
1

Concurrency Control in Nested Transactions

with Enhanced Lock Modes for KBMSs

Fernando de Ferreira Rezende1 and Theo Härder
Department of Computer Science - University of Kaiserslautern

P.O.Box 3049 - 67653 Kaiserslautern - Germany
Phone: +49 (0631) 205 3274|4031 - Fax: +49 (0631) 205 3558

E-Mail: {rezende|haerder}@informatik.uni-kl.de

Abstract. Nested transactions (NTs) allow the decomposition of execution units and
finer grained control over concurrency and recovery than conventional, flat transac-
tions. Due to their characteristics, they provide adequate control structures for
modeling transactions in several different environments. In this paper, we concentrate
on the use of NTs in Knowledge Base Management Systems (KBMSs). With respect to
those systems, the allowance for knowledge sharing is an important emerging point,
which is going to be imperative for the complete success of KBMSs in the market.
Nevertheless, to allow for knowledge sharing, special lock modes must be employed to
adequately control the concurrency in KBMSs. We present enhanced lock modes
tailored to the KBMS environment, which capture the abstraction relationships’
semantics. Additionally, we couple these lock modes to an NT model allowing for
upward as well as controlled downward inheritance of locks. Finally, on one hand, our
NT model allows for an effective exploitation of intra-transaction parallelism, on the
other hand, our enhanced lock modes make feasible the exploitation of the inherent
parallelism in a knowledge representation approach.

1 Introduction
When multiple users access a database (DB) simultaneously, their data operations

have to be coordinated in order to prevent incorrect results and to preserve the consis-
tency of the shared data. This activity is called concurrency control (CC) and should
provide each concurrent user the illusion of referencing a dedicated DB. The classical
transaction concept [7] defines a transaction as the unit of CC, i.e., the DB management
system (DBMS) has to guarantee isolated execution for an entire transaction. This
implies that its results derived in a multi-programming environment should be the same
as if obtained in some serial execution schedule. In a DBMS, the component responsible
for achieving this is transaction management which includes CC as a major function.

In the context of DBMSs, CC has been extensively studied by the DB community,
and there is a vast amount of literature in this area. Unfortunately, CC has not received
much of the attention of the Artificial Intelligence (AI) community, in spite of KBMSs
are becoming more and more widespread and, accordingly, the demand for ever-larger
knowledge bases (KBs) higher and higher. Due to the ever growing applicability of
KBMSs, it is time to allow for knowledge sharing [2, 3, 14]. Consequently, multiple
transactions should be able to run at the same time for better performance of such
systems [4]. Finally, it is exactly in this point that transaction models and CC mecha-
nisms with appropriate lock modes for KBMSs play a crucial role, because they are
among the most important means for allowing large, multi-user KBs to be widespread.

In this paper, we try to fill this one more gap existing between DBMSs and KBMSs.
To put it another way, we couple an enhanced CC technique for NTs with enhanced lock
modes for KBMSs. The CC method for NTs we use is the one proposed by Härder and

1. Financially supported by the CNPq (National Council for the Scientific and Technological Devel-
opment) of the Secretary for Science and Technology of Brazil.

In: Proc. of the 6th Int. Conf. on Database and Expert Systems Applications (DEXA’95), London, UK, Sept.
1995. pp. 604-613.

2

Rothermel [10], and the enhanced lock modes for KBMSs are the ones proposed by
Rezende and Härder [14, 15]. The main advantage of the former is the introduction of
the concept ofcontrolled downward inheritance of locks, which makes objects manip-
ulated by a parent transaction available to its children2. In turn, the lock modes intro-
duced by the latter capture more of the semantics contained in a KB graph, by means of
an interpretation of its edges grounded in the abstraction relationships. This paper is
organized as follows. In Sect. 2, we present a general CC method for NTs. In Sect. 3,
the enhanced lock modes for KBMSs are introduced. Thereafter, we couple both
together, showing how we use the enhanced lock modes for KBMSs in NTs (Sect. 4).
Finally, we conclude the paper (Sect. 5).

2 Concurrency Control in Nested Transactions

2.1 An Overview of Nested Transactions’ Nice Properties
When executing more complex transactions, it turns out that single-level transac-

tions do not achieve optimal flexibility and performance. As a solution, the concept of
NTs was popularized by Moss [13], where single-level transactions are enriched by an
inner control structure3. Such a mechanism allows for the dynamic decomposition of a
transaction into a hierarchy of subtransactions thereby preserving all properties of a
transaction as a unit and assuringatomicityand isolated execution for every individual
subtransaction. These aspects lead to advantages in a computing system [10], like: Intra-
transaction parallelism, intra-transaction recovery control, explicit control structure,
system modularity, and distribution of implementation.

In addition, NTs lead to some more advantages in the particular field of KBMSs.
Among others, they provide adequate control structures for:
• Methods inside methods: In KBMSs, methods may recursively call other methods,

thus producing a natural nesting of methods. The use of NTs is clearly well-suited to
control such executions. In addition, it provides to users the possibility of explicitly
controlling the executions of methods, allowing them to appropriately react in case
of failure of any method, and to take the necessary corrective measures.

• Complex functions: Like methods, complex functions in KBMSs may recursively
embody other less-complex functions. Similarly, those functions may be well-repre-
sented through NTs, e.g., considering each function call as a creation of a new sub-
transaction. Also, failure handling in functions’ execution is made easier with NTs.

• Virtual rule processing: In KBMSs, a user may be interested in the results of some
rule processing, but at the same time one may want to avoid any modifications in the
KB (e.g.,what-if questions). By means of NTs, a user may start a transaction inside
another one, which may be rolled back later.

2.2 A Model of Nested Transactions
A transaction may contain any number ofsubtransactions, which again may be

composed of any number of subtransactions - conceivably resulting in an arbitrarily
deep hierarchy of NTs. The root transaction which is not enclosed in any transaction is
called thetop-level transaction(TL-transaction). Transactions having subtransactions
are calledparents, and their subtransactions are theirchildren. We also speak of
ancestors anddescendants. The ancestor (descendant) relation is the reflexive transitive
closure of the parent (child) relation. We use the termsuperior(inferior) for the non-
reflexive version of the ancestor (descendant). The set of descendants of a transaction

2. The Moss’ CC method for NTs [13] allows only for upward inheritance of locks.
3. The ideas underlying the concept of NTs stem from Davies’spheres of control [5, 6].

3

together with their parent/child relationships is called the transaction’shierarchy. In the
following, unless otherwise noted, we use the termtransaction to denote both TL-trans-
actions and subtransactions.

The properties defined for flat transactions areatomicity, consistency, isolation,
and durability (ACID) [9]. In the NT model, these are fulfilled for TL-transactions,
while only a subset of them are defined for subtransactions. A subtransaction appears
atomic to the other transactions and may commit and abort independently. Aborting a
subtransaction does not affect the outcome of the transactions not belonging to the
subtransaction’s hierarchy, and hence subtransactions act asfirewalls, shielding the
outside world from internal failures. Theconsistency property for subtransactions seems
to be too restrictive, as sometimes a parent transaction needs the results of several child
transactions to perform some consistency preserving actions. If the CC scheme intro-
duced by Moss is applied,isolated execution is guaranteed for subtransactions.
However, to increase intra-transaction parallelism, our enhanced scheme allows trans-
actions belonging to the same TL-transaction hierarchy to share data in a controlled
manner. Thedurability of a committed subtransaction depends on the outcome of its
superiors - even if it commits, aborting one of its superiors will undo its effects. A
subtransaction’s effects become permanent only when its TL-transaction commits.

2.3 General Locking Rules
In this section, we present general locking rules for the model of NTs introduced

previously. Nevertheless, before describing the rules, we shall introduce some termi-
nology. The Moss’ NT model [13] is based on the assumption that only leaf transactions
acquire and use locks (i.e., are able to access shared objects), and hence no distinction
is made between the locks explicitly acquired by a transaction and those acquired by
inferiors and then passed on to their parents at commit time. However, such an
assumption prohibits parent/child parallelism and therefore may limit the use of
inherent parallelism. In our model, we enable maximum parallelism in a transaction
hierarchy, allowing for parent/child as well as sibling parallelism. On the one hand, this
degree of parallelism requires a sophisticated CC scheme. On the other hand, it permits
arbitrary intra-transaction parallelism, i.e., all transactions of a TL-transaction hierarchy
may be potentially executed concurrently.

Due to that, we need to distinguish the locks explicitly acquired by a transaction
from the ones inherited from the children. Hence, in our model a transaction canacquire
a lock on an object O in some mode M. Doing that, itholds the lock in mode M until its
termination (represented by h:M). Besides holding a lock, a transaction canretain a lock
in mode M (represented by r:M). When a subtransaction commits, its parent transaction
inherits its locks and then retains them. If a transaction holds a lock, it has the right to
access the locked object (in the corresponding mode). However, the same is not true for
retained locks. A retained lock is only a place holder and indicates that transactions
outside the hierarchy of the retainer cannot acquire the lock, but that descendants poten-
tially can. As soon as a transaction becomes a retainer of a lock, it remains a retainer for
that lock until it terminates. Finally, the general locking rules, which deal with the
various situations of transaction management, are presented in Table 1. In particular,
these locking rules are already expanded for allowing upward as well as (controlled)
downward inheritance of arbitrary lock modes [10]. Rule TR1 deals with lock requests.
The main point of this rule is that a transactionretaining a lock blocks other conflicting
lock requests from transactionsoutside its hierarchy. Rule TR2 establishes the criteria
for the inheritance of locks by the parent of a committing subtransaction. Rule TR3
governs the release of locks by committing TL-transactions, whereas TR4 the release of

4

locks by aborting transactions. At last, rule TR5 allows for downward inheritance of
locks, relinquishing the isolation among participating parent transaction and inferior
subtransactions.

Notice that if rule TR5 were omitted, we would get a generalization of Moss’
scheme, which only provides for upward inheritance. The rules stated above require
upward inheritance at commit time, i.e., a transaction may not inherit a child’s locks
before the latter commits. This restriction guarantees that transactions can see the effects
of committed children only, and hence are not affected by failures of children.
Furthermore, this restriction ensures that the subtransactions of a transaction tree are
serializable. Allowing upward inheritance before commit time would cause transactions
to become dependent on the outcome of child transactions, i.e., subtransactions would
no longer act as firewalls such that application code within a subtransaction had to cope
with concurrency and recovery issues. In turn, with downward inheritance of locks, the
isolation property of transactions may be violated. While transactions belonging to
different TL-transaction hierarchies still cannot interfere, transactions of the same
hierarchy may share uncommitted data. As a consequence, a transaction may see
uncommitted data of superiors. This, however, cannot lead to inconsistencies since the
effects of the transaction are undone when a superior aborts. On the other hand, a trans-
action may never see uncommitted data of inferiors, i.e., subtransactions act as firewalls
even if downward inheritance of locks is allowed. Finally, a discussion about the
correctness of this protocol may be found in [10].

3 Enhanced Lock Modes for KBMSs
Thus far, we have introduced an NT model with general locking rules and lock

modes. In this section, we present the LARS (Locks usingAbstractionRelationships’
Semantics) protocol for transaction synchronization in KBMSs [14, 15].

3.1 An Example Knowledge Base
KBMSs manage complex and structured objects, and also different types of

abstraction relationships. In fact, abstractions turned out to be fundamental tools for
knowledge organization, and one of the most important aspects of KBMSs is that
objects can play different roles at the same time [11]. Consequently, the KBs features
can be visualized as a superposition of the abstraction hierarchies (in fact Directed
Acyclic Graphs (DAGs)) of generalization, classification, association, and aggregation,
building altogether the so-called KB graph. It is beyond the scope of this paper a detailed
discussion about the abstraction concepts, the reader is referred to [11, 12] for more
details on this topic. In order to illustrate one such a KB graph, in Fig. 1 we provide an
example of a restaurant KB. In order to restrict the KB to a rooted and connected graph,
we have added the objectsglobal, the only root of the whole graph,sets, the root of the

Table 1: General locking rules (Transaction Rules).

TR1 A transaction T may acquire a lock in mode M or upgrade a lock it holds to mode M if, first, no
other transaction holds the lock in a mode that conflicts with M, and second, all transactions that
retain the lock in a mode conflicting with M are ancestors of T.

TR2 When a subtransaction T commits, the parent of T inherits T’s (held and retained) locks. After that,
the parent retains the locks in the same mode as T held or retained them before.

TR3 When a TL-transaction commits, it releases all locks it holds or retains.

TR4 When a transaction aborts, it releases all locks it holds or retains. If any of its superiors hold or
retain any of these locks, they continue to do so.

TR5 A transaction T holding a lock in mode M can downgrade the lock to a (less restrictive) mode M’.
After downgrading the lock, T retains it in mode M and holds it in mode M’.

5

association graph,classes, the root of the classification/generalization graph, and finally
aggregates, the root of the aggregation graph. We provide such objects in order to have
an adequate environment for the appliance of LARS. In addition, we assume that all
objects (or schemas) are directly or indirectly related to the rootglobal. When a schema
is neither a class/instance, nor a set/element, nor a component/part, it is connected as a
direct instance ofglobal. In turn, all classes/instances, sets/elements, and components/
parts are directly or indirectly related to the predefined schemasclasses, sets, andaggre-
gates, respectively. Moreover, we assume that the KB graph automatically stays in this
form (rooted and connected) as changes undergo over time4.

Fig. 1.A restaurant knowledge base.

3.2 LARS’ Lock Modes
As a matter of fact, a KB graph is built through the superposition of the classifi-

cation/generalization, association, and aggregation hierarchies (in fact DAGs).
However, many accesses in a KB are directed to a particular hierarchy, and not to the
KB graph as a whole. These observations build the main idea of LARS. In LARS, the
KB graph is partitioned into those three main hierarchies, and hierarchical lock schemes
[8] are applied on each one of them. As a result, a minimization of the locks is obtained.
In addition, the granule of lock to be accessed by a transaction is more precisely defined,
allowing it to lock just the objects it really needs to access. Following these logical parti-
tions, LARS provides three distinct sets of lock types. Firstly, it has abasic set of lock
modes, named: IR (Intention Read), IW (Intention Write), R (Read), RIW (Read
Intention Write), and W (Write). However, it offers this basic set of lock modes to each
one of the logical partitions, i.e., to the classification (recognized by a subscript c (c)
following the lock mode), association (s), and aggregation (a) graphs. These locks
pertain respectively to the sets ofC_type, S_type, andA_type locks (generally called
typed locks). In Table 2, their semantics is presented in a compact form [15].

4. This representation and behavior are similar to the ones used by KRISYS [12] to represent KBs.

turtle-soupbouillabaissefish-plateshrimp-cocktailsteak-au-poivreveau-au-vin

soups cold-dishes

mousse cream

crepe-suzettemousse-au-chocolat

appetizers main-coursesdessertssunday-menu

dishesmenus

cote-du-rhoneschwarzekatzliebfraumilch

pernod champagnecointreau chantre

aperitifs liquors

beverages foods

offers

classes aggregatessets

wine-origins

rhine-wines
wines

c

ss sc

sc sc

sc sc

sc
scsc

sc scsc

sc
scsc

c c

p
p

p

pp

ss

ee

sc
ss

i i
i

i i
i

ii

i
i

i

i

p
p

p

ii
i

i

sc: subclass-of i: instance-of ss: subset-of e: element-of p: part-ofNotation: c: subcomponent-of

global

c

i

6

3.3 The Lock Compatibilities
With respect to the compatibility of these lock modes, there are two distinct situa-

tions to be coped with by LARS. First, if the locks requested and granted give respect
to the same set of objects (either C_type vs. C_type, or S_type vs. S_type, or A_type vs.
A_type), then the compatibility matrix to be followed is the same of the Multigranu-
larity Locks protocol known from the literature [8] (Table 3).

The second situation with respect to the compatibility of the typed locks is the one
where both are of different types (either C_type vs. {S_type or A_type}, or S_type vs.
{C_type or A_type}, or A_type vs. {C_type or S_type}). In this case, the compatibility
of the lock modes is not the same as above, because distinct sets of objects are being
dealt with. In [15], a detailed discussion on this topic may be found. Here we limit to
presenting the compatibility matrix (Table 4) and making some comments. The main
point of this compatibility matrix is that conflicting lock modes applied to requests of
the same abstraction hierarchy may become compatible when issued for different
abstraction hierarchies, e.g., IWc and Wa. In general, there are no conflicts between
locks in different hierarchies if one of them is an intention lock. Only non-intention
locks of different hierarchies conflict like ordinary R and W locks. The reason is simply
that an intention lock in hierarchyh only ‘protects’ paths along hierarchyh. An R or W
lock in another hierarchyg only implicitly locks objects reachable by hierarchyg. In the
absence of multiple abstraction relationships to objects, one talks about disjoint sets of
objects. Objects belonging to different hierarchies are implemented such that distinct
parts of an object implement different hierarchies. Other object data can be accessed
independently of the hierarchy that has been used to locate the object. This is the only
chance for conflicts, and is covered by R/W and W/W conflicts. Multiple abstraction
relationships to objects are discussed in the next section.

3.4 Accessing Implicitly Locked Objects
As a matter of fact, multiple abstraction relationships involving an object may lead

Table 2: Typed locks’ semantics.

IRc|s|a gives intention shared access to the requested object and allows the requester to explicitly lock
both directsubclasses | subsets | subcomponents of this object in Rc|s|a or IRc|s|a mode, and
direct instances | elements | parts in Rc|s|a mode.

IW c|s|a gives intention exclusive access to the requested object and allows the requester to explicitly
lock both directsubclasses | subsets | subcomponents of this object in Wc|s|a, RIWc|s|a, Rc|s|a,
IWc|s|a or IRc|s|a mode, and directinstances | elements | parts in Wc|s|a or Rc|s|a mode.

Rc|s|a gives shared access to the requested object and implicitly to all direct and indirectsubclasses |
subsets | subcomponents andinstances | elements | parts of this object.

RIW c|s|a gives shared and intention exclusive access to the requested object (i.e., implicitly locks all
direct and indirectsubclasses | subsets | subcomponents andinstances | elements | parts of
this object in shared mode and allows the requester to explicitly lock both directsubclasses |
subsets | subcomponents in Wc|s|a, RIWc|s|a, Rc|s|a or IWc|s|a mode, and directinstances | ele-
ments | parts in Wc|s|a or Rc|s|a mode).

Wc|s|a gives exclusive access to the requested object and implicitly to all direct and indirectsub-
classes | subsets | subcomponents andinstances | elements | parts of this object.

Table 3: Compatibility matrix for typed locks of the same type.

IR IW R RIW W
IR ✓ ✓ ✓ ✓
IW ✓ ✓
R ✓ ✓

RIW ✓
W

Granted Mode [c | s | a]

[c | s | a]

Requested
Mode

7

to problems with the implicit locks, so that the isolation property of transactions may be
corrupted. Actually, an interference arises whenever an object with two or more parents
(from now on called abastard, in order to be differentiated from an object with only one
parent, apurebred) is implicitly locked by one of them [14]. The implicit lock on a child
object is only visible if it is accessed through a specific path of the graph. In order to
find out possible conflicts with implicitly locked bastards, all superiors or inferiors of
an object may be accessed. For this purpose, all relationships have to be represented in
a bidirectional way. In [14, 15], we discuss many possible alternatives for avoiding
conflicts in such situations. We have chosen for LARS a kind oflazy evaluation strategy
for lock conflict resolution with implicitly locked bastards [15]. Following this
approach, a transaction may request and be granted an explicit lock without further
proceedings. However, just before effectively accessing an implicitly locked bastard, it
must verify whether this object is already locked in a conflicting mode by another trans-
action or not. If so, it must wait until this lock is released. If not, it sets an explicit lock
on this object, signalling that it has accessed it. This lock acts like a tag in the object
indicating that it has been already accessed via another parent of it. The key observation
in this approach is that a transaction needs to explicitly lock only those bastards which
it actually accesses, leaving the others for the concurrent access by other transactions.

3.5 The Locking Rules
The LARS’ locking rules to be followed by transactions when requesting locks on

objects in a KB are presented in Table 5. A proof of the correctness of LARS may be
found in [15]. Notice that these rules are somewhat independent from the rules TR1-
TR5 presented in Table 1. We deliberate about this topic in the next section, when
coupling the LARS’ lock modes to the NT model. Before explaining these rules, it is
convenient to notice that transactions are allowed to directly set locks in the root object
in any mode, and that LARS always producesstrict executions [1], i.e., it requires the
locks of a transaction to be released only at its termination (either commit or abort).

The rule OR1 states that an intention read lock (from the C_type, S_type, or

Table 5: Locking rules (Object Rules).

OR1 Before requesting an IRc|s|a lock on an object, the requester must cover a path from the object to the
root with IRc|s|a or IWc|s|a locks.

OR2 Before requesting an IWc|s|a lock on an object, the requester must cover a path from the object to
the root with IWc|s|a or RIWc|s|a locks.

OR3 Before requesting an Rc|s|a lock on an object, the requester must cover a path from the object to the
root with IRc|s|a or IWc|s|a locks. In addition, before accessing any implicitly locked bastard
descendant, the requester must set an Rc|s|a lock on it.

OR4 Before requesting an RIWc|s|a lock on an object, the requester must cover a path from the object to
the root with IWc|s|a or RIWc|s|a locks. In addition, before accessing any implicitly locked bastard
descendant, the requester must set either a) an Rc|s|a lock on it, if it is a leaf object, or b) an RIWc|s|a
lock on it, if it is a non-leaf object.

OR5 Before requesting a Wc|s|a lock on an object, the requester must cover a path from the object to the
root with IWc|s|a or RIWc|s|a locks. In addition, before accessing any implicitly locked bastard
descendant, the requester must set a Wc|s|a lock on it.

Table 4: Compatibility matrix for typed locks of distinct types.

IR IW R RIW W
IR ✓ ✓ ✓ ✓ ✓
IW ✓ ✓ ✓ ✓ ✓
R ✓ ✓ ✓ ✓

RIW ✓ ✓ ✓ ✓
W ✓ ✓

Granted Mode [c | s | a]

[s or a | c or a | c or s]
Requested Mode

8

A_type) on a non-root object must be preceded by either intention read or intention
write locks (from respectively the C_type, S_type, or A_type) on at least one parent of
this object, and so recursively until the root object is reached. The rule OR2 has a similar
meaning, but for the intention write locks, requiring that they must be preceded by
intention read or read intention write locks on at least one path from that object to the
root object. The rule OR3 states, first of all, that a read lock on a non-root object must
be covered by intention read or intention write locks on at least one path from this object
to the root object. Thereafter, it requires that a transaction must explicitly lock the
accessed bastard descendants5. This is basically required for avoiding conflicts with
implicitly locked bastards and thus putting in practice the lazy evaluation strategy
followed by LARS. The rules OR4 and OR5 have a similar meaning, but for read
intention write and write locks respectively.

4 Using Enhanced Lock Modes for KBMSs in Nested Transactions
In the last sections, we have introduced the essential concepts of both generalized

locking rules for NTs and appropriate lock modes for objects in a KB. Hence, we now
combine both together. For the transaction hierarchy, our generalized transaction rules
TR1-TR4 (Table 1) apply. Furthermore, when acquiring a lock on an object, we have to
consider the additional object rules OR1-OR5 (Table 5) resulting from the object hierar-
chies. As far as acquiring locks is concerned, the rules obtained for the transaction
hierarchy and the object hierarchy must be satisfied independently. However, as
discussed in [10], arbitrary inheritance of hierarchical locks may cause severe consis-
tency problems. The key observation pointed out in [10] about this is that downgrading
a lock without considering the whole object hierarchy may lead to inconsistencies.
Additionally, similar observation is valid for upgrading locks in object hierarchies. In
this paper, we are not going to deliberate about this topic anymore. Instead, we directly
adopt the solutions proposed in [10]. The reader is referred to this paper for a detailed
discussion about such inconsistencies when arbitrary inheritance of locks on object
hierarchies is allowed.

4.1 Upgrading hierarchical locks
The key solution to avoid anomalies is that, since upgrading the locks on an object

and superior objects are not performed atomically,upgrading should be done in a root-
to-leaf direction [10]. Of course, an upgrade operation can only take place if the gener-
alized transaction rules TR1-TR4 (Table 1) are fulfilled. However, due to the upgrade
operation, locks held by the upgrading transaction on inferior objects may become
useless. For example, when a lock on a class C is upgraded from RIWc- to Wc-mode
(lock escalation [8, 1]), all locks held by the upgrading transaction on instances of C are
no longer needed. Our approach to handling those useless locks is to release them as part
of the upgrade operation. Of course, those locks on bastards are still held by the
upgrading transaction, since LARS’ lazy evaluation strategy for avoiding conflicts with
implicitly locked bastards requires locks on them anyway.

Fig. 2 illustrates an upgrade operation executed by a transaction A running in our
KB (Fig. 1). There, A has acquired Wc locks on the objectssteak-au-poivre andveau-
au-vin (A:h:Wc) and according to LARS’ locking rules for the object hierarchies, inten-
tions (A:h:IWc) on their superiors. Thereafter, A upgraded the IWc lock held by it on

5. There may be situations where a descendant may have two edges pointing to the same parent. For
example, when an object is at the same time instance and element of the same object. In such sit-
uations, the object is considered to be a bastard, no matter whether the parents are the same object.

9

main-courses to the Wc-mode. Due to this operation, the lock onveau-au-vin became
useless, and was therefore discarded. On the other hand, the lock onsteak-au-poivre was
still held by A, because this object is a bastard and therefore must stay locked. Notice
that the objectscold-dishes, fish-plate andshrimp-cocktail became implicitly locked by
A’s upgrade operation. However,cold-dishes as a bastard was not automatically
explicitly locked. It will be explicitly locked if and only if A tries to access it, due to
LARS’ lazy evaluation strategy. Also notice that the objectsfish-plate and shrimp-
cocktail may be not accessed by A before A explicitly locks the bastardcold-dishes.

Fig. 2.Upgrading locks on objects in a classification hierarchy.

4.2 Downgrading hierarchical locks
Downgrading a lock held by a transaction A on an object O is confined to the subhi-

erarchy having O as the root object. Superiors of O in the object hierarchy are not
involved. However, downgrading the lock on O may require downgrading locks held by
A on inferior objects of O. Table 6 lists for each possible mode to which the lock on O
can be downgraded, the modes in which A can hold locks on inferior objects of O
without leading to inconsistencies. As can be seen, the downgrade of a lock (as for
upgrade) is adjusted in accordance to the type of lock. For example, if the lock is
downgraded to IRc-mode, A can hold inferiors of O in null-, IRc-, or Rc-mode. If
inferiors are held in more restrictive modes, the locks on these objects must be
downgraded to one of the listed modes. Note, since downgrading an entire subhierarchy
cannot be done atomically,downgrading should be performed in a leaf-to-root direction
[10].

By observing these rules, consistency-preserving downward inheritance of locks
may be achieved. Control of lock usage is then possible by downgrading to the appro-
priate modes. In the scenario of Fig. 3, the Wc lock held by a parent transaction A on
main-courses (A:h:Wc) has been downgraded to IWc mode (A:r:Wc:h:IWc), whereas
the Wc lock onsteak-au-poivre to Rc (A:r:Wc:h:Rc) and the Wc lock oncold-dishes to
null-mode (A:r:Wc:h:-). This observation allows for selective control of access to
inferiors of an object. Hence, the transaction B, child of A, may write any inferior (with
respect to the classification hierarchy) ofmain-courses, butsteak-au-poivre.

Table 6: Possible modes to be held on inferior objects after downgrading a lock.

Lock of A on object O downgraded to mode Consistent modes for locks of A on inferiors of O

- (null) -

IRc|s|a -, IRc|s|a, Rc|s|a

IWc|s|a -, IRc|s|a, IWc|s|a, Rc|s|a, RIWc|s|a, Wc|s|a

RIWc|s|a -, IWc|s|a, Rc|s|a, RIWc|s|a, Wc|s|a

Rc|s|a Rc|s|a

fish-plate shrimp-cocktail

steak-au-poivreveau-au-vincold-dishes

main-courses

sc

sc ii

ii

global
A before upgrade

A:h:IWc

A:h:Wc

A:h:IWc

A:h:Wc
fish-plate shrimp-cocktail

steak-au-poivreveau-au-vincold-dishes

main-courses
sc

sc i i

ii

global
A after upgrade

A:h:Wc

A:h:IWc

A:h:Wc

10

Fig. 3.Selective downgrading of locks in a classification hierarchy.

In summary, downgrading of entire subtrees is necessary for hierarchical objects to
guarantee consistency of downward inheritance in NTs. That is, if a lock held by a trans-
action A on an object O is downgraded, it might be necessary to downgrade locks held
by A on inferiors of O. Due to that, downgrading must be performed in leaf-to-root
direction. In a contrary way, upgrading must be performed in a root-to-leaf direction.

5 Conclusions
We have presented an investigation of CC in NTs. The focus of our paper has

primarily been on achieving a high degree of intra-transaction parallelism within NTs.
In addition, our model allows forcontrolled downward inheritance of locks, in order to
enable a transaction to restrict the access mode of its inferiors for an object. We have
also focused the particular field of KBMSs, which has a need for specialized lock modes
as well as multi-level object hierarchies offering efficient ways to lock granules of
varying sizes. Inside this context, we have presented the LARS protocol, a CC technique
with enhanced lock modes tailored for KBMSs. The most important point of LARS is
the partition of the KB graph into many logical ones, allowing transactions to concur-
rently access such partitions through different points of view. LARS provides many
different lock types and takes the necessary precautions with respect to the dynamism
of the KB graph. By this means, a high degree of potential concurrency is obtained,
exploiting the inherent parallelism in a knowledge representation approach.
References
[1] Bernstein, P.A., Hadzilacos, N., Goodman, N.:Concurrency Control and Recovery in Database Systems,

Addison-Wesley, USA, 1987.
[2] Chaudhri, V.K.:Transaction Synchronization in Knowledge Bases: Concepts, Realization and Quantita-

tive Evaluation. Ph.D. Thesis, University of Toronto, Toronto, Canada, 1994.
[3] Chaudhri, V.K., Hadzilacos, V., Mylopoulos, J.: Concurrency Control for Knowledge Bases. In:Proc. of

the 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning, Cambridge, USA, 1992.
[4] Chaudhri, V.K., Hadzilacos, V., Mylopoulos, J., Sevcik, K.C.: Quantitative Evaluation of a Transaction

Facility for a KBMS. In:Proc. of the 3rd CIKM, Gaithersburg, USA, Nov. 1994.
[5] Davies, C.T.: Recovery Semantics for a DB/DC System. In:Proc. of the ACM Nat. Conf., USA, 1973.
[6] Davies, C.T.: Data Processing Spheres of Control.IBM Systems Journal, 17 (2), 1978.
[7] Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The Notions of Consistency and Predicate Locks in

a Database System.Communications of the ACM, 19 (11), Nov. 1976.
[8] Gray, J.N., Lorie, R.A., Putzolu, G.R., Traiger, I.: Granularity of Locks and Degrees of Consistency in a

Shared Data Base.Proc. of the IFIP Working Conf. on Modelling in DBMSs, North-Holland, 1976.
[9] Härder, T., Reuter, A.: Principles of Transaction-Oriented Database Recovery. ACM Computing Surveys,

15 (4), 1983.
[10]Härder, T., Rothermel, K.: Concurrency Control Issues in Nested Transactions. Journal of the VLDB, 2

(1), 1993.
[11]Mattos, N.M.: Abstraction Concepts: The Basis for Data and Knowledge Modeling. In:Proc. of the 7th

Int. Conf. on Entity-Relationship Approach, Rom, Italy, Nov. 1988.
[12]Mattos, N.M.:An Approach to Knowledge Base Management - Requirements, Knowledge Representa-

tion, and Design Issues. Doctor Thesis, University of Kaiserslautern, Kaiserslautern, Germany, 1989.
[13]Moss J.E.B.: Nested Transactions: An Approach to Reliable Distributed Computing. M.I.T. Press, 1985.
[14]Rezende, F.F., Härder, T.: A Lock Method for KBMSs Using Abstraction Relationships’ Semantics. In:

Proc. of the 3rd Int. Conf. on Information and Knowledge Management, Gaithersburg, USA, Nov. 1994.
[15]Rezende, F.F., Härder, T.:Capturing Abstraction Relationships’ Semantics for Concurrency Control in

KBMSs. ZRI Report No. 6/94, University of Kaiserslautern, Kaiserslautern, Germany, Nov. 1994.

fish-plate shrimp-cocktail

steak-au-poivreveau-au-vincold-dishes

main-courses
sc

sc i i

ii

global
Before A’s downgrading

A:h:Wc

A:h:Wc

A:h:IWc

A:h:Wc
fish-plate shrimp-cocktail

steak-au-poivreveau-au-vincold-dishes

main-courses
sc

sc i i

ii

global
B using A’s downgrading

A:r:Wc:h:IWc

A:h:IWc

A:r:Wc:h:Rc

B:h:IWc

B:h:IWc

B:h:Wc
B:h:Rc

A:r:Wc:h:-

A

B

