat no transaction is accessing it and the conventional readlock may be granted. On the other hand, if some transac-tion does access it, any conict may be found directly inthe object because it is certainly locked, and so we do notneed to traverse a path to the root. Referring to the currentexample above (Fig. 17), transaction T1 could request a con-ventional R lock on the object turtle-soup, instead of an Ralock. When requesting this lock, T1 may be immediatelygranted without further requirements, because the objectturtle-soup has two parents and is currently free from locks.In turn, as soon as transaction T2 tries to access this object,it realizes that it has two parents, and explicitly requests a

Wa lock on it, thereby detecting the conict. However, ifthe object has only one parent, one does not know whetherany other transaction has already implicitly locked and ac-cessed this object in a conicting mode, and hence one musttraverse a path to the root with intention locks looking forpossible conicts. The type of those intention locks must berequested in accordance to the relationship between the ob-ject and its unique parent. Finally, conventional write locksare dealt with in a similar way by the rule 8.The rules for insertion/deletion of objects (9-10)The ninth rule copes with the insertion of objects inthe KB. Before explaining it, it is convenient to notice that�rstly, we assume that an object is always inserted with atleast one relationship (when no relationship is provided bythe user, the object is considered to be an instance of global,see Sect. 2.1), and secondly, when the user speci�es many re-lationships, our protocol treats such cases as being an inser-tion of an object with one relationship, followed by as manyinsertions of edges (governed by rule 11) as asserted by theuser. Hence, the ninth rule must always handle the objectand its single parent. Finally, it states that before insertingan object, its parent must be held in at least intention writemode (and so recursively until the root object is reached).The type of such an intention write mode is dictated by theabstraction relationship being inserted, i.e., C type for clas-si�cation/generalization, S type for association, or A typefor aggregation. Fig. 18 provides an example of the lock re-quests needed for inserting an object. Suppose T1 wants toinsert the object cote-de-provence as an instance of wines.To accomplish this task, T1 must request an IWc lock onwines, the parent of cote-de-provence. In turn, this IWclock must be covered by IWc locks on the parents of wines.Just after holding those locks, T1 is then able to insert theobject cote-de-provence. As soon as cote-de-provence is in-serted, the lock manager grants a Wc lock on this object toT1, which holds it until it terminates. Particularly, this op-eration is susceptible to phantoms (discussed in Sect. 4.5.2).
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Figure 18: Locks for the insertion of an object.In turn, the tenth rule deals with deletion of objects in asimilar way, with the extra requirement that the object itselfmust be held in write mode. Notice that such a write lockimplies intention write locks on a parent, on a parent of theparent, and so forth until the root is reached. Also similarto the insertion, when an object with many parents is to bedeleted, our protocol treats such cases as many deletions ofedges (governed by rule 12) as necessary, until the object hasonly one parent. Finally, the type of such locks are dictatedby the abstraction relationship in question.The rules for insertion/deletion of edges (11-12)The eleventh rule copes with the insertion of edges in theKB graph, i.e., the creation of new relationships between ob-jects. It states that for inserting an edge, the object must beheld in write mode, and the parent in at least intention writemode, according to the abstraction relation being inserted.Fig. 19 illustrates the use of this rule, complementing the lastexample. Suppose T1 wants to connect cote-de-provence asan element of french-wines. Following the rule 11, T1 mustrequest a write lock on this object, preferentially a Ws lock,since it is applying the association concept. However, thisobject is not an element of any other object yet, what makesimpossible the acquirement of a Ws lock on it. In such par-ticular cases, a transaction is allowed to acquire a write lockof another type. Since cote-de-provence is an instance ofwines, T1 acquires a Wc lock on it (from the last example).Thereafter, T1 must require an IWs lock on french-wines,the new parent of it. In turn, this intention lock requiresintention on the parents, recursively. Finally, after holdingall the required locks, T1 creates the new relationship. Aswe can see, the insertion of an edge is a bit more compli-cated operation, because the transaction does not know apriori which are the roles of the object itself and its parentin the current state of the KB. The same does not happenfor the deletion of an edge, which is treated by the rule 12.In such cases, the transaction does know the current rolesof the objects, and by this way the path it must traverse forrequesting locks.
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T1: IWsFigure 19: Locks for the insertion of an edge.The commit rule (13)The thirteenth rule is responsible for always producingstrict executions [BHG87], when it requires the locks of atransaction to be released only at its end.

4.5 Final Considerations4.5.1 DeadlocksOur protocol is susceptible to deadlocks. However, it su�ersfrom a kind of deadlock which does not happen in the GLP,namely, deadlocks with, additionally, implicit locks. Thereare a lot of strategies to detect deadlocks. Timeout andwaits-for-graph [Ho72] are the most popular ones. Particu-larly, we feel that timeout does not always o�er an optimalsolution to deadlocks. Although being very easy to imple-ment, the number of transactions that may be unnecessarilyaborted and restarted again may be unacceptably high, dueto the impreciseness of this technique. On the other side,waits-for-graph shows a very good precision for all kindsof transactions, independently of their duration. An im-plementation and comparison between both techniques issubject of our future work.4.5.2 PhantomsAnother important point is that granular locks provide phys-ical locks, and being so we have also problems with the so-called phantoms in our protocol. The most reasonable solu-tion we found is to delegate to the transactions the decisionabout tolerating or not phantoms. If a transaction decides toavoid phantoms at all, it must then request exclusive typedlocks on the object in the next higher level of the graphit is currently working on (what is foreseen by our lockingrules). Taking this measure accordingly, no phantoms mayhappen because no other transaction is able to access anydescendant of such an object, with respect to the workinggraph. On the other hand, such a measure may signi�cantlydecrease the concurrency because the object as well as acertain subset of its descendants stay inaccessible to othertransactions for the time the insert or delete transaction isrunning. Therefore, due to such pros and cons, we decidedto delegate to transactions the choice among either greaterconcurrency with phantoms or lower concurrency withoutphantoms.4.5.3 Lock ConversionIn our protocol, lock conversions are handled accordingly tothe type of lock. To put it another way, a transaction mayupgrade a C type lock to another one of this same C type,but not to one of A type or S type, for example. Fig. 20shows the lock conversion tables for conventional and typedlocks. To give an example, if one has an IWc lock on anobject and requests an Rc lock on it, then the new mode isRIWc.
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4.5.4 Lock EscalationLock escalation is also taken into consideration by our pro-tocol. By means of it, for example, if a transaction hasacquired an IWc mode lock on a class, and starts requestingtoo many Wc locks on its instances, our protocol will try togrant a Wc lock to this transaction on this class, implicitlylocking all its instances and alleviating its task of request-ing so many explicit locks. Nevertheless, there is an aspectour protocol must cope with. As stated by the locking rules4, 5, and 6 of our protocol, the transaction must requestalso explicit locks on implicitly locked objects with multipleparents. Due to this requirement, a lock escalation in ourprotocol alleviates the transaction from requesting locks juston those descendants with a single parent, but the same isnot true for the objects with multiple parents. We believethis aspect will not prejudice too much the performance oflock escalation in our protocol. Notwithstanding, if our pro-tocol is likely to be faced with situations like, for example,a class has thousands of instances and all of them have anyother parent, then our protocol may labor under di�culties,because even with a lock escalation, a transaction requestinga lock on this class will be forced to request thousands oflocks on its instances, due to their other parents. A possiblesolution to this possible problem is to provide a lock esca-lation covering all the parents of the objects being locked,and not only on the parent the transaction has acquired anintention lock. However, this proceeding, besides the possi-bility of being very costly, could also decrease the concur-rency, because too many objects would be explicitly lockedby just one transaction. A detailed investigation of this as-pect is also another point we will take into consideration inour future work.5 ConclusionsWe have presented a CC technique tailored for KBMSs. Themost important point of our technique is the partition of theKB graph into many logical ones, and the appliance of con-ventional and granular locks to each one of these partitions,providing many di�erent lock types and taking the neces-sary precautions with respect to the dynamism of the KBgraph. In this manner, we have captured more of the se-mantics contained in the KB graph in the sense that wedo not consider descendants of an object as being simplydescendants of it, but, on the contrary, descendants withspecial characteristics and signi�cance, which are based onthe abstraction relationships of generalization, classi�cation,association, and aggregation. By means of this observation,we can really obtain a high degree of concurrency, with afull exploitation of all inherent parallelism in a knowledgerepresentation approach.In summary, our protocol has four main characteristics.First, it o�ers di�erent granules of locks, varying from a sin-gle object (handled by the conventional locks) to di�erentsets of objects (typed locks). Second, it considers implicitlocks, alleviating the task of managing too many locks dueto the high number of objects in real world applications.Thirdly, it copes well with multiple abstraction relations toobjects, by means of the requirement of explicitly lockingobjects with multiple parents, which, in turn, relaxes thenecessity of covering all paths to the root with intentions,reducing it to only one path. Fourth, it interprets the re-lationships between objects with respect to their semantics,providing typed locks for all abstraction concepts. Finally,such power, exibility, and parallelism are by no means prof-
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