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Abstract

Advanced data models and knowledge models together with their powerful query and manipu-
lation languages have already proven to be essential for systems that support non-standard
applications such as engineering and knowledge-based application systems. In order to raise
their usability and acceptability, it is overly important to provide adequate implementation
techniques that guarantee extensible and efficient processing for this advanced DBMS scenario.
In this paper we present design alternatives and implementation techniques for such kinds of
advanced DBMS, strongly focussing on query and knowledge processing in client/server archi-
tectures. To discuss our considerations and implementation technologies, we refer to the
knowledge-processing framework of the KBMS KRISYS, although our ideas are generally
applicable to (advanced) DBMS.
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1. Introduction
In the last years, the modeling and querying facilities required by advanced applications have
consolidated, and standardizations like SQL3 [ISO94] and ODMG [ODMG93] have emerged.
Consequently, current research must not focus on data models and their languages only, but
should pay increasing attention to improving system performance through adequate processing
models and implementation technologies. Prominent examples adhering to that direction come
from the area of object-oriented databases, as mentioned in, e.g., [OHMS92], knowledge base
management systems (KBMS), e.g. [In84, Ma91, KL89], or other post-relational DBMS, as for
example mentioned in [HS93, Gr94, LLPS91, LVZZ94, CR94].
KRISYS (Knowledge Representation andInferenceSystem), a KBMS developed at the
University of Kaiserslautern, features an object-oriented knowledge model and a set-oriented,
declarative query language as user interface. At the last BTW conference, we reported experi-
ences with the first implementation of KRISYS, which were based on a number of applications
modeled with this KBMS [DLMT93]. While the object model turned out to be sufficiently
expressive, the lack of an adequate concept for modeling semantic integrity constraints became
apparent. Regarding the processing model and implementation of KRISYS, we learned that, for
performance reasons, we needed a better adaptation of processing to the workstation/server
architecture KRISYS has been conceived for. Application-oriented processing should be
performed at the workstation, relying on a buffer for exploiting locality of reference.
As a result we started a major redesign of KRISYS We put special emphasis on knowledge-
processing techniques, especially on query processing and constraint management. In this paper
we report on the design decisions and implementation techniques that guided the development
of advanced knowledge processing in the new version of KRISYS.
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From a knowledge-modeling point of view, the representational framework for semantic
integrity constraints resembles the major improvement in the new KRISYS version. Concerning
knowledge-processing techniques, the new KRISYS is conceived for client/server environ-
ments with most application-oriented processing being done in main-memory at the client side.
Consequently, a client infrastructure for efficient and effective knowledge processing close to
the application is indispensable. KRISYS supports main-memory query-processing which asks
for run-time optimization to dynamically exploit the client buffer contents at run time to achieve
efficient overall query processing. In addition, this framework for advanced knowledge-
processing supports extensibility at different levels of query processing to cope with later exten-
sions either of the query interface (shifting more application-oriented semantics into the scope
of query processing) or of evaluation methods (such as improved join algorithms) [TD93].
Moreover, a new, flexible mechanism for supporting integrity constraints is added to the system
features and realized within the same framework.
Another major design decision has been made to improve the interaction between client and
server components. The object-server approach, which turned out to be a performance
bottleneck in the first KRISYS implementation, is replaced by a query-server architecture that
supports the delegation of subqueries. In contrast to traditional query servers, this approach
allows to exploit existing buffer contents at the client and improves the overall balance of
processing across the client-server architecture. Moreover, it supports set-oriented retrieval of
objects from the server, yet avoiding some of the drawbacks encountered with page-server
approaches, such as [LLOW91], whose effectiveness strongly relies on appropriate object-
clustering mechanisms.
All these design and implementation decisions are thoroughly motivated by the lessons learned
from the first implementation of KRISYS [DLMT93] and therefore do not need to be restated
in this paper, which is organized as follows. Sect. 2 provides a brief overview of the KRISYS
object model and its query language, giving the conceptual starting point for our re-implemen-
tation of KRISYS as being described in Sect. 3. A basic understanding of the tasks of each
component relevant to knowledge processing is provided and the interaction of these compo-
nents is demonstrated using a small example. The main motivation for this presentation is to
establish a framework for the detailed discussion of architectural components and the subse-
quent steps of query optimization and processing in Sect. 4. Finally, Sect. 5 sums up the major
results of the paper, discusses related work, and gives a brief outlook to future work.

2. The Object Model and Query Language of KRISYS - A Brief Review
In this chapter, we summarize the main features offered by the object model of KRISYS, as
adopted from the first version of KRISYS. The model extensions related to integrity constraints
will be discussed in Sect. 4.4.
The KOBRA (KRISYSObjectRepresentation) object model supported by KRISYS is compa-
rable to object-oriented data models [Ca91]. An object is uniquely identified by a name (i.e.,
object identifier), and contains a set of attributes to describe its characteristics. Attributes can
be of two kinds: slots are used for representing properties of an object and for modeling relation-
ships to other objects, methods are used for expressing object behavior. Moreover, attributes can
be further described by aspects, defining, e.g., the cardinality of a slot. KRISYS supports the
abstraction concepts of classification, generalization, association, and aggregation [Ma91]
whose semantics (e.g., inheritance along the classification and generalization relationships) is
automatically enforced by the system. Objects are typically organized in hierarchies or lattices
defined via those abstraction concepts. For the generalization and classification relationships,
this means that both multiple inheritance and multiple instantiation (i.e., an object is a direct
instance of more than one class) are supported. In addition, the object model of KRISYS
provides various other features, as, e.g., integrity constraints and rules, not usually found in
object-oriented models [Ma91, De93].



KOALA (KRISYSObjectAbstractionLanguage) [Ma91], a descriptive, set-oriented language,
constitutes the user and application interface of KRISYS. KOALA features two powerful opera-
tions, ASK to query the KB, and TELL to change the state of the KB. For example, the ASK
statement given in Fig. 1 selects all furnishings costing more than US$1,000, which are suitable
for rooms located at the south side of the house. Please note that, using the MESSAGE
predicate, a method 'is-suitable-for' is invoked for determining suitability. For reference
purposes, we numbered the lines of the query. We assume a KB containing generalization
hierarchies forrooms and furnishings. Symbols with a leading question mark are query
variables, similar to tuple variables in SQL. They may appear in the qualification clause and the
projection clause. In our example, the projection clause states that the complete objects
retrieved constitute the result of that query. The query refers to the abstraction concept of classi-
fication and reads as follows: Firstly,instances of rooms (direct as well as indirect ones,
indicated by the asterisk behind the class’ name) are retrieved and bound to query variable ?X
(line (1.1)). The resulting set of objects is further restricted by the condition that attributeorien-
tation contain value ‘South’ (line (1.2)). In addition to instances ofrooms, the query also refers
to instances offurnishings which must have a price higher than US$1000, represented by the
value of attribute ‘price’ (lines (1.3), (1.4)). Finally, a method is called to check which
furnishings are suitable for which rooms (line (1.5)).

3. The New KRISYS Architecture and Processing Model
In the following, the new architecture, as shown in Fig. 2, will be presented to give a basic
understanding of the tasks of each system component and to demonstrate the interaction of the
components using a small example. The main motivation for this presentation is to establish a
framework for the detailed discussion of architectural components in subsequent sections, thus
providing the background for understanding the role of each component in a global context.

3.1 Overview of the Architecture

The server part, resembled by thePRIMA kernel [HMMS87], concentrates on an efficient and
reliable KB management. At its interface, it features a composite-object data model, the MAD
(Molecule-Atom Data) model, and its query and manipulation language MQL, for application-
independent data management. The workstation side of KRISYS is partitioned into several
components organized on three hierarchical layers. The Working Memory is seen as a passive
application buffer controlled by the Context Manager, which is keeping a declarative
description of the Working-Memory contents and is responsible for loading and unloading sets
of objects into or from the Working Memory. To transfer objects between server and
workstation, the Context Manager interacts with the Mapping System, which transforms objects
from MAD to KOBRA structures and vice versa. This component is also responsible for gener-
ating appropriate mapping schemes for the processing phases of an application. At the next
layer, the Constraint Manager appears as an additional component besides the KOBRA
component. It performs all activities related to checking or processing the constraints of the KB.
The topmost layer, the KOALA Processing System, provides the user (and application system)
interface. Its task is to prepare and control the processing of KOALA queries.
In the following, we will give an overview of the tasks of each component located at the
workstation side. Moreover, we will sketch the overall processing model of the new architecture
by showing the interaction of the different parts of the system during query processing.

(1.0)(ASK ((?X)(?Y))

(1.1) (AND (IS-INSTANCE ?X rooms *)

(1.2) (EQUAL South (SLOTVALUE orientation ?X))

(1.3) (IS-INSTANCE ?Y furnishings *)

(1.4) (> (SLOTVALUE price ?Y) 1000)

(1.5) (MESSAGE is-suitable-for ?Y ?X)))

Fig. 1: Sample ASK statement.

projection clause

qualification clause



Mapping System

The Mapping System provides KOBRA objects as uniform knowledge-representation format
for the workstation-based components of KRISYS. Thus it isolates workstation-based
knowledge processing from representational aspects of the current server DBMS. Moreover, the
Mapping System allows the generation of optimized, application-dependent mapping schemes
and their utilization during application processing. Such a mapping allows us, for example, to
combine several interrelated classes in a single (PRIMA) table or to split one class across
several tables in order to improve the performance of critical DML operations. This task can be
divided into the following independent subtasks [Su91]:

• generation of an optimized mapping for a specific application,

• transformation of delegated KOALA subqueries into queries of the PRIMA kernel, and

• adaptation of the mapping in case of changes in the KB structure.

These tasks are accomplished by the following internal components of the Mapping System.

• TheMAD-Schema Generator establishes an efficient mapping tailored to the needs of the ap-
plications [Su91]. It is activated after the design of the KB has been completed, and produces
a mapping scheme based on the KB structure as well as processing characteristics.

• According to the mapping information produced by the Schema Generator, theMapping
Component handles the delegation of KOALA (sub-)queries [Sch91]. It produces appropriate
MQL queries, which are evaluated by the PRIMA kernel, and transforms the corresponding
results into the data structures of the Working Memory.

• Operations like the definition or deletion of classes, attributes, etc., which are usually regard-
ed as schema-evolution operations, may induce changes on the mapping produced by the
Schema Generator. These changes, as well as transformations of data into the new represen-
tation, are accomplished by theTransformation Component [Kr93].

Working Memory

The general task of the Working Memory is to support the concept ofnear-by-the-application
locality of processing when KOBRA objects are referenced during query and constraint
processing. In order to accomplish this task, the Working Memory

• provides data structures and operations for representing and effectively manipulating objects
in a format directly reflecting the semantics of the knowledge model,

Fig. 2: A sketch of the KRISYS system architecture.
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• allows efficient set-oriented processing of objects by the KOALA Processing System through
so-calledAccess Structures (AS), combining functions similar to DB scan-operations with
main-memory index facilities, and

• supports pointer-like navigational access or traversal of objects in abstraction hierarchies to
optimize the processing of model-inherent constraints.

Transformations of the object format take place whenever objects are transferred from the
server and stored in the Working Memory. Such transformations include swizzling pointers
representing inter-object and abstraction relationships, construction of appropriate Access
Structures, etc. [La91].
While the Working Memory provides basic functions for modifying its contents, buffer
management is performed by the Context Manager introduced later in this paper.

KOALA Processing System
The KOALA Processing System accepts a KOALA statement, transforms it into an algebra
graph, performs rewrite optimizations, and generates a plan-operator graph (i.e. execution
plan), which is then compiled and executed [TMMD93].
Obviously, the evaluation of a query should exploit the Working-Memory contents as far as
possible. To reach this goal, the KOALA Processing System closely interacts with the Context
Manager as well as with the Constraint Manager to identify which parts of the query should be
performed at the workstation side and which parts are to be delegated to the server. This
decision is reflected by different types of plan operators in the execution plan (e.g. 'Buffer-
SELECT' and 'DBMS-SELECT').

Context Manager
During the generation of an execution plan, the KOALA Processing System has to find out
which parts of the query may directly be executed on the buffer contents, because the required
objects are already present in the Working Memory. A buffer description based on object identi-
fiers is not sufficient for accomplishing this task [De93, DLMT93]. Instead, a declarative
description is required.
It is the major task of theContext Manager to maintain such a declarative buffer description. It
can be incrementally constructed from the subqueries that are delegated to the server since the
selection conditions of these queries perfectly describe the results (i.e. the contexts) that are
loaded into the Working Memory. To provide the required information for the KOALA
Processing System, the Context Manager performs special context-inferencing operations
comparing parts of a query to the contexts of the buffer and producing a declarative description
of those object sets that must be fetched from the server.

KOBRA
The KOBRA component provides the other components, mainly the KOALA Processing
System, with a basic set of functions for modifying and retrieving information in the Working
Memory on a 'per object' basis. This functionality, which includes reading/changing attribute
values, object creation/deletion, connection/disconnection of abstraction relationships, method
execution, etc., incorporates the semantics of the KOBRA knowledge model.

Constraint Manager
The task of maintaining KB consistency according to the given constraints is fulfilled by an
additional component, theConstraint Manager [De93]. Based on events reported by the
KOALA Processing System or the KOBRA component (e.g., atomic write/read operations,
begin/end of composed activities, etc.), the Constraint Manager initiates actions to ensure
consistency, or stores the events for later, deferred activation. Moreover, the creation, deletion,
or modification of constraints is reported to this component.
Additionally, the Constraint Manager provides information about certain types of constraints to
the KOALA Processing System necessary for rewriting purposes during query optimization.



3.2 Interaction of System Components During Query Processing

To illustrate the interactions and dependencies between the different system components of the
new KRISYS architecture, we sketch the evaluation of a simple example query. We refer to the
query already presented in Fig. 1.

After having been submitted to the KOALA Processing System (Fig. 3➀), the statement is
transformed into an algebra graph, on which algebraic optimizations are performed (Fig. 3➁).
These involve query rewrites commonly applied in relational DBMS, such as subquery to join
transformation, selection-push-down, etc.

In the next step, an appropriate execution plan will be generated. At this stage of processing, the
KOALA Processing System will interact with the Context Manager (Fig. 3➌) to determine
which parts of the query can be executed on the Working-Memory contents and which have to
be delegated. Not all parts of the query are considered for delegation. For example, all opera-
tions involving method calls, like the join operation of rooms and furnishings resulting from the
activation of method ‘is-suitable-for’, can only be performed at the workstation side [De91]. To
provide the required objects, the Context Manager analyzes the descriptions of the contexts
already installed in the Working Memory. There may, for example, be no context containing
rooms, so that an appropriate answer is given to the KOALA Processing System, which will
then consider the delegation of the corresponding subquery. It will, however, not always be that
easy. In many cases there will be contexts that somehow overlap with the set of objects
requested by the subquery. For this purpose, the Context Manager supports specialized
inference capabilities that allow to determine a declarative description of those objects that are
still missing and consequently have to be fetched from the server.

In our example, the Context Manager would return the answer that the selection subquery
involving furnishings can completely be supported by an existing context. Using the infor-
mation provided by the Context Manager, the KOALA Processing System produces an appro-
priate execution plan. For this task, the KOALA Processing System additionally needs an
estimation of execution costs. Here, the mapping scheme chosen for the current application
plays a very important role. To provide the required cost estimations, the Context Manager
therefore enriches its description of execution alternatives with cost information provided by
the Mapping System, before passing it to the KOALA Processing System (Fig. 3➍).
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Depending on cost information, the KOALA Processing System may even choose not to exploit
some of the inferences drawn by the Context Manager.

Additionally, the KOALA Processing System must interact with the Constraint Manager (Fig.
3 ➎)2. This is necessary because the evaluation of predicates in the selections to be delegated
might involve the activation of constraints, which cannot be performed by the server [De91].
For example, the attribute 'price' offurnishings may be involved in a constraint relating it to the
additional features of the furnishing. Depending on how the KB designer has chosen to
represent this constraint (e.g., defining the price offurnishing as a virtual attribute, whose value
is computed on demand), additional rewrite operations may be necessary.

Let us assume that the subqueries chosen for delegation do not require the activation of
constraints, so that the execution plan generated by the KOALA Processing System is
confirmed and can be compiled and executed (steps➅ - ➉). The execution of Working-
Memory plan operations is based on Access Structures containing sets of object tuples (Fig. 3
➏). Working-Memory operators appearing as leaves of the plan-operator graph rely on contexts
residing in the Working Memory. To this end, the Context Manager provides initial access to
the associated contexts organized in particular Access Structures managed by the Context
Manager. In our example, an Access Structure containing the furnishings is provided. Each
operator can be understood as producing a temporal Access Structure to be consumed by its
successor. The functionality required to implement the operations performed on each element
of the Access Structure during the execution of a plan operator (e.g., accessing the attribute
'price’ of the instances offurnishings) is provided by the KOBRA component (Fig. 3➐).

The execution of DBMS plan-operators is performed in several steps. First, the Mapping
System is consulted to produce an equivalent server DML operation based on the actual
mapping scheme (Fig. 3 ➑). This DML operation is sent to the server and executed (Fig. 3➒).
The result of the query is then returned to the Mapping System, which transforms it into the
Working-Memory representation (i.e., KOBRA objects). Finally, the resulting objects are
inserted into the Working Memory and collected in a new Access Structure (Fig. 3 ➓). This last
step is performed by the Context Manager, which registers the result of the delegated subquery
as a new context and provides it as an Access Structure to subsequent plan operators.

Plan execution is continued in the above described manner and completed by returning the
result of the query to the user or application.

4. Knowledge Processing in KRISYS

4.1 Working Memory

As described above, processing of the Working-Memory contents is not performed ‘directly’ by
the application program, but is carried out through the KOALA Processing System, the
Constraint Manager, and KOBRA. The Working Memory therefore must provide functionality
for efficiently supporting the processing requirements of these components [La91].

Efficient access of information on a ‘per-object’ basis

An important processing requirement is the fast localization of objects based on their identifiers.
This is achieved through an object hash-table. Moreover, efficient access to information about
the objects (i.e., attribute information, aspect information, etc.) is also supported. Such access
usually occurs repeatedly to different attributes of the same object, or to different aspects of the
previously accessed attributes, and can therefore be seen as a kind of ‘navigation within the
object’. For example, an update operation involves the localization of the object, the write

2. Please note that points➂ - ➄ are not necessarily executed in the sequential order chosen above for illus-
trating the interactions.



access on an attribute within the object, and additional accesses to aspect information associated
with the attribute in order to record events and notify the constraint affected by the update.

The different internal representational levels (object, attribute, and aspect) are directly reflected
in the Working-Memory representation (Fig. 4 c), and are linked via main-memory pointers.
The pointers allow an efficient retrieval of attribute and aspect information based on the data
structure of the object. In Fig. 4 c, we have sketched this representation for the objectroom_1.
The chosen representation has the additional advantage to support the structural heterogeneity
of objects in a single, uniform data structure for accessing object information. For example,
even objects belonging to the same class may have varying structures because they belong to
structurally different subclasses. Moreover, some objects might be instances of multiple classes,
or some attributes may have been defined only for individual objects. Due to the above repre-
sentation scheme, information about objects can be retrieved and modified on a uniform basis
without having to access additional meta information (e.g. class descriptions) in order to
interpret the data structures.
Moreover, the Working Memory offers functions for creating and deleting data structures for
objects, attributes, and aspects, as well as for read/write access.

Fast navigation across abstraction hierarchies

It is important to speed up the retrieval of objects via abstraction relationships (e.g., all
‘transitive’ instances of a class) and provide means for efficiently guaranteeing model-inherent
integrity constraints. For example, the creation of a new attribute in a class requires the traversal
of the class hierarchy to perform inheritance. Consequently, the abstraction relationships
between objects are materialized as main-memory pointers. This materialization has been
depicted in Fig. 4 b for the generalization/classification hierarchy ofrooms.
Besides operations for establishing/deleting abstraction links among objects, the Working
Memory offers additional functionality to traverse abstraction hierarchies and perform opera-
tions on the traversed objects. These functions, which are mainly used for maintaining model-
inherent integrity, can be supplied with parameters that determine the relationships to be
followed, specify a search strategy for the traversal (e.g., breadth-first), or denote operations to
be performed at each node during the traversal. For example, attribute inheritance was easily
implemented as a breadth-first traversal following thesubclass-of andinstance-of relationships,
performing the creation of a data structure for an attribute every time a node is reached, and
testing for possible inheritance conflicts which will determine the next step in the traversal.

Direct support of set-oriented processing of Working-Memory objects

For set-oriented processing of objects, the Working Memory allows the KOALA Processing
System to create, maintain, and exploit collections of objects organized as Access Structures (cf.
Fig. 4 a). In order to be suitable for the purposes of the KOALA Processing System, an Access
Structure must contain items that match the internal format used during query processing, the

Access Structure

room_1rooms

abstraction
hierarchy object

Fig. 4: Organization of knowledge in the Working Memory.

attribute
aspect

(a) (b) (c)



so-called KOALA tuple-format, which will be described in detail in section 4.2.2 and basically
consist of a single object or several associated objects.
As shown in Fig. 4 a, these tuples do not contain copies of Working-Memory objects, but are
associated with the objects via main-memory pointers. In this example, the Access Structure
contains pairs of objects resulting from a join. This ensures that during query processing no
redundancies are introduced by the KOALA Processing System. Intermediate results are
produced by employing a sophisticated concept for sharing object information even at the
attribute and aspect level, using multiple pointers to the same information.
The Working Memory provides the following functionality for exploiting Access Structures.

• Creation and deletion of Access Structures.

• Opening and closing cursors for Access Structures, which allow to scan Access Structures in
forward or backward direction. Multiple cursors can be defined for the same Access Struc-
ture, so that an intermediate query result can be exploited by several ‘threads’ of the query
execution simultaneously.

• Functions for reading, inserting, removing, and replacing tuples of Access Structures relative
to the cursor position.

In its basic form, an Access Structure is organized as a list of KOALA tuples. In addition,
Access Structures can also be organized as trees or hash tables, thereby supporting the mainte-
nance of main-memory indices. In such a case, additional information must be provided at the
creation of Access Structures, describing the key attributes of objects to be indexed, and the
associative access to the contents of Access Structures is supported through additional function-
ality. With these facilities, the KOALA Processing System may fully exploit the contents of the
Working Memory during query processing. Further optimizations are provided through the
usage of Access Structures as main-memory indices, which may be introduced dynamically or
temporarily (i.e., in the scope of a single query) during query processing.
In summary, the Working Memory directly and effectively supports the requirements of the
other system components concerning the processing of object information, thereby providing a
suitable basis for knowledge processing in the workstation component of KRISYS.

4.2 Query Processing
Query Processing is performed by the KOALA Processing System. To guarantee a semantically
clear and streamlined system design, we partitioned its overall tasks into a processing
framework and a part responsible for knowledge-model semantics. While the processing
framework is based on an algebraic model that allows conventional (relational) algebraic
optimizations to be used to a large extent, knowledge-model semantics is founded on the
functionality provided by KOBRA. In the following, we will discuss both issues in more detail.

4.2.1 Knowledge-Model Semantics
Except for the notion of object structures, the processing framework of the KOALA Processing
System is completely independent of knowledge-model semantics which is introduced viabase
predicates. Base predicates represent an intermediate level between KOALA and KOBRA.
While KOALA expressions are declarative, state-oriented, and set-oriented, base predicates
operate object-wise, however still being declarative and state-oriented. Since base predicates
resemble assertions on single objects, they can be easily mapped to the procedural level of
KOBRA. Fig. 5 depicts the different representational levels and their processing characteristics.
To the right side of Fig. 5, we sketched how an example KOALA statement is translated to base
predicates and the KOBRA level. We use a TELL asserting that all corridors (being instances
of that class, denoted by query variable ?C) are adjacent to any room ?R lying in the same
private area ?A. Let us have a look at the way the assertion is translated to base predicates. The
assertion to be met is that a qualifying corridor ?C is a value of attribute ‘neighboring-rooms’
of any adjacent room of that private area. It is translated into a piece of code at the KOBRA level



that reads the actual value of attribute ‘neighboring-rooms’ and adds the current value of ?C  to
the attribute values if it is not yet included.

4.2.2 Processing Framework

The overall steps of query processing proceed in a similar fashion as those in relational DBMS
[HFLP89]: first, an algebra graph is generated and subsequently optimized, i.e., rewritten;
thereafter, a plan-operator graph is constructed; finally, executable code is assembled, and the
query is actually evaluated. Fig. 6 gives an overview of the steps and representational levels of
query processing. We will discuss them more concisely in the following.

Algebra Level

Algebra operators work on data streams consisting of sets of n-tuples which they accept as input
and also produce as output. A data stream can be seen as a table made up of n columns bound
to query variables. A table is represented as an Access Structure in Working Memory, and each
n-tuple (table entry) represents an Access-Structure entry and comprises n elements, each
featuring object level, attribute level, and aspect level. The elements of a column may be
unnested on the attribute level and/or the aspect level, depending on the operations to be
performed on that column. Fig. 7 depicts an example table consisting of 2-tuples and demon-
strates the effects of unnesting/nesting the first column on the attribute level3.

KOALA algebra consists of three kinds of operators. The first kind comprises operators that are
responsible for handling columns or object structures (e.g., COL-COPY, COL-PROJECT,
COL-UNION, NEST, UNNEST). The operators of the second kind provide functionality
comparable to conventional relational algebras, e.g., EXIST, FORALL, JOIN, PRODUCT, or
SELECT. The third kind is responsible for modifications of the KB. As described above,
KOALA algebra employs state-oriented base predicates for realizing knowledge-model
semantics. Consequently, the algebra level need not consider the actual state of the KB, and
needs only a single operator, ASSERT, to carry out modifications. In relational algebras,
however, where state-orientation is not known, several operators are required to carry out
changes in the database (e.g., UPDATE, INSERT, DELETE).
To illustrate how a query is translated into an algebraic representation, we refer to the sample
TELL statement and the way it is decomposed into base predicates shown in Fig. 5. First, an
algebra graph is constructed (cf. step➊ from Fig. 6). It is shown in Fig. 8 (a). Firstly, instances

3. Nesting and unnesting of attributes is used, for example, during projections.

KOALA declarative
set-oriented
state-oriented

base predicates

(TELL (IS-IN ?C (SLOTVALUES neighboring-rooms ?R))
WHERE (EXIST ?A

(IS-INSTANCE ?A private-areas *)
(IS-INSTANCE ?C corridors *)
(IS-INSTANCE ?R rooms *)
(IS-AGGREGATION ?A has-rooms ?C)
(IS-AGGREGATION ?A has-rooms ?R)))

Conditions:
is-inst(?A, private-areas), is-inst(?C, corridors), is-inst(?R, rooms)
is-aggr(?A, has-rooms, ?C), is-aggr(?A, has-rooms, ?R)
Assertions:
has-attval-member(?R, neighboring-rooms, ?C)

declarative
object-wise
state-oriented

KOBRA procedural
object-wise
state-dependent

.....
actval:= read-attr(?R, neigboring-rooms)
(if not(member (?C, actval))

add-attr-value(?R, neighboring-rooms, ?C)
......

level processing example

Fig. 5: Mapping of KOALA to KOBRA.



of areas are selected. Since relevant rooms and corridors must be components of some private
area, the corresponding object identifiers can be retrieved from attributehas-rooms of each
selected area. To access this attribute, each area object must be unnested on the attribute level.
Thereafter, all objects referenced by attributehas-rooms of a given area can be retrieved. Since
such an evaluation of object references is quite a frequent operation, a special operator
FOLLOW-UP has been added to the KOALA algebra. After the FOLLOW-UP, rooms and
corridors are selected separately. Those belonging to the same private area are joined and
provided as input to the assertion part of the TELL statement.

4.2.3 Plan Level

Our plan-operator approach involves the concepts shown in Fig. 9. We briefly recapitulate the
salient features of the plan level; for a detailed description we refer to [TD93, TGHM94]. Plan-
operator templates realize asimple processing paradigm for plan operators, as well asextensi-
bility at the plan-operator level. Knowledge-model semantics is introduced into plan-operator
processing via base predicates supplied as parameters to the plan operators. This guarantees
extensibility of the query language without affecting existing plan operators. Subgraphs of a
plan-operator graph are combined to units of execution, calledblocks. Blocks are constructed
such that intra-block processing works in a pipelining mode, i.e. tuple-wise, without the need
for intermediate result materialization. The concept ofLAS (logical Access Structures) provides
an adequate data structure for this kind of internal data flow. Data streams between blocks are
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Fig. 6: Processing of KOALA queries - basic steps.
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(living-room
(instance-of ((rooms)
(size ((24)

(possible-values (integer)))
(usages ((leisure)

(possible-values (inst-of usages))
(cardinality ([1 2])))))

...........

...

..... .....

column
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...
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...
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..... ...2-tuple
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materialized in the Working Memory and mapped to Access Structures, thus ensuringefficient
data flow between blocks. Moreover, the way in which all these concepts are combined warrants
efficient dynamic query optimization and the construction offlexible units of execution even at
run time. These characteristics were achieved by a modular design and realization of the plan
level.

Due to the workstation/server environment in which query processing is performed, deter-
mining the evaluation site of each algebra operator is a crucial issue (step➋ in Fig. 6). By
delegating operations to the server, the amount of data to be transferred into Working Memory
can be reduced. This  also results in less objects to be installed in Working Memory allowing a
better exploitation of its storage capacities. Deciding on the evaluation site of each operator is
based upon two criteria. Firstly, those algebra operators must be assigned to the workstation that
are either too complex to be evaluated by the server DBS or that cannot be transformed into
queries to the server due to the current mapping to the server DBMS.4 Secondly, for perfor-
mance reasons, the KOALA Processing System must exploit the contents of the Working
Memory (including indices, sort orders, etc.).

The first criterion can be tested at compile time so that a preliminary borderline between
workstation-based and server-based operations can be drawn (cf. Fig. 6, right side). Depending
on the contents of the Working Memory at run time, the operators below the borderline may be
assigned to workstation or server. Hence, plan-level manipulations can be definitively
completed only at run time, yet preliminary plan optimizations may be performed for those
operators definitively assigned to the workstation to save run-time effort (step➌ in Fig. 6).

At run time, the KOALA Processing System interacts with the Context Manager to compare the
actual contents of the Working Memory to the information referred to by the query at hand. If
the input to an operator already resides in Working Memory (as an Access Structure), the
producing subgraph5 is pruned and replaced by a pointer to the appropriate Access Structure.

4. For simplicity reasons, we shall not consider this aspect in this paper.
5. Consisting of one or more plan operators.

SELECT

Fig. 8: Example TELL statement.

is-inst(?A,private-areas)

ASSERT
has-attval-member(?R,neighboring-rooms,?C)

(a) algebraic representation (b) plan-level representation

UNNEST

FOLLOW-UP
is-aggr(?A,has-rooms)

SELECT
is-inst(?R,rooms)

SELECT
is-inst(?C,corridors)

DB-SELECT

UNNEST

FOLLOW-UP

Buffer-Seq-SELECT_2Buffer-Seq-SELECT_1

Nested-Loop-JOIN

server

workstation

ASSERT

AS

block

JOIN
attr-val(room-of,?C) = attr-val(room-of,?R)

Fig. 9: Constituents of our plan-operator concept.
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While this applies to operators above as well as below the preliminary borderline, for the latter
it also implies that these operators are assigned to the workstation, i.e., the borderline is moved
downward, and less operators must be delegated to the server (sketched in Fig. 6, right side).
For those subgraphs not yet assigned to workstation or server, two further situations may arise.
If the Working Memory does not contain any required input for a subgraph, the whole subgraph
must be evaluated at the server DBMS6, and the border between workstation and server remains
where it has been put at compile time. The second situation occurs if only part of the required
input is residing in Working Memory, and the rest must be fetched from the server. In this case,
basically two processing strategies are possible: to completely delegate the query to the server,
requiring to previously write back to the database the potentially updated portion of knowledge
installed in Working Memory, or to only complement the Working-Memory contents such that
the query can be performed in Working Memory. To solve this optimization problem, the
KOALA Processing System interacts with the Context Manager (step➍ in Fig. 6). This inter-
action and its outcome for our example query will be described in Sect. 4.3. Fig. 8 (b) shows the
resulting plan-operator graph7 assuming that no instance ofarea is residing in Working
Memory. Hence, the corresponding selection must be executed in the server and is transformed
into a server plan-operator (DB-SELECT). Since the subsequent UNNEST operator refers to
object structures of the knowledge model, it must be carried out at the workstation side. Conse-
quently, all its successors must be executed there as well, although evaluating the FOLLOW-
UP operator may result in additional queries to be sent to the server. Since making assertions
over the KB may involve the full functionality of the knowledge model, algebra operator
ASSERT is always transformed into a workstation-based plan-operator (of the same name).

The resulting plan-operator graph can be further optimized (step➎ in Fig. 6).

4.2.4 Dynamic Code Assembly and Execution

These tasks complete overall query processing (step➏ in Fig. 6). The plan-level representation
of a query is transformed into a graph made up ofblocks (sketched in Fig. 6, right side) which
are the units of execution in our query-processing approach. Blocks rely on the plan-operator
level, both conceptually and concerning their implementation [TGHM94]. Just like plan
operators, blocks accept one or more input streams and produce a single output stream. Blocks
are constructed based on the processing characteristics of plan operators to minimize the
amount of materialized intermediate results during query processing. Fig. 8 (b) shows the
blocks constructed from the plan-operator graph at hand. The UNNEST and FOLLOW-UP
operators can work in a pipelining fashion, and are therefore combined into a single block. The
same holds for the Buffer-Seq-SELECT_1 (alternatively Buffer-Seq-SELECT_2), NESTED-
LOOP-JOIN and ASSERT operators.8

Evaluating a query means executing the corresponding blocks. The most straightforward way
is to perform blocks in a sequential order defined by the inter-relationships of the block-struc-
tured graph. Additionally, our query-processing approach also permits parallel execution of
blocks [TMMD93].

Opposed to conventional query-processing systems requiringstrict compilation, we assemble
executable code by putting together precompiled functions, yet we may still choose to compile
a query, e.g., for complex queries or large amounts of data to be processed. We call this
approachdynamic code assembly [TGHM94], allowing to assemble executable code using fully
compiled functions by data structures containing function pointers.

6. Note that it has already been checked at compile time that all operators below the borderline can be
evaluated at the server.

7. For simplicity, we did not repeat the base predicates for the plan operators.
8. Note that, for this block being able to operate as a pipeline, the complete results of Buffer-Seq-

SELECT_2 must be computed previously. Only in this case, the NESTED-LOOP-JOIN can directly
process any new result being piped from Buffer-Seq-SELECT_1.



4.3 Context Management

It is the task of the Context Manager to provide the KOALA Processing System with infor-
mation about the Working-Memory contents during plan generation. Due to the declarative
query interface to the server component, the Context Manager should maintain its description
of the Working-Memory contents in a declarative form as well. The Context Manager perceives
the Working Memory as a collection ofcontexts. A context represents a set of Working-
Memory objects being the complete extension of a logical condition, the context description.
Contexts directly correspond to the results of (sub-)queries that have been delegated to the
server and whose results have been brought into Working Memory. For each set of query results
received from the server, the Context Manager keeps the query condition as a context
description and maintains an Access Structure that contains the set of result objects.9 The
language for context descriptions is therefore equivalent to the subset of KOALA that can
appear as a condition of a DB-SELECT plan operator. In the following, we will illustrate the
main activities performed by the Context Manager in coordination with the KOALA Processing
System using the example query already introduced above.

Context Description

Let us assume, that a previous query retrieved from the server all instances ofareas having more
than three rooms. The Context Manager has therefore registered the following context
description.

The description is divided into three parts. Thevariable definition part (V) characterizes the
domain of the context’s objects in terms of predicates referring to the abstraction concepts,
while the selection part (S) states further selection conditions applying to the context. The
projection part (P) completes the description, listing those attributes that have been brought into
the Working Memory.

Context Comparison

When consulting the Context Manager, the KOALA Processing System submits a description
of a ‘wanted’ context, resembling the subquery currently under consideration. The Context
Manager compares the wanted context W with a ‘given’ context G, i.e., with a context available
in Working Memory. To this end, we developed an algorithm that basically compares the
different parts of W with the corresponding parts of G. For our example query, the KOALA
Processing System will ask the Context Manager about contexts available for supporting the
selection onprivate-areas. The result of the involved context comparison is depicted in Fig. 10.
First of all, the projection parts of the contexts are compared. Since both projection parts
preserve the complete object structure, they turn out to be equivalent. Next, the variable defini-
tions are compared. To determine the result, the Context Manager will at this point have to
inspect the abstraction relationships defined in the KB. Sinceareas is known to be a superclass
of private-areas, the result of the comparison is the set inclusion V(G)⊇ V(W). Finally, the
selection parts are compared. Since no additional selection is defined for W (i.e., allprivate-
areas are contained in the context), the comparison results in the set containment S(G)⊆
S(W).10 The comparison of predicates in both the selection and the variable-definition parts
relies on the interpretation of set relationships as logical relationships, where set containment is
equivalent to logical implication.

9. The Access Structure can later be handed to the KOALA Processing System for accessing the context.
10. If several predicates are involved in a selection (or a variable-definition) part, each predicate of G must

be compared with each one of W. For complex selection conditions (involving disjunctions, etc.), a dis-
junctive variant of the algorithm is supplied in addition to the above described (conjunctive) version.

((?X)
(IS-INSTANCE ?X areas *)
(> (SLOTVALUE no-of-rooms ?X) 3))

projection
variable definition
selection



To obtain the overall relationship between G and W, the individual comparison results for P, V,
and S must be combined. In our example, the relationship ‘G overlaps with W’, (denoted by
‘O’) is achieved, because we have obtained two ‘inverse’ set inclusions in V and S. The
‘overlap’ result means that we can exploit the context existing in the Working Memory for
answering the query. However, we still need to query the server for those objects not covered
by the context. Therefore, the Context Manager additionally produces descriptions how to filter
the existing context for the required result set (i.e., how to obtain G∩ W from G), and how to
retrieve the remaining objects from the server (i.e., how to retrieve W \ G). These results are
passed to the KOALA Processing System for modifying the query plan accordingly. Moreover,
a pointer to the AS containing G is passed on to make it accessible for the KOALA Processing
System.
In our example, the KOALA Processing System chooses not to consider the private areas
already in the Working Memory but to fetch all instances ofprivate-area from the server.
Before executing the query, however, the Context Manager must write back to server all private
areas residing in the workstation buffer. Analogously, the Context Manager is asked about
contexts available for rooms and corridors, the other classes involved in the example query. For
reasons of simplicity we assume that these subqueries can be fully supported by contexts at the
workstation component. The resulting query execution plan is depicted in Fig. 8 (b).
The above algorithm, which is outlined in detail in [De93], exhibits polynomial time complexity
w.r.t. the number of predicates involved in the comparison. It is important to note that, although
we retrieve only objects in W \ G from the server, we might well retrieve objects that are already
in the Working Memory. For example, other contexts might be present there that overlap with
W, but are not exploited for the query because the ‘amount of overlap’ is not promising enough.
The Working Memory is capable of handling this situation simply by ignoring already installed
objects (i.e., no additional copies are introduced into the Working Memory).

Additional Tasks of the Context Manager

Although maintaining and comparing context descriptions can be seen as the central task of the
Context Manager, additional activities are performed by this component to realize consistent
buffer management based on the notion of contexts.
For instance, the Context Manager is involved in the process ofupdate propagation to the server
component. Before a query is delegated to the server, updates that have occurred on Working-
Memory objects must be propagated to the server. Otherwise, inconsistencies between server
DB and Working Memory may result in wrong query results. Using the Context Manager, we
can realize a partial update delegation approach, i.e., not all updates, but only those updates (or
a relatively small superset) that are needed to guarantee a correct query result are propagated.
Additional activities are required by the Context Manager to keep context extensions ‘up-to-
date’ after updates, and for discarding contexts from the Working Memory. A more detailed
discussion of these tasks can be found in [De93].

G(iven) Rel. W(anted)

P: (?X) ≡ P: (?X)

V: (IS-INSTANCE ?X areas *) ⊇ V: (IS-INSTANCE ?X private-areas *)

S: (> (SLOTVALUE no-of-rooms ?X) 3) ⊆ S: ‘true’

context G ‘O’ context W

Fig. 10: Context comparison (example).

SELECT
(IS-INSTANCE ?X private-areas *)

FROM G

LOAD

(?X)

(AND (IS-INSTANCE ?X private-areas *)

(NOT (> (SLOTVALUE no-of-rooms ?X) 3))

G ∩ W: W \ G:



4.4 Constraint Management

In this paper, we can only briefly outline the modeling and processing concepts involved with
integrity constraints. An elaborate description can be found in [De93].

Constraint Modeling

KRISYS supports a layered approach for representing constraint characteristics at different
abstraction levels. The central part of a constraint is its condition, i.e., a logical condition that
has to be valid in a consistent KB state. At the operational level, the constraint is described in
terms of adjustments telling the system how to correct inconsistencies. For a single constraint,
multiple, alternative adjustments can be specified, which are selected and executed according
to various criteria. At the realization level, the ‘implementation’ of a constraint is described in
terms of event patterns, whose occurrence will lead to the execution of particular checking and
adjustment operations. Among other things, the constraint designer may choose either a data-
driven realization (i.e., where violating actions trigger corrections), or a demand-driven
semantics (i.e., ‘dependent’ information is recomputed each time it is needed).

An example illustrating the layered approach is depicted in Fig. 11 showing a constraint stating
that for all rooms ?X that have a corridor ?Y as a neighboring room, ?Y must have ?X as one of
its accessible rooms (i.e., the corridor allows access to room ?X). One of the adjustments
defined for this constraint states that for pairs of rooms and corridors violating the constraint,
the room should be added as an attribute value of ‘accessible-rooms’ of the corridor. Essentially,
KOALA is used (in a slightly modified form) for specifying constraint conditions and adjust-
ments. The user may define constraints by specifying logical formulas with both existential and
universal quantification. Moreover, user-defined methods can be evaluated in the query and
constraint language environment, and can therefore be used for checking consistency and for
carrying out reactive operations. At the realization level, a data-driven implementation was
chosen, meaning that the adjustment will be performed on occurrence of an update event on the
‘neighboring-rooms’ attribute of a room. Alternatively, a demand-driven implementation would
have been possible, which is also depicted in Fig. 11.

Along the specification of the constraint, the system shields the user as far as possible from
(event-oriented) realization details by automatically determining constraint characteristics at
the realization level. For our example constraint, only the condition and the adjustment (in the
syntax presented in Fig. 11) were actually specified by the user. This support allows a high-
level, implementation-independent constraint specification. Determining event-patterns
describing in which situations an adjustment should or should not be applied is performed by
the system based on the assumption that adjustments should always be conflict-avoiding. This
means that an adjustment should, if possible, not contradict (or undo) user operations that
caused the inconsistency. If this assumption does not hold, the person having defined the
constraint may replace the event-patterns produced by the system, thereby specifying his own
‘implementation’.

Fig. 11: Layered approach to constraint specification (example).

constraint-condition:
(((FORALL ?X rooms)(FORALL ?Y corridors))

(-> (IS-IN ?Y (SLOTVALUES neighboring-rooms ?X))
(IS-IN ?X (SLOTVALUES accessible-rooms ?Y))))

logical level

operational adjustment: add-room

(IS-IN ?X (SLOTVALUES accessible-rooms ?Y))level

. . .

realization
level

data-driven:
at update of
?X.neighboring-rooms

demand-driven:
at retrieve of
?Y.accessible-rooms



Additional aspects of the constraint mechanism can only be briefly listed here. We refer to
[De93] for details.

• Methods in KRISYS are executed in a nested-transaction scheme. Both methods and integrity
constraints can be associated with integrity levels describing certain degrees of partial con-
sistency to be guaranteed by methods executing on that level.

• Constraint violations can be tolerated and defined as exceptions. This is especially important
for long-running activities, such as design applications, where a rollback of work is not de-
sirable.

• Constraints can be specified not only for classes, but also for individual object instances. This
allows, for example, to represent design goals specific to a product under development as
constraints.

• Method calls can be used in both conditions and adjustments, allowing to employ procedures
for testing consistency and implementing corrections.

• Constraints are represented as objects in the KRISYS knowledge representation framework,
allowing them to be organized using abstraction concepts and queried using KOALA.

• Constraint templates allow the definition of parameterized constraints, thereby permitting
constraints to be tailored to application-specific needs.

Constraint Monitoring
Constraint monitoring, being essential for achieving effective and efficient integrity control for
the applications KRISYS is intended for, is performed at the workstation side. Consequently,
constraint monitoring activities can be realized in the knowledge representation framework of
KRISYS, i.e., they are implemented in a natural way as the ‘behavior’ of the objects (such as
constraint, adjustment, and integrity-level objects) used for constraint modeling. Moreover, the
processing concepts, such as the processing of KOALA and the functionality of the Working
Memory can be directly employed.

As shown in Fig. 12, constraint-monitoring activities are distributed across three major compo-
nents.Event management is integrated into the regular KB objects by

• keeping an event profile for each object that contains information about the events to be re-
corded and about the constraints that are affected, and

• storing an event record with the objects, thereby supporting local event accumulation.

These activities are initiated by base predicates responsible for updating an object in the
Working Memory (see Sect. 4.2.1). After the initiation of a TELL is reported to the appropriate
integrity-level object (Fig. 12, step 1), the execution of the base predicate (Fig. 12, step 2)
modifying attribute values will cause the appropriate event description to be stored with each

‘integrity-level’

constraints to
be checked

‘KB-object’
‘constraint’

event
profile

event
record

event
information

TELL started

TELL executed

update operation

(2)

record (2a)

[notify (2b)]

[record (2c)]

[notify (2d)]

(1)

(3b)

(3a)

initiate(4)

request acc.
events (4a)

check/enforce (4b)

Fig. 12: Interactions during constraint processing.

‘immediate’

‘room-object’
‘accessible-rooms-c’



object added to classrooms. Moreover, the constraint object representing the constraint defined
in Fig. 11 will be notified.
Constraint scheduling is performed by those integrity-level objects responsible for initiating the
processing of individual constraints in an appropriate order. For example, the object repre-
senting the ‘immediate’ integrity-level will be directly activated after the TELL statement is
executed (Fig. 12, step 3), but before the transaction associated with the statement is committed.
It will then schedule constraint monitoring according to a priority scheme, if multiple
constraints need to be activated, and in turn activate the constraint objects (Fig. 12, step 4).
Constraint enforcement is realized by the individual constraint objects. They have the task to
check the constraint condition according to the event information supplied by the event
management and take the appropriate actions to handle the occurring violations. In our example,
the constraint object will try to use the single adjustment defined for it to correct the violations,
and will be able to apply the adjustment because it does not contradict the operation performed
by the user (i.e., it will not undo the effects of the TELL statement). The adjustment is again
realized as a TELL statement that exploits the event information passed to the constraint object
for adjusting only inconsistent objects. This TELL statement has been generated by the system
by specializing the adjustment supplied by the user to specific event patterns.

5. Conclusions
In this paper we described the design and implementation of advanced knowledge processing
in the KBMS KRISYS. The most important issues to be addressed by this framework are the
workstation/server environment as well as its impact on overall knowledge processing resulting
in main-memory-based query processing. The processing framework of KRISYS founds on the
KOBRA knowledge model and benefits from well-known query-processing techniques,
especially from the areas of relational, main-memory, object-oriented, and parallel database
systems [HFLP89, IEEE92, Ca91, MPTW94]. The applicability of our approach as well as of
the mechanisms necessary for implementing it are not restricted to KRISYS but are generally
valid for (advanced) DBMS requiring client-based query processing. Therefore, we see our
knowledge-processing framework and its implementation, i.e. KRISYS, as a valuable contri-
bution to current research in advanced DBMS.
Our approach can be best characterized by its major components

• Working Memory
Its task is to support the concept of near-by-the-application locality of processing when KO-
BRA objects are referenced during query and constraint processing. To this end, the Context
Manager guarantees that the Working-Memory contents is exploited for query processing,
thus reducing data transfer between workstation and server to a minimum.

• KOALA Processing System
The query language KOALA is processed following an algebraic approach that is sufficiently
flexible to adapt to language extensions. Along the same lines, the plan-operator concept for
client-based query processing has been designed to be extensible and to allow run-time opti-
mizations.

• Constraint Manager
A new mechanism for integrity management has been outlined and integrated into the knowl-
edge-processing framework of KRISYS.

Although object-oriented DBMS aim at the same application domains as KRISYS, to the best
of our knowledge, there are no such systems that offer comparable concepts for optimizing and
processing arbitrary queries on the workstation’s buffer. ObjectStore [OHMS92], for example,
provides simple search arguments (path expressions) for navigating the buffer. Selecting appro-
priate indices handling simple search arguments and execution are interleaved. This optimi-
zation measure differs from our approach of employing run-time optimization before execution.



Run-time optimizations may be motivated either by the desire to flexibly adjust execution strat-
egies, as pursued by Volcano [Gr94], or by the desire to dynamically exploit buffer contents, as
proposed for ADMS [CR94]. ADMS integrates matching and query optimization. The query
graph is reduced by those parts that match cached query results stored in a cache space and
organized by a specific data structure calledlogical access-path schema. In our case, represen-
tations of buffered and intermediate (cached) data coincide. Hence, matching and optimization
operate on a single representation, thus simplifying query-processing implementation.
Re-implementation of KRISYS started with the Working-Memory representation, Access
Structures, and their functionality. This provided the basis for the KOBRA model and its
internal interface which have been fully operational since 1993 as well. At the same time, the
Mapping System had been completed so that we could start implementing the KOALA
Processing System. The transformation of a KOALA query into an algebraic representation and
the subsequent rewrite are already realized, as well as all constituents of the plan-operator level,
including blocks and the corresponding functionality. Currently, the KOALA Processing
System allows to sequentially execute block-structured queries.
The availability of query-processing facilities opens up a range of research activities we are
currently working on or which will be part of our future work:

• implementing the Context Manager to practically investigate the interplay between the
knowledge referenced by queries and the costs and benefits of context maintenance,

• realizing the Constraint Manager starting from the basic functionality linking query process-
ing and constraint management, i.e., event management, constraint scheduling, and con-
straint enforcement,

• considering non-algebraic optimization, i.e., establishing a cost model for query processing
taking into account features of the knowledge model (method calls, transitive closure opera-
tions like inheritance, etc.), context management and mapping information.
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