
0

Dynamic Multi-Resource
Load Balancing in

Parallel Database Systems

Erhard Rahm

University of Leipzig
Institute of Computer Science

Augustusplatz 10-11
04109 Leipzig (Germany)

E-mail: rahm@informatik.uni-leipzig.de
Fax: +49-341-719-2399

Robert Marek

University of Kaiserslautern
Dept. of Computer Science

67653 Kaiserslautern (Germany)
E-mail: marek@informatik.uni-kl.de

Abstract
Parallel database systems have to support the effective parallelization of complex queries in
multi-user mode, i.e. in combination with inter-query/inter-transaction parallelism. For this
purpose, dynamic scheduling and load balancing strategies are necessary that consider the
current system state for determining the degree of intra-query parallelism and for selecting
the processors for executing subqueries. We study these issues for parallel hash join process-
ing and show that the two subproblems should be addressed in an integrated way. Even more
important, however, is the use of a multi-resource load balancing approach that considers all
potential bottleneck resources, in particular memory, disks and CPU. We discuss basic per-
formance tradeoffs to consider and evaluate the performance of several load balancing strat-
egies by means of a detailed simulation model. Simulation results will be analyzed for multi-
user configurations with both homogeneous and heterogeneous (query/OLTP) workloads.

Keywords:
Parallel Database Systems; Shared Nothing; Query Processing; Parallel Join Processing;
Dynamic Load Balancing; Performance Analysis; Resource Allocation

1

1 Introduction
A significant trend in the commercial database field is the increasing support for parallel da-
tabase processing [DG92, Va93]. This trend is both technology-driven and application-driv-
en. Technology supports large amounts of inexpensive processing capacity by providing
"super servers" [Gr95] consisting of tens to hundreds of fast standard microprocessors inter-
connected by a scalable high-speed interconnection network. The aggregate memory is in
the order of tens to hundreds of gigabytes, while databases of multiple terabytes are kept on-
line within a parallel disk subsystem. New application areas requiring parallel database sys-
tems for processing massive amounts of data and complex queries include data mining,
digital libraries, new multimedia services like video on demand, geographic information
systems, etc.. Even traditional DBMS applications increasingly face the need of parallel
query processing due to growing database sizes and query complexity [Pi90, En94]. In ad-
dition, high transaction rates must be supported for standard OLTP applications.

The effective use of super-servers for database processing poses many implementation chal-
lenges that are unsolved in current products [Se93, Gr95]. One key problem is the effective
use of intra-query parallelism in multi-user mode, i.e., when complex queries are executed
concurrently with OLTP transactions and other complex queries. Multi-user mode (inter-
transaction/inter-query parallelism) is mandatory to achieve acceptable throughput and cost-
effectiveness, in particular for super-servers where a high number of processors must effec-
tively be utilized. While proposed algorithms for parallel query processing also work in
multi-user mode, their performance may be substantially lower than in single-user mode.
This is because multi-user mode inevitably leads to data and resource contention that can
significantly limit the attainable response time improvements due to intra-query parallelism.
Resource contention is particularly critical because of the high resource demands (CPU cy-
cles, memory space, disk bandwidth, communication bandwidth) of complex queries* . Fur-
thermore, intra-query parallelism causes increased communication overhead compared to a
sequential query execution on one node. Hence, the effective CPU utilization and thus
throughput (e.g., for OLTP) are reduced.

In order to limit and control resource contention in multi-user mode, dynamic strategies for
resource allocation (scheduling) and load balancing become necessary. Within a processing
node, local scheduling components have to be extended to control local resource contention,
e.g., by adding support for transaction priorities [CJL89, En91]. To limit resource conten-
tion in a distributed system, the workload must be allocated among the processing nodes
such that the capacity of different processing nodes be evenly utilized (load balancing). At
the same time, workload allocation should support a compromise with respect to communi-
cation and I/O overhead such that both intra-query parallelism and a sufficiently high
throughput can be achieved. This requires a dynamic query processing approach where the
degree of intra-query parallelism as well as the determination of which processing nodes

* Data contention problems between read-only queries and update transactions may be solved by a
multiversion concurrency control scheme [CM86, BC92].

2

should process a given query are made dependent on the current system state at query run
time.

Despite the high practical relevance of such dynamic scheduling and load balancing strate-
gies to effectively support inter- and intra-query parallelism, very little research has been
performed in this area (see Section 2). In a previous paper, we have begun to address these
problems with respect to CPU resource contention [RM93]. The study focussed on parallel
join processing in parallel Shared Nothing [DG92] database systems. Join processing was
based on a dynamic redistribution of both input relations among multiple join processors.
With such an approach there is high potential for dynamic load balancing since both, the de-
gree of join parallelism as well as the selection of join processors, constitute dynamically
adjustable parameters. In this paper, we investigate the much more complex problem of dy-
namic load balancing for multiple bottleneck resources. While considering only a single bot-
tleneck resource is appropriate as a first step, such an approach is clearly ineffective if
performance problems are caused by other resources. Dealing with multiple bottleneck re-
sources is complicated by the fact that there are typically many scheduling and load balanc-
ing alternatives per resource type. Hence, the total solution space increases with the number
of resource types to consider. Furthermore, in a parallel database systems resource utiliza-
tion often varies largely at different nodes. As a result, the current bottleneck may constantly
change and multiple bottlenecks may exist at the same time complicating dynamic schedul-
ing and load balancing.

The present study deals with memory and CPU as bottleneck resources and focuses on par-
allel hash join processing [ME92, Gr93] in Shared Nothing systems. Disks constitute anoth-
er critical bottleneck resource, in particular because CPUs are becoming faster at a high pace
while disk access times improve only slowly [PGK88]. Unfortunately, the potential to dy-
namically influence disk contention is limited. This is because disk access frequencies to
permanent data are primarily determined by the chosen database allocation* . However, the
database allocation on disk is largely static and cannot be changed for individual queries or
based on temporary overload situations. On the positive side, our load balancing schemes
are able to limit disk contention for temporary files by optimizing usage of the available
memory.

The remainder of this paper is organized as follows. The next section contains a brief survey
of related studies on dynamic scheduling and load balancing in centralized and parallel da-
tabase systems. In Section 3, we discuss some basic performance tradeoffs to motivate the
choice of our dynamic multi-resource load balancing schemes. The various load balancing
approaches that have been implemented within a detailed simulation model of a Shared
Nothing database system are described in Section 4. Section 5 contains an overview of our
simulation model and hash join implementation. In Section 6 we present and analyze simu-
lation experiments for various database and workload configurations. In particular, we are

* In Shared Nothing systems the database allocation further reduces the potential for workload al-
location since it prescribes at which processors scan operations have to be processed. Fortunately,
dynamic load balancing is feasible for operations (e.g., joins) on intermediate results that can dy-
namically be redistributed.

3

studying multi-user experiments with homogeneous workloads (concurrent join queries)
and heterogeneous (query/OLTP) workloads. Finally, we summarize the major findings of
this investigation.

2 Related Work
Dynamic scheduling and workload allocation strategies for database processing have found
considerable interest recently, but most studies concentrated on centralized DBMS. Further-
more, most studies only dealt with a single bottleneck resource. For instance, several re-
searchers looked at the problem of controlling lock contention by dynamically adjusting the
multiprogramming level [CKL90, Th92, MW92, WHMZ94]. Other studies coped with dy-
namic memory allocation strategies for multi-class workloads consisting of complex queries
and OLTP transactions [JCL90, ZG90, PCL93, BCL93, BMCL94, DG94]. In particular,
[ZG90, PCL93, DG94] proposed adaptive memory allocation schemes for hash joins that
change a query’s memory assignment during execution according to the memory require-
ments of higher-priority transactions. [MD93] addressed the scheduling problem when mul-
tiple hash join queries are to be processed at the same time. Different alternatives to allocate
memory to join queries were considered, but the memory allocation was left unchanged dur-
ing query execution. Scheduling strategies have also been investigated for real-time DBMS
in order to satisfy transaction deadlines [AG89, PLC92].

The problem of dynamic load balancing in parallel database systems has mainly been con-
sidered for parallel Shared Everything (multiprocessor) DBMS so far [HSIT91, Om91,
Ho92, LT92]. In these systems, dynamic load balancing is easily achieved since the operat-
ing system can automatically assign the next ready process/subquery to the next free CPU.
Also, the memory load balancing problem does not exist for Shared Everything because
there is no private main memory per processor. Furthermore, the shared memory supports
very efficient interprocess communication so that the overhead for starting/terminating sub-
queries is much lower than for Shared Nothing. On the other hand, the number of processors
is typically small for Shared Everything (≤ 30) thus restricting the degree of inter-/intra-que-
ry parallelism and the potential for dynamic load balancing.

For Shared Nothing dynamic forms of load balancing have been proposed for join process-
ing in order to deal with data skew [WDJ91, WDYT91, DNSS92, HS93]. These approaches
dynamically determine the size of intermediate results in order to redistribute the data
among join processors such that they have to perform about the same amount of join work
(in order to minimize execution skew). However, all these studies assumed single-user mode
corresponding to a best-case situation with little or no resource contention. Hence, only in-
tra-query load balancing is supported and the effectiveness of the proposals in multi-user
mode must be questioned. Other performance studies of parallel join processing for Shared
Nothing (without data skew) also assumed single-user mode, e.g., [SD89, SD90, MS91].
Except for our own work [RM93], we are not aware of other studies on dynamic load bal-

4

ancing for Shared Nothing in multi-user mode. In [RS95], we investigate the potential of
Shared Disk database systems for dynamic load balancing for parallel scan queries.

3 Basic Performance Tradeoffs
We study the load balancing problem for parallel hash join processing and the most general
case where both input relations are distributed among several join processors [ME92, Gr93].
In a first phase (building phase), a parallel scan is performed on the smaller (inner) relation
at thedata processors owning fragments of this relation. The scan output is dynamically dis-
tributed among severaljoin processors according to a partitioning function (range or hash)
on the join attribute. The join processors maintain a memory-resident hash table for the inner
relation and support an overflow mechanism (leading to temporary I/O on local disks) if not
all tuples of the inner relation fit into memory (see Section 5). In the second phase (probing
phase), the outer relation is read in parallel at its data processors an distributed among the
join processors. By using the same partitioning function for both join inputs, it is guaranteed
that all matching tuples arrive at the same join processor. At the join processors, arriving tu-
ples from the outer relation are probed against the hash table to find matching tuples from
the inner relation.

The performance of such a join method is influenced by many factors like the chosen data-
base allocation (number of data processors, fragmentation, etc.), size of the base relations,
selectivity of scan operations, number of join processors, memory sizes, CPU speed, com-
munication bandwidth, disk characteristics etc. Given a fixed database allocation and hard-
ware configuration however, the optimal join strategy that minimizes the response time for
a given join query is mainly determined by the number of join processors p and selection of
these p join processors from the set of eligible processors* . In single-user mode, i.e. when
there is only one join query in the system, the optimal number of join processors can be de-
termined fairly easily by means of an analytical model. As outlined in [WFA92, Ma95], this
can be achieved by developing an analytic formula for calculating the average join response
time for a given number of join processors. The typical response time curve is shown in Fig.
1a indicating that response time can only be improved until a certain degree of parallelism.
This is because the actual work per processor decreases, while the communication overhead
for starting the subqueries, redistributing the scan output, merging the results and for termi-
nation (commit) increases with a higher number of join processors. The optimal degree of
join parallelism in single-user mode, psu-opt, is obtained by setting the derivative of the re-
sponse time formula to zero. Selection of the join processors is also unproblematic since all
processors are lightly loaded in single-user mode.

The study [RM93] showed however, that this changes significantly in multi-user mode. It
was found that under high CPU utilization the optimal number of join processors is lower
than in single-user mode (Fig. 1b) and that it is generally the lower the higher the system is
utilized. This is because the communication overhead associated with a high degree of intra-

* We assume that any processor may act as join processor.

5

query parallelism is less affordable when processors are highly utilized. Furthermore, the
least utilized CPUs should be selected for join processing.

In [RM93] we used sort-merge as the local join method and did not consider memory utili-
zation for load balancing. However, for hash joins optimizing memory usage is likely to be
more significant than CPU load balancing and must therefore be considered for dynamic
load balancing in multi-user mode. As our simulation results will show it is of primary im-
portance for hash joins to avoid overflow I/O as much as possible, i.e. to keep as much as
possible of the inner relation memory-resident. Hence, the optimal degree of join parallelism
in single-user mode is at least as high as required to avoid temporary file I/O. If the aggregate
memory of all N processors is too small for keeping the inner relation memory-resident, then
N constitutes the single-user optimum. Multi-user mode leads to memory contention so that
only a subset of a node’s memory may be available for join processing. Hence, the optimal
number of join processors is expected to be the higher the less memory is available. As a
result, under high memory (disk) utilization the optimal degree of join parallelism is typi-
cally higher than in single-user mode (Fig. 1c).

The discussion illustrates some basic tradeoffs to consider for memory and CPU load bal-
ancing (Fig. 2). On one hand, the degree of join parallelism must be high enough to limit
memory and disk contention. On the other hand, it should be low enough to limit CPU con-
tention. Hence, the degree of join parallelism must be chosen dynamically based on the cur-
rent memory, disk and CPU utilization. As with all multi-resource scheduling strategies
there is a danger of instability because removal of bottleneck 1 may create bottleneck 2 and
vice versa (Fig. 2).

4 Load Balancing Strategies
The previous discussion showed that effective support for multi-user mode requires dynam-
ic strategies for determining the degree of join parallelism as well as for selecting the join
processors that consider both CPU and memory/disk bottlenecks. For CPU bottlenecks, the
approaches proposed in [RM93] can be used that reduce the degree of join parallelism ac-

 Fig. 1: Parallel join processing in single-user and multi-user mode:
basic response time development and optimal number of join processors

number

a) single-user mode b) CPU-bottleneck

re
sp

on
se

 ti
m

e

of join

single-user optimum
optimal number of

SU-OPT SU-OPT

processors

in multi-user mode
c) memory/disk-bottleneck

SU-OPT

in multi-user mode

number
of join
processors

number
of join
processors

re
sp

on
se

 ti
m

e

re
sp

on
se

 ti
m

e

join processors
optimal number of
join processors

6

cording to the average CPU utilization and select the least utilized processors for join pro-
cessing. Determining the optimal number of join processors under memory bottlenecks is
more involved since it requires consideration of the available memory at the individual pro-
cessors. For instance, is it better to allocate a join to 5 processors with at least 30 MB unused
memory per processor or to 10 processors with a minimum of 10 MB available memory? In
the former case, the aggregate memory size is higher thus reducing the number of I/Os to
temporary files. The latter case, on the other hand, allows a higher degree of I/O and pro-
cessing parallelism that may outweigh the increased number of I/Os. Dynamic load balanc-
ing is most complex for situations with both CPUand memory bottlenecks and if almost all
processors are affected (global overload). For partial overload situations when only some
processors suffer from bottlenecks, load balancing strategies that select the less utilized pro-
cessors for join processing are likely to be very effective.

In the following we describe the load balancing strategies that have been implemented in our
simulation system (Section 5) and that will be used in the performance evaluation (Section
6). We will consider static and dynamic strategies as well as isolated and integrated policies.
Isolated strategies operate in two consecutive steps. In a first step the number of join pro-
cesses (degree of join parallelism) is determined. In a second step these join processes are
allocated to processing nodes based on some criterion.Integrated strategies, on the other
hand, determine both the number of join processes and their allocation in a single step. The
dynamic policies base their decisions on the current CPU utilization and memory availabil-
ity. For this purpose we assume that a designated control node is periodically informed by
the processors about their current utilization. During the execution of a query, information
on the current CPU and memory utilization is requested from the control node to support
dynamic load balancing.

We first describe the substrategies used in the isolated control approaches for determining
the degree of join parallelism and for selecting the join processors. Afterwards, the integrat-
ed policies are presented.

CPU bottleneck memory (disk) bottleneck

 reduce cost for communi-

reduce degree increase degree
of intra-query parallelism

reduce memory (I/O) requirements
per subquery

 Fig. 2: Tradeoffs in dynamic load balancing with multiple bottlenecks

cation, startup & termination

of intra-query parallelism

7

Determining the number of join processors

We consider two static schemes that determine the number of join processors at query com-
pile time and one dynamic approach.

Static degree of join parallelism
In the first policy, we simply choose the optimal number of join processors in single-user
modepsu-opt as the degree of join parallelism. However, since according to [RM93] such a
high number of join processors may cause performance problems if the system is CPU-bot-
tlenecked we additionally study an alternative with a smaller number of join processors. In
this approach, we use the number of join processorspsu-noIO that avoid temporary I/O in sin-
gle-user mode (if at all feasible with the given memory sizes). This number of join proces-
sors can be determined as follows:

 (4.1) psu-noIO = MIN (N, (bi*F) / m))

In this formula, N represents the total number of processors, bi the number of pages of the
inner relation, F the overhead for the hash table ("fudge factor") and m the memory size (in
pages) per processor. Temporary file I/O is avoided if the aggregate memory size of the psu-

noIOprocessors exceeds the size of the smaller join input relation and if this relation is equal-
ly distributed among the join processors (no or only little redistribution skew).

Dynamic determination of the degree of join parallelism (DJP)
This dynamic strategy was already presented in [RM93]. It determines the degree of paral-
lelism for multi-user mode pmu by reducing the single-user optimum psu-opt according to the
current CPU utilization:

(4.2) pmu = psu-opt (1 - ucpu
3).

Here, ucpu denotes the current average CPU utilization of all processors obtained from the
control node. With this formula, a reduction takes place primarily for higher utilization lev-
els (ucpu > 0.5) when a high communication overhead for parallelization is not acceptable.

Selection of join processors

We support three strategies (RANDOM, LUC, LUM) that may be combined with any of the
three approaches above for determining the degree of join parallelism.

RANDOM
This strategy selects the join processors at random. RANDOM is expected to spread the
workload equally across all available nodes. Since RANDOM does not consider information
about the current system state, it represents a static approach.

Join processing on processors with Least Utilized CPU (LUC)
In this approach, we select the processors with the lowest CPU utilization as join processors.
For this purpose, the adaptive variation suggested in [RM93] is used that artificially increas-
es the CPU utilization of a processor selected for join processing at the control node. This
avoids that subsequent join queries are assigned to the same processors due to the delayed
updating of information on CPU utilization.

8

Join processing on processors with Least Utilized Memory (LUM)
Join processes are assigned to the nodes with the most available main memory. Again, the
control node’s information is directly adapted for newly selected join processors.

Integrated strategies

Simulation results will be provided for three integrated and dynamic load balancing strate-
gies. We have investigated several additional approaches; however, since they turned out to
be less effective and due to space constraints we omit them from further consideration. The
integrated schemes primarily use the control node’s information on the current memory
availability to determine the number of join processors and to select them according to the
LUM strategy. For this purpose, we assume that the control node maintains the following
data structure:AVAIL_MEMORY [1..N] of (node-ID, free).

This array indicates for each of the N processing nodes the available memory (free) and is
sorted on the amount of free memory, i.e. AVAIL_MEMORY [1] refers to the processor
with the least memory utilization etc.

All strategies try to avoid temporary file I/O by selecting pmu join processors with a mini-
mum of b pages so that pmu*b exceeds the size of the smaller join input relation. Note that
from the pmu selected processors the one with the minimum amount of available memory is
critical since it is likely to cause the highest I/O delays from all subqueries. Hence, it is the
one that determines response times under memory or disk bottlenecks. As a result, it is de-
sirable to find a processor selection so that temporary file I/O can be avoided even at the
processor with the least available memory. The three strategies differ when there are several
selections avoiding temporary I/O and in how CPU utilization is additionally considered.

Minimal number of join processors that avoids temporary file I/O (MIN_IO)
This strategy tries to find the minimal number of join processors k that avoids temporary file
I/O. More formally, pmu is determined such that

(4.3) pmu = MIN (k | AVAIL_MEMORY [k].free *k > bi*F) k = 1, 2, ..., N

If the available memory does not allow avoidance of all temporary file I/Os, the number of
join processors is selected so that the amount of overflow I/O is minimized. Join processing
takes place on the processors specified in the first pmu positions of AVAIL_MEMORY
(LUM policy). This policy does not consider the current CPU utilization.

Avoid temporary file I/O with number of join processors closest to psu-opt

(MIN_IO_SUOPT)
This strategy is different from MIN_IO only if there are multiple selections that avoid tem-
porary file I/O. MIN_IO is expected to provide good performance compared to higher de-
grees of parallelism when CPU is bottlenecked since overhead for parallel processing is kept
low. However, in the case of low CPU utilization it may unnecessarily restrict the degree of
parallelism. To avoid this potential problem we select the number of processors closest to
psu-opt for which temporary file I/O is avoided.

9

Optimize I/O for maximum of join processors according to DJP (OPT_IO_DJP)
This strategy is an extension of the previous one that restricts the maximal degree of join
parallelism to limit CPU contention. The maximal number of join processors is determined
according to the DJP policy (formula 5.2) based on the current CPU utilization. Such an ap-
proach is likely to be effective under higher CPU utilization. It also supports a low number
of temporary file I/Os under light CPU load where the number of processors is only restrict-
ed by psu-opt.

5 Simulation model
For the present study, we have extended our Shared Nothing simulation system already used
in [RM93] by adding implementations for parallel hash join processing and for the various
load balancing schemes. The gross structure of this simulation system is depicted in Fig. 3.
In the following, we briefly describe the used database and workload models as well as the
processing model to keep the paper self-contained. The simulation system is highly param-
eterized. In Section 6.1, we will provide an overview of the major parameters and their set-
tings used in this study.

Database and workload model

The database is modeled as a set of partitions. A partition may be used to represent a relation,
a relation fragment or an index structure. It consists of a number of database pages which in
turn consist of a specific number of objects (tuples, index entries). The number of objects
per page is determined by a blocking factor which can be specified on a per-partition basis.
Each relation can have associated clustered or unclustered B+-tree indices. Relations and in-
dices can be horizontally declustered across an arbitrary number of disks and processors.

We support heterogeneous (multi-class) workloads consisting of several query and transac-
tion types. Queries correspond to transactions with a single database operation (e.g., SQL
statement). Currently we support the following query types: relation scan, clustered index
scan, non-clustered index scan, two-way join queries, multi-way join queries, and update
statements (both with and without index support). We also support the debit-credit bench-
mark workload (TPC-B) and the use of real-life database traces [MR92]. The simulation
system is an open queuing model and allows definition of an individual arrival rate for each
transaction and query type.

 Fig. 3: Gross structure of the simulation system

communication networkworkload
generation
and allocation

PE 1

database disks

PE n
...

concurrency
control

communication
manager

buffer
manager

CPU

transaction manager

oltpscan

join PAROP

Query Processing System

log disk

10

Workload allocation takes place at two levels. First, each incoming transaction or query is
assigned to one processor acting as the coordinator for the transaction/query. For this place-
ment we support different strategies, in particular random allocation. The second form of
workload allocation deals with the assignment of suboperations to processors during query
processing and depends on the operators to be executed. For scan operators, the processor
allocation is always based on a relation’s data allocation. For join processing, we support
several static and dynamic strategies for determining the degree of join parallelism and for
allocating the join processes to processors as described in the previous section.

Workload processing

Each processor or processor element (PE) of the Shared Nothing system is represented by a
transaction manager, a query processing system, CPU servers, a communication manager, a
concurrency control component and a buffer manager (Fig. 3). The transaction manager
controls the (distributed) execution of transactions. The maximal number of concurrent
transactions (inter-transaction parallelism) per PE is controlled by a multiprogramming lev-
el. Newly arriving transactions must wait in an input queue until they can be served when
this maximal degree of inter-transaction parallelism is already reached. The query process-
ing system models basic relational operators (sort, scan, join) as well as a parallelization
meta-operator (PAROP) that is used for dynamically redistributing data among processors
and for merging multiple inputs. Different parallel execution strategies have been imple-
mented for the various operators, in particular parallel hash joins (see below).

The number of CPUs per PE and their capacity (in MIPS) are provided as simulation param-
eters. The average number of instructions per request can be defined separately for every re-
quest type. To accurately model the cost of query processing, CPU service is requested for
all major steps, in particular for transaction initialization (BOT), object accesses in main
memory (value comparisons, operations on hash tables, etc.), I/O overhead, communication
overhead, and commit processing. The communication network models transmission of
message packets of fixed size. Messages exceeding the packet size (e.g., large sets of result
tuples) are disassembled into the required number of packets.

For concurrency control, we employ distributed strict two-phase locking (long read and
write locks). Global deadlocks are resolved by a central deadlock detection scheme. Distrib-
uted two-phase commit is supported and involves all processors that have participated dur-
ing execution of the respective transaction/query. We support the read-only optimization
where only one distributed commit phase is required for read-only sub-transactions (to re-
lease the read locks).

Database partitions can be kept memory-resident (to simulate main memory databases) or
they can be allocated to a number of disks. Disks and disk controllers have explicitly been
modelled as servers to capture potential I/O bottlenecks. Furthermore, disk controllers can
have a LRU disk cache. The disk controllers also provide a prefetching mechanism to sup-
port sequential access patterns. If prefetching is selected, a disk cache miss causes multiple
succeeding pages to be read from disk and allocated into the disk cache. Sequentially read-

11

ing multiple pages is only slightly slower than reading a single page, but avoids the disk ac-
cesses for the prefetched pages when they are referenced later on. The number of pages to
be read per prefetch I/O is specified by a simulation parameter.

The database buffer in main memory consists of a global buffer for all transactions/queries
as well as private working spaces used for query processing (e.g., hash tables for hash joins).
The global buffer is managed according to a LRU replacement strategy and a no-force up-
date strategy with asynchronous disk writes. Private working spaces are dynamically as-
signed by reserving a certain number of pages for processing a given (sub)query.

Hash join processing

For parallel hash join processing, the input relations can be distributed among an arbitrary
number of join processors* . Selection of the join processors depends on the respective ap-
proach for load balancing. For local join processing, we have implemented amemory-adap-
tive hash join algorithm, calledPartially Preemptible Hash Join (PPHJ), that was shown to
outperform traditional join methods like GRACE and hybrid hash join for mixed que-
ry/OLTP workloads [PCL93]. This is because it adapts the memory assignment for a join
query according to the memory requirements of higher-priority OLTP transactions. The
PPHJ algorithm partitions both join inputs into p partitions with p = where bi is the
number of pages for the inner relation A. To make sure that each A partition can be held in
memory, a minimum of p pages must be available for join processing.

The algorithm tries to keep as many A partitions as possible in memory to allow a direct join
processing with the outer relation. In the case that memory has to be taken away from the
join due to higher-priority transactions, one or more memory-resident A partition are written
to disk. If more memory becomes available for join processing, one or more disk-resident A
partition are brought into memory to support a direct join processing. Arriving tuples from
the outer relation B can only be processed directly if the corresponding A partition is in
memory. Otherwise, the B tuple is inserted into a temporary B partition that is written to
disk. For disk-resident partitions the actual join processing is deferred until all tuples from
the outer relation have been received. For this, the respective A partition is read and stored
in a hash table. Afterwards the associated B partition is read and probed against the hash ta-
ble.
A join query is only started at a node if the minimal space requirements of p pages are avail-
able. Otherwise, the join query is forced to wait in a memory queue that is managed accord-
ing to a FCFS (first come, first served) scheduling policy. Similarly, executing hash joins
are suspended if memory frames are stolen by higher-priority transactions and fewer than
the minimal number of pages remain for join processing. Since all hash join queries are as-
sumed to have equal priority, the memory allocation of a running query is not changed due
to newly arriving joins.

* If the input relations are already declustered on the join attributes, join processing may also take
place at the data processors. This reduces the communication overhead but offers little potential
for dynamic load balancing.

F bi×

12

6 Performance Analysis
Our experiments concentrate on the performance of parallel join processing in multi-user
mode. The focus of the study is to compare the effectiveness of the various static and dy-
namic load balancing alternatives introduced in Section 4 for determining the degree of join
parallelism and for selection of the join processors. Two types of multi-user load profiles are
considered: a homogeneous workload consisting of join queries only as well as a heteroge-
neous (mixed) workload with both short OLTP transactions and join queries.

In the next subsection, we provide an overview of the parameter settings used in these ex-
periments. Multi-user experiments for the homogeneous and heterogeneous workload are
analyzed in 6.2 and 6.3, respectively. Many additional experiments have been conducted but
cannot be described due to space restrictions. However, these experiments confirm the main
findings of the selected experiments.

6.1 Simulation Parameter Settings
Fig. 4 shows the major database, query and configuration parameters with their settings.
Most parameters are self-explanatory, some will be discussed when presenting the simula-
tion results. The join queries used in our experiments perform two scans (selections) on the
input relationsA andB in parallel and join the corresponding results. TheA relation contains
250.000 tuples, theB relation 1 million tuples* . The selections onA andB reduce the size of
the input relations according to the selection predicate’s selectivity (percentage of input tu-
ples matching the predicate). Both selections employ clustered indices. The join result has
the same size as the scan output onA. The number of processing nodes is varied between 10
and 80.

Both relations are uniformly declustered across disjoint sets of PE. To support a static load
balancing for scan operations, each PE is assigned the same number of tuples. As a result
the larger relationB is declustered across 80% of the PE, while the remaining 20% of the PE
hold tuples of relationA.

The duration of an I/O operation is composed of the controller service time, disk access time
and transmission time. For all sequential I/Os, in particular relation scans, clustered index
scans and scans on temporary files (partitions), prefetching is utilized by the disk controllers
to improve I/O performance. The disk access time for prefetching consists of a base access
time per I/O (15 ms) plus an additional delay per page (1 ms). For a prefetching of 4 pages,
the average disk access time is 19 ms. The parameter settings for the communication net-
work have been chosen according to the EDS prototype [Sk92].

To capture the behavior of OLTP-style transactions, we provide a workload similar to the
debit-credit benchmark. Each OLTP transaction performs four non-clustered index selects
on arbitrary input relations and updates the corresponding tuples.

* As pointed out in [En94], most decision support queries are joins between a larger and a smaller
relation.

13

6.2 Multi-user experiments with homogeneous workloads
The homogeneous workload consists of a single (join) query type. Inter-query parallelism is
used to execute multiple queries at a time. Since we want to support not only short response
times but also good throughput, we increase the query arrival rate proportionally with the
number of PE. We first present multi-user results for isolated load balancing strategies using
a static degree of intra-query parallelism. Afterwards we analyze the effectiveness of isolat-
ed and integrated strategies that dynamically determine the number of join processors. Next,
an experiment with a pronounced disk and memory bottleneck is described. Finally, we
study the influence of the join complexity on the effectiveness of dynamic load balancing.

Isolated load balancing strategies with static degree of join parallelism

Fig. 5 shows the multi-user response times for static degrees of parallelism and three differ-
ent allocation strategies. For comparison purposes, the single-user results obtained with psu-

opt join processors are also shown. For the assumed join query, 3 join processors are suffi-
cient in single-user mode to avoid temporary file I/O, i.e. psu-noIO = 3. The single-user opti-
mum is substantially higher (psu-opt = 30). The system size is varied between 10 and 80 PE;
the arrival rate is 0.25 queries per second (QPS) per PE.

For this workload, for up to 40 PE the system is only lightly loaded. Hence, using psu-opt join
processors provides the best multi-user performance with response times not much higher
than in single-user mode. In this range, restricting join processing to psu-noIO processors

Configuration settings Database/Queries settings

number of PE (#PE)
CPU speed per PE

avg. no. of instructions:
initiate a query/transaction
terminate a query/transaction
I/O
send message
receive message
copy 8 KB message
read a tuple from memory page
hash a tuple
insert a tuple into hash table
write a tuple into output buffer
probe hash table

buffer manager:
page size
buffer size

disk devices:
number of disk servers per PE
controller service time
transmission time per page
avg. disk access time
prefetching delay per page
disk cache
prefetching size

10, 20, 40, 60, 80
20 MIPS

25000
25000
3000
5000
10000
5000
500
500
100
100
200

8 KB
50 pages (0.4 MB)
(varied)

10 (varied)
1 ms (per page)
0.4 ms
15 ms
1 ms
200 pages
4 pages

relation A:
#tuples
tuple size
blocking factor
index type
storage allocation
alloaction to PE

relation B:
#tuples
tuple size
blocking factor
index type
storage allocation
allocation to PE

intermediate results:
storage allocation

join queries:
access method
scan selectivity
no. of result tuples
fudge factor hash table:
arrival rate
query placement
join parallelism
selection of join processors

(100 MB)
250.000
400 B
20
clustered B+-tree
disk
partial declustering (20% of #PE)

(400 MB)
1.000.000
400 B
20
clustered B+-tree
disk
partial declustering (80% of #PE)

buffer / disk

via clustered index
varied
100 % of the inner relation
1.05
single-user, multi-user (varied)
random (uniformly over all PE)
static/ dynamic
random/ dynamic

 Fig. 4: System configuration, database and query profile

14

achieves suboptimal performance since CPU parallelism is not fully exploited. Furthermore,
choosing only psu-noIO join processors is not sufficient to avoid temporary file I/O in multi-
user mode because the available memory per processor is smaller than in single-user mode.

With a growing number of processors, performance is increasingly dominated by CPU bot-
tlenecks due to higher arrival rates and increased overhead for the dynamic redistribution of
both join inputs* . The redistribution overhead is particularly high for the strategies employ-
ing psu-opt (30) join processors causing substantial response time deteriorations due to CPU
contention (more than 80% CPU utilization on an 80 PE system). On the other hand, using
psu-noIO join processors results in a significantly lower CPU utilization (approx. 50% for 80
PE). However, this is achieved at the expense of increased I/O delays and higher disk utili-
zation since 3 join processors are not sufficient any more to avoid temporary file I/O. Still,
the best static strategy using psu-noIO processors (in combination with LUM) outperforms
the strategies using psu-opt processors for more than 60 PE.

The load balancing strategy for selecting the join processors also has a profound impact on
the response time results, in particular for higher utilization levels (number of PE). RAN-
DOM exhibits the worst performance in all cases despite the fact that a homogeneous work-
load is relatively favorable for such a strategy. Still, the CPU and memory utilization of the
individual processors varied substantially, in particular with only 3 (psu-noIO) join processors
per query. Since this strategy suffered from memory and I/O bottlenecks for a higher number
of PE, the LUM policy was much more efficient than the LUC alternative for selecting the
join processors. In case of psu-opt join processors memory contention was not a problem. In-
stead, CPU was the bottleneck for a higher number of PE. Therefore, the LUC policy was
(slightly) more efficient than LUM for the case of 30 (psu-opt) join processors. However,
there is no significant difference between the LUM and the LUC policy, since CPU utiliza-
tion and memory utilization were closely correlated for the homogeneous workload and 30
join processors per query.

* The redistribution overhead per query increases with the number of nodes since the two relations
are declustered across 80% and 20% of all processors, respectively.

 Fig. 5: Multi-user results with constant degree of parallelism and random/dynamic workload
allocation (multi-user join 0.25 QPS/PE; 1% scan selectivity)

Psu-noIO = 3 Psu-opt = 30

10 20 30 40 50 60 70 80 system size [# PE]
0

500

1000

1500

2000

2500

3000

re
sp

on
se

 ti
m

e
[m

s]

Psu-noIO + RANDOM
Psu-noIO + LUC
Psu-noIO+ LUM

Psu-opt + RANDOM
Psu-opt + LUC
Psu-opt + LUM

single-user mode (Psu-opt)

15

Isolated/integrated load balancing strategies with dynamic degree of parallelism

As the discussed results have shown, statically determining the degree of join parallelism is
not appropriate for multi-user mode due to changing levels of resource utilization. There-
fore, we focus now on the results obtained for a dynamic calculation of the number of join
processors (Fig. 6). We consider two isolated approaches based on the DJP strategy for dy-
namically determining the degree of join parallelism according to the current CPU utiliza-
tion and using a RANDOM- or LUM-based selection of join processors. In addition, results
for the three integrated approaches from Section 5 are shown.

Interestingly, Fig. 6 shows that the worst performance is achieved for the two integrated load
balancing strategies MIN_IO and MIN_IO_SUOPT, in particular for a higher number of
processors. Both strategies do not provide optimal performance, since they do not consider
the current CPU utilization but merely try to avoid temporary file I/O. However, for this pur-
pose an increasing number of join processors became necessary for larger system sizes lead-
ing to an even higher CPU contention (> 85% CPU utilization) than with a static degree of
psu-opt join processors. For instance, more than 40 join processors were necessary for a sys-
tem of 80 PE to avoid temporary I/O. MIN_IO is superior to MIN_IO_SUOPT for larger
configurations since the latter strategy generally chooses a higher number of join processors.
For smaller configurations (lower CPU utilization), on the other hand, selecting the minimal
number of join processors avoiding temporary file I/O (MIN_IO) is slightly less efficient
since CPU parallelism is not fully utilized.

Most efficient were the strategies DJP and OPT_IO_DJP that reduce the degree of join par-
allelism under high CPU load. Both strategies apply at most psu-opt join processors and re-
duce the degree of join parallelism with increasing CPU utilization. Therefore, even for 80
PE CPU utilization could be kept below 65% still permitting acceptable response time.
While the use of a RANDOM selection of join processors is again worse than a LUM-based
selection for the DJP policy, such an approach was still better than the two integrated
schemes MIN_IO and MIN_IO_SUOPT. This shows that under high CPU load reducing the
degree of join parallelism is more important than minimizing the amount of temporary I/O.

 Fig. 6: Multi-user results with dynamic load balancing strategies
(multi-user join 0.25 QPS/PE; 1% scan selectivity)

10 20 30 40 50 60 70 80 system size [# PE]
0

250

500

750

1000

1250

1500

re
sp

on
se

 ti
m

e
[m

s]

MIN_IO
MIN_IO_SUOPT

DJP + RANDOM
DJP + LUM
OPT_IO_DJP
single-user mode (Psu-opt)

16

The two best strategies DJP+LUM and OPT_IO_DJP showed very similar performance
characteristics for this experiment. For the experiments with heterogeneous workloads, the
differences between these approaches will become more apparent.

Memory/disk bottleneck

In the previous experiment that was largely influenced by CPU contention for larger system
sizes, the strategies reducing the degree of parallelism according to the current CPU utiliza-
tion were most effective. We now focus on a memory-bound environment by reducing the
memory size per processor by a factor of 10 and reducing the query arrival rate. Further-
more, we assume only 1 disk per PE for temporary file I/O (instead of 10 disks). For this
experiment, we only compare one of the worst strategies of the previous experiment
(MIN_IO_SUOPT) with one of the best strategies (DJP + LUM) for both single-user and
multi-user mode (Fig. 7).

The assumed workload resulted in a low CPU utilization of under 20%, but caused a high
buffer utilization (> 90%). Since there was no CPU bottleneck, the DJP strategy always used
Psu-opt join processors. However, this degree of join parallelism was not sufficient in multi-
user mode to minimize the number of overflow I/Os causing an increasing degree of mem-
ory and disk utilization (> 60%) for growing system sizes. The same effect would have oc-
curred for the OPT_IO_DJP strategy. The MIN_IO_SUOPT approach, on the other hand,
was able to minimize the amount of overflow I/O by increasing the number of join proces-
sors with the system size. As indicated in Fig. 7, the average degree of join parallelism in
multi-user mode was increased to up to 42 for 80 PE as opposed to 33 in single-user mode
and 30 for DJP. The corresponding savings in the number of I/Os and the reduced disk con-
tention allowed drastically improved response times compared to the DJP policy.
These experiments illustrate that there is no single policy that performs best under all con-
ditions, but that the load balancing strategy itself should be selected according to the current
load and resource situation.

multi-user join (0.05 QPS/PE):

single-user join:

 Fig. 7: Dynamic load balancing strategies in a memory-bound environment
(1% scan selectivity)

20 30 40 50 60 70 80
system size [# PE]

0

1000

2000

3000

4000

5000

6000

re
sp

on
se

 ti
m

e
[m

s]

MIN_IO_SUOPT

DJP+LUM

MIN_IO_SUOPT
DJP+LUM

MIN_IO_SUOPT
DJP+LUM

multi-user join (0.025 QPS/PE):

20

20

20

38

34

33

40

33

34

42

35

33

17

Influence of the join complexity on the effectiveness of dynamic load balancing

To study the influence of the join complexity on the effectiveness of dynamic load balancing
we vary the size of the join input by using different scan selectivities. This experiment was
performed for a constant system size of 60 PE. Scan selectivity was varied between 0.1 and
5% for both input relations. For each join complexity, the arrival rate was determined indi-
vidually, so that at least one of the physical resources (CPU, memory or disk) was highly
loaded (>75%). Fig. 8 shows the relative response time improvement using dynamic strate-
gies compared to a static degree of join parallelism (MIN(N,psu-opt)) and random selection
of join processors.

We observe that the dynamic load balancing schemes outperform the static approach in all
cases, but that the relative performance improvements shrink with increasing join complex-
ity. This is largely because we use a constant system size while increasing the join size lead-
ing to an increase in the optimal number of join processors. In single-user mode, the
optimum psu-opt increases from 10 for a scan selectivity of 0.1% to 70 (> N) for a selectivity
of 5%; the minimal number of nodes needed to avoid overhead I/O, psu-noIO,grows from 1
to 14. In multi-user mode, larger joins also require higher degrees of parallelism not only to
reduce the amount of temporary I/O but also to reduce the amount of processing per join pro-
cessor.

For small joins (scan selectivity 0.1%) avoiding temporary I/O is no problem so that perfor-
mance is primarily limited by the CPU contention associated with higher degrees of join par-
allelism (unfavorable ratio between startup/termination cost and actual work). Hence, the
best performance is achieved for the strategies using few join processors (Psu-noIO+LUM
and MIN_IO), while the schemes using psu-opt join processors (MIN_IO_SUOPT) achieve
the lowest response time improvements. For larger joins (5%), on the other hand, startup and
termination costs become less relevant and higher degrees of join parallelism are needed to
limit temporary I/O and to fully exploit CPU parallelism. The strategy Psu-noIO+LUM
achieves the worst performance since it utilizes only 14 processors which is not sufficient to

0.1 1 2 5
scan selectivity [%]

0

10

20

30

40

50

60

Psu-noIO+ LUM

MIN_IO_SUOPT

MIN_IO

DJP + LUM

OPT_IO_DJP

re
la

tiv
e

re
sp

on
se

 ti
m

e
im

pr
ov

em
en

t
vs

.
P

su
-o

pt
 +

 R
A

N
D

O
M

[%
]

 Fig. 8: Influence of the join complexity on the relative response time improvement
using dynamic load balancing compared toPsu-opt+RANDOM

18

avoid temporary I/O in multi-user mode. MIN_IO avoids memory/disk bottlenecks, but also
selects too few join processors so that no sufficient level of CPU parallelism is achieved. For
large joins, the best performance is provided by the strategies DJP+LUM, OPT_IO_DJP and
MIN_IO_SUOPT as they employ almost all processors for join processing. Still they are
able to improve response times (by about 18%) compared to the static scheme Psu-opt+RAN-
DOM (which uses all processors) because the dynamic strategies avoid join processing at
temporarily overloaded nodes.

The experiment confirms the expectation that the potential for dynamic load balancing be-
comes small as soon as the optimal number of join processors approaches the total number
of processors. In addition, the use of a homogeneous workload can be considered as a worst-
case assumption for complex queries as it results in a relatively uniform resource allocation
even for random selection of the join processors. (Furthermore, the chosen database alloca-
tion allowed an equal distribution of the scan work.) In real systems, the workload is expect-
ed to consist of transaction and query types with largely different resource requirements thus
improving the load balancing potential. Such heterogenous workloads will be considered in
the next experiment. Furthermore, the potential for dynamic load balancing increases with
the total number of processors, i.e., such schemes are essential for super-servers.

6.3 Multi-user experiments with heterogeneous workloads
We now study the effectiveness of dynamic load balancing for the case of heterogeneous
workloads consisting of OLTP transactions and join queries. For OLTP processing, we as-
sume a simple transaction type accessing only one relation (A or B) and that an affinity-
based routing [Ra92] can achieve a largely local processing (similar to debit-credit). For the
concurrent execution of join queries, we study multi-user join processing.

Fig. 9 shows the average join response times for two mixed workloads differing in whether
the OLTP transaction type is accessing relation A (Fig. 9a) or relation B (Fig. 9b). In both
cases we use an OLTP transaction rate of 100 TPS (transactions per second) per A (B) node.
The OLTP workload causes per A (B) node a CPU, disk, and memory utilization of about
50%, 60%, and 45%, respectively. Join queries arrive at a rate of 0.075 QPS per PE. We con-
sider two static load balancing schemes for join processing with a fixed degree of join par-
allelism of Psu-opt or Psu-noIO processors that are randomly selected. For Psu-noIO processors
we additionally investigate the LUM allocation strategy. Moreover, the two dynamic load
balancing strategies DJP + LUM and OPT_IO_DJP are examined.

The results indicate that for mixed workloads dynamic load balancing is indeed even more
effective (and needed) than for homogeneous workloads. The differences between static and
dynamic approaches are particularly pronounced in the case when the OLTP load is pro-
cessed on B nodes (Fig. 9b). This is because we have the four-fold OLTP throughput com-
pared to the other configuration resulting in a higher system utilization and longer response
times. Static schemes based on RANDOM selection of join processors are particularly un-
suited in such a situation as they frequently assign join work on nodes that are highly utilized

19

due to OLTP processing. Using a small static degree of join parallelism (psu-noIO) in combi-
nation with a LUM-based selection of join processors is already much better since it largely
avoids join processing on nodes with high memory utilization. Still, such semi-static ap-
proaches are insufficient since they cause either an unnecessarily high I/O overhead (Psu-

noIO) or CPU contention (Psu-opt).

The dynamic approaches could largely avoid these deficiencies and provided much better
performance than the static schemes. In particular, response times could be kept very low
for larger system sizes despite the growing query and transaction throughput. This is partic-
ularly the case for the integrated policy OPT_IO_DJP. The isolated strategy DJP + LUM,
however, suffered from performance problems with a lower number of processors, in par-
ticular with OLTP processing on relation A (Fig. 9a). The problem comes from the fact that
this strategy only considers CPU utilization for determining the number of join processors
pmu, while memory utilization is solely used for selecting the join processors. For smaller
system sizes of up to 30 PE when theaverage CPU utilization is comparatively low, the DJP
strategy does not reduce the degree of join parallelism but requires join processing on all PE.
Hence, join processing also takes place on the processors that are highly utilized due to
OLTP processing causing substantial performance degradations. OPT_IO_DJP, on the other
hand, uses the current CPU utilization only to determine the maximal number of join pro-
cessors but selects a smaller degree of parallelism if this allows for reduced I/O requirements
according to the current memory utilization. In this way, this strategy was able to avoid join
processing on the OLTP nodes permitting substantially better response times. This demon-

a) OLTP on 20% of nodes (A nodes) b) OLTP on 80% of nodes (B nodes)

Psu-noIO = 3, Psu-opt = 30

 Fig. 9: Static vs. dynamic load balancing for mixed workloads
(multi-user join 0.075 QPS/PE; 5 disks per PE)

10 20 30 40 50 60 70 80
system size [# PE]

0

500

1000

1500

2000

2500

3000

3500

re
sp

on
se

 ti
m

e
[m

s]

Psu-opt + RANDOM
Psu-noIO + RANDOM
Psu-noIO + LUM

DJP + LUM
OPT_IO_DJP

10 20 30 40 50 60 70 80
system size [# PE]

1000

2000

3000

4000

5000

20

strates the importance of determining the number of join processors and selecting the pro-
cessing nodes in an integrated way.

7 Conclusions
In this paper, we have investigated the problem of dynamic load balancing for parallel Sha-
red Nothing database systems. Such a load balancing is a critical prerequisite for effective
utilization of "super servers", in particular to support effective intra-query parallelism in
multi-user mode, i.e., in combination with inter-query and inter-transaction parallelism. The
major control decisions to draw dynamically include determining the degree of intra-query
parallelism and selecting the processors for executing subqueries. We found that these two
subproblems need to be solved in an integrated way and that the current system state with
respect to multiple resources, in particular CPU, memory and disk, needs to be considered
for dynamic load balancing.

We have studied these issues for parallel hash join processing based on a dynamic redistri-
bution of both join inputs among several join processors. While in single-user mode mini-
mizing the amount of I/O to temporary files (due to hash table overflow) is of prime
importance, the performance in multi-user mode may be dominated by other factors like the
degree of CPU and disk contention. In particular, we observed a basic performance tradeoff
with respect to the optimal degree of join parallelism in multi-user mode. Under high CPU
utilization we found it necessary to reduce the degree of join parallelism in order to limit
CPU contention (communication overhead for startup/termination and data redistribution).
Under disk and memory bottlenecks, on the other hand, the degree of join parallelism should
be increased in order to reduce the memory and I/O requirements per subquery.

We have investigated the performance of several single- and multi-resource load balancing
strategies for homogeneous and heterogeneous (query/OLTP) workloads by means of a de-
tailed simulation model. We considered static and dynamic as well as isolated and integrated
policies. Isolated policies determine the degree of join parallelism independently from the
policy used for selecting the join processors, while integrated strategy try to address both
scheduling problems together. We found that dynamic load balancing schemes clearly out-
perform static approaches in particular for heterogeneous workloads when the load situation
at different processors may vary significantly. However, simple integrated policies consid-
ering only the current utilization of a single resource (e.g., memory) are not always better
than isolated schemes considering multiple resources. This underlines the need to have a dy-
namic, integrated and multi-resource load balancing approach. As our results suggest, such
an approach should be realized by a family of load balancing strategies so that the most ap-
propriate policy can be selected according to the current system state. For instance, if the
system suffers primarily from memory and disk bottlenecks an integrated policy like
MIN_IO_SUOPT should be chosen that minimizes the amount of I/O based on the current
memory availability. For situations with high CPU contention or with both CPU and mem-
ory bottlenecks, an integrated policy like OPT_IO_DJP has proven to be very effective.

21

While our study focussed on parallel hash join processing, we believe the principles behind
our strategies are equally valid for other relational operators that use a dynamic redistribu-
tion of their input for parallel execution (e.g., sort). Furthermore, we believe that the pro-
posed strategies are not limited to Shared Nothing but can equally be applied in Shared Disk
database systems. Currently, we are studying the performance of different approaches to
deal with data skew (in particular, redistribution skew) in multi-user mode. Preliminary re-
sults indicate that the overhead of proposed skew handling techniques is a significant prob-
lem in multi-user mode. On the other hand, the skew problem may be reduced by dynamic
load balancing strategies that do not try to generate equally-sized subjoins but select the join
processors dependent on the size of the subjoins (by assigning larger subjoins to less loaded
nodes, etc.).

8 References
AG89 Abbott, R., Garcia-Molina, H.:Scheduling Real-Time Transactions with Disk-

Resident Data. Proc 15th VLDB Conf., 385-396, 1989

BC92 Bober, P.M., Carey, M.J.:On Mixing Queries and Transactions via Multiversion
Locking. Proc. 8th IEEE Data Engineering Conf., 535-545, 1992

BCL93 Brown, K., Carey, M.J., Livny, M.:Managing Memory to Meet Multiclass Work-
load Response Time Goals.Proc 19th VLDB Conf., 328-341, 1993

BMCL94 Brown, K.P.; Mehta, M.; Carey, M.J.; Livny, M.: Towards Automated Performance
Tuning for Complex Workloads.Proc. 20th VLDB Conf., 72-84, 1994

CJL89 Carey, M.J., Jauhari, R., Livny, M.:Priority in DBMS Resource Scheduling.Proc.
15th VLDB Conf., 397-410, 1989

CKL90 Carey, M.J., Krishnamurthi, S., Livny, M.: Load Control for Locking: The ’Half-
and-Half’ Approach.Proc. 9th ACM Symp. on Principles of Database Systems, 72-84,
1990

CM86 Carey, M.J., Muhanna, W.A.:The Performance of Multiversion Concurrency Con-
trol Algorithms.ACM Trans. on Computer Systems 4 (4), 338-378, 1986

DG92 DeWitt, D.J., Gray, J.:Parallel Database Systems: The Future of High Perfor-
mance Database Systems.Comm. ACM 35 (6), 85-98, 1992

DG94 Davison, D.L.; Graefe, G.: Memory-Contention Responsive Hash Joins.Proc. 20th
VLDB Conf., 379-390, 1994.

DNSS92 DeWitt, D.J., Naughton, J.F., Schneider, D.A., Seshadri, S.:Practical Skew Handling
in Parallel Joins. Proc. 18th VLDB Conf. 1992

En91 Englert, S.:Load Balancing Batch and Interactive Queries in a Highly Parallel
Environment.Proc. IEEE Spring CompCon Conf., 110-112, 1991

En94 Englert, S.: NonStop SQL: Scalability and Availability for Decision Support.Proc. ACM
SIGMOD Conf., 491, 1994

Gr93 Graefe, G.:Query Evaluation Techniques for Large Databases. ACM Comput. Sur-
veys 25 (2), 73-170, 1993

Gr95 Gray, J.: Super-Servers: Commodity Computer Clusters Pose a Software Challenge.
Proc. German Database Conf. BTW, March 1995

Ho92 Hong, W.:Exploiting Inter-Operation Parallelism in XPRS.Proc. ACM SIGMOD
Conf., 19-28, 1992

22

HS93 Hua, K.A., Su, J.X.W.:Dynamic Load Balancing in Very Large Shared-Nothing
Hybercube Database Computers. IEEE Trans. on Computers 42 (12), 1425-1439,
1993

HSIT91 Hirano, Y., Satoh, T., Inoue, U., Teranaka, K.:Load Balancing Algorithms for Par-
allel Database Processing on Shared Memory Multiprocessors.Proc. 1st Int. Conf.
on Parallel and Distributed Information Systems, 210-217, 1991

JCL90 Jauhari, R., Carey, M.J., Livny, M.:Priority-Hints: An Algorithm for Priority-
Based Buffer Management.Proc. 16th VLDB Conf., 708-721, 1990

LT92 Lu, H., Tan, K.:Dynamic and Load-Balanced Task-Oriented Database Query Pro-
cessing in Parallel Systems. Proc. EDBT, LNCS 580, 357-372, 1992

Ma95 Marek, R.: A Cost Model for Parallel Query Processing in Shared Nothing DBS (in Ger-
man).Proc. German Database Conf. BTW, March 1995

MD93 Mehta, M., DeWitt, D.J.:Dynamic Memory Allocation for Multiple-Query Work-
loads.Proc 19th VLDB Conf., 354-367, 1993

ME92 Mishra, P., Eich, M.:Join Processing in Relational Databases.ACM Comput. Sur-
veys 24 (1), 63-113, 1992

MR92 Marek, R., Rahm, E.:Performance Evaluation of Parallel Transaction Processing
in Shared Nothing Database Systems, Proc. 4th Int. PARLE Conf., LNCS 605, 295-
310, 1992

MS91 Murphy, M.; Shan, M.:Execution Plan Balancing. Proc. 1st Int. Conf. on Parallel and
Distributed Information Systems, 1991

MW92 Mönkeberg, A., Weikum, G.: Performance Evaluation of an Adaptive and Robust
Load Control Method for the Avoidance of Data-Contention Thrashing.Proc.
18th VLDB Conf., 432-443, 1992

Om91 Omiecinski, E.:Performance Analysis of a Load-Balancing Hash-Join Algorithm
for a Shared-Memory Multiprocessor. Proc 17th VLDB Conf., 375-385, 1991

PCL93 Pang, H., Carey, M.J., Livny, M.:Partially Preemptible Hash Joins.Proc. ACM SIG-
MOD Conf., 59-68, 1993

PGK88 Patterson, D.A., Gibson, G., Katz, R.H.: A Case for Redundant Arrays of Inexpen-
sive Disks (RAID). Proc. ACM SIGMOD Conf., 109-116, 1988

PLC92 Pang, H., Livny, M., Carey, M.J.:Transaction Scheduling in Multiclass Real-Time
Database Systems.Proc. 13th Real-Time Systems Symp., 1992

Pi90 Pirahesh, H. et al.: Parallelism in Relational Data Base Systems: Architectural Issues and
Design Approaches.Proc. 2nd Int.Symposium on Databases in Parallel and Distributed
Systems, IEEE Computer Society Press, 1990

Ra92 Rahm, E.:A Framework for Workload Allocation in Distributed Transaction Pro-
cessing Systems.Journal of Systems and Software 18, 171-190, 1992

RM93 Rahm, E., Marek, R.:Analysis of Dynamic Load Balancing Strategies for Parallel
Shared Nothing Database Systems.Proc 19th VLDB Conf., 182-193, 1993

RS95 Rahm, E., Stöhr, T.: Analysis of Parallel Scan Processing in Shared Disk Database Sys-
tems. Techn. Report, Univ. of Leipzig, 1995

SD89 Schneider, D.A., DeWitt, D.J.:A Performance Evaluation of Four Parallel Join Al-
gorithms in a Shared-Nothing Multiprocessor Environment.Proc. ACM SIGMOD
Conf., 110-121, 1989

SD90 Schneider, D.A., DeWitt, D.J.:Tradeoffs in Processing Complex Join Queries via
Hashing in Multiprocessor Database Machines. Proc. 16th VLDB Conf., 469-480,
1990

Se93 Selinger, P.:Predictions and Challenges for Database Systems in the Year 2000.
Proc 19th VLDB Conf., 667-675, 1993

23

Sk92 Skelton, C.J. et al.:EDS: A Parallel Computer System for Advanced Information
Processing, Proc. 4th Int. PARLE Conf., Springer-Verlag, LNCS 605, 3-18, 1992

Th92 Thomasian, A.:Thrashing in Two-Phase Locking Revisited.Proc. 8th IEEE Data
Engineering Conf., 518-526, 1992

Va93 Valduriez, P.:Parallel Database Systems: Open Problems and New Issues. Distr.
and Parallel Databases 1 (2), 137-165, 1993

WDJ91 Walton, C.B; Dale A.G.; Jenevein, R.M.:A Taxonomy and Performance Model of
Data Skew Effects in Parallel Joins. Proc. 17th VLDB Conf., 537-548, 1991

WDYT91 Wolf, J.L., Dias, D.M., Yu, P.S., Turek, J.:An Effective Algorithm for Parallelizing
Hash Joins in the Presence of Data Skew. Proc. 7th IEEE Data Engineering Conf.,
200-209, 1991

WFA92 Wilschut, A.; Flokstra, J.; Apers, P.: Parallelism in a Main-Memory DBMS: The perfor-
mance of PRISMA/DB.Proc. 18th Int. Conf. on Very Large Data Bases, 521-532, 1992

WHMZ94Weikum, G.; Hasse, C.; Mönkeberg, A.; Zabback, P.: The COMFORT Automatic Tuning
Project.Information Systems 19(5), 381-432, 1994

ZG90 Zeller, H., Gray, J.:An Adaptive Hash Join Algorithm for Multiuser Environ-
ments. Proc. 16th VLDB Conf., 186-197, 1990

