
Ambiguity for Referential Integrity IsUndecidableJoachim ReinertUniversity of KaiserslauternDepartment of Computer ScienceP.O. Box 3049, 67653 Kaiserslautern, Germanye-mail: jreinert@informatik.uni-kl.deAbstract. SQL has grown to be the language for relational databasesystems. One vital element of the relational model is referential integrity.This type of integrity constraints is now included in the new SQL2 stan-dard [11] with capabilities to react on violations of speci�ed integrityconstraints. These reactions may lead to indeterminism with respect tothe outcome of a user operation which is also known from the usageof rules or triggers. In the database context, however, such ambiguitiesare undesirable. Hence, for each submitted operation one must checkwhether or not an ambiguity occurs, and in the former case rollback theoperation. Since such checks are time consuming, one might consider per-forming them only for schemas which bear the risk of an indeterminism.This paper shows that it is undecidable whether or not a schema mayhave an instance leading to ambiguities. Therefore, unnecessary checkscannot be avoided in general.1 IntroductionCompared to other paradigms in database systems, the relational technology islong known and well understood. Invented by Codd [4] in the late sixties as arock-solid mathematical theory for management of data, some concepts remainsomewhat vague. One of these concepts is referential integrity. Basically de�nedto guarantee the existence of referenced objects, it was re�ned by Date [5, 7] toa more active concept, i.e., the possibility to de�ne limited reactions in order tocompensate violations of the referential integrity by so-called referential actions.These ideas have been included in the new SQL2 standard [11]. In this paper, weanalyze the referential integrity with respect to the semantics speci�ed in thisstandard.Referential integrity with referential actions may lead to some indeterminismduring the evaluation of a user operation (see e.g. [13, 14, 17]) which is undesired(and not allowed in the SQL standard). Hence systems implementing referen-tial integrity have to deal with this phenomenon. The problem is well knownin literature because on a more abstract level, referential integrity constraints(with referential actions to maintain the integrity) can be viewed as triggers



or rules1 [6, 7, 19]. Ambiguities of rule sequences were addressed for examplein [2, 1, 20]. To detect whether a given set of rules may lead to an indeterminis-tic behaviour, general analysis procedures of the rule sets were developed. Themain directions are to analyze the read and write sets of the rules (e.g. [20]) orto use concepts developed in the area of term rewriting (e.g. [2, 1]). Both direc-tions have developed analysis procedures which operate on an arbitrary rule setwithout the necessity to examine any database instance (some sort of schemaanalysis). Unfortunately these procedures bear two drawbacks:1. They are based on a schema analysis. This allows to have the check-overheadat compile-time of an operation (and therefore decrease the run-time) butthe problems occur within the execution of a concrete user operation on aconcrete instance of the schema. Hence, it is possible to have a \problematic"rule set marked as \problematic" and to get still never into trouble, as the\problematic" instances are never generated.2. The problem is known to be undecidable, i.e., it is impossible to have adetection algorithm which discriminates exactly those schemas having prob-lematic instances from those having none. Therefore the algorithms eithercover only a restricted class of rules or are over-pessimistic in all cases.The SQL2 standard \solves" the above problems by introducing a run-timecheck. In real applications of the relational model (business administration), theinstances of a schema (the databases) are �nite, and therefore the problem ofambiguity becomes decidable if each user operation terminates. However, therequired checks result in a severe run-time overhead. Therefore a good compile-time check procedure would be valuable to avoid unnecessary checking at run-time.These observations lead to the development of speci�c criteria for referentialintegrity, covering schemas which may have instances with ambiguities. To checkthese criteria the required algorithms also have been developed. To cover SQLthe approach has to be divided into two phases:1. Test the schema-based criteria at compile-time.2. If a problem may occur, include a check at run-time. If not, no furtherprecautions are required.A detailed discussion may be found in [13, 14, 17] and is beyond the scope ofthis paper. Besides the limitation that the criteria are schema-based (so theycannot cover SQL completely at compile-time), the second problem mentionedabove remains: The criteria developed so far (and checked by the algorithms)are su�cient only, i.e., they only identify a subset of the schemas which are safe(exhibiting no ambiguity)2. The goal of this research was to derive a precise crite-rion for referential integrity constraints. As opposed to the more general problem1 We will use the term trigger and rule interchangeable throughout the paper alwaysreferring to the same concept.2 Markowitz presented a criterion in [15] claimed to be safe and sound, but it can beshown that this is not correct.



of rules, this goal seemed to be realistic because such referential integrity con-straints are structural constraints and therefore limited in their expressiveness.However, we show in this paper that the underlying problem is undecidable and,as a consequence, a precise criterion cannot be developed.The paper is organized as follows: In the following section, we introduce ref-erential integrity as proposed by Codd and the form now standardized in theSQL2 standard. After this short introduction we present an example to showwhy referential integrity may lead to ambiguities. This discussion is followed bythe presentation of the needed results known from literature and our own proofof the main result. The paper is closed by a discussion of the consequences ofthis result for referential integrity checking in relational database systems.2 Referential IntegrityIn this section we discuss the referential integrity as it was de�ned by Codd in hisfundamental paper [4] and the de�nition which is now adopted by the standardcommittees.It is assumed that the reader is familiar with notions of the relational data model.2.1 Referential Integrity in the Relational Data ModelReferential integrity constraints are a fundamental concept of the relational datamodel introduced by Codd [4]. To de�ne this concept (at least informally) oneneeds the notion of tables as disjoint sets of attributes. Attributes themselvesare de�ned as null-ary functions (constants) mapping into a speci�c domain.In his original paper, Codd de�nes the primary key to be an attribute or agroup of attributes which uniquely identi�es every database object (tuple) withina table (key condition). The primary key of each tuple has to be completelyde�ned, i.e., no null-values are allowed as values of attributes forming the primarykey. Furthermore, a primary key has to be minimal, i.e., no real subset of theattributes ful�lls the key condition (minimality condition). Together the threeconditions form the primary key condition. It is possible to have more thanone attribute (group of attributes) in a relation that satisfy the key conditionand the minimality condition. Such attributes (groups of attributes) are calledcandidate keys. In contrast to the primary key, null-values may be allowed asattribute values for such candidate keys.The domains mentioned before are the ranges of the attributes. Domains areindependent from attributes and represent the means to express dependenciesbetween attributes3. This independence allows the implicit de�nition of foreignkeys, an additional basic concept of the relational data model: A foreign key isan attribute (or group of attributes) de�ned on the same domain as the primarykey of some relation. The property of set inclusion is connected directly to the3 Note that the concept of the domain of an attribute is extended in canonical formto groups of attributes: Their domain is the crossproduct of the domains of eachattribute in the group.



foreign key, i.e., for every value of the attribute (respectively group of attributes)forming the foreign key, there has to be a tuple in some relation with this value(respectively values) in its primary key (foreign key condition4). Exceptions tothis rule are special null-values that appear as attribute values in the foreignkey.Note the usage of the term some in this de�nition: It is possible to have morethan one primary key de�ned on a speci�c domain (let us denote this set oftables with S). In this case, a foreign key de�ned on that domain may referenceall these primary keys in the following sense: For each tuple tC of the child tableC with de�ned values in the foreign key attributes, a matching tuple has to existin at least one of the tables of S. One cannot specify which table. Furthermore,di�erent tuples of C may reference di�erent tuples in di�erent tables.To summarize the aspects of referential integrity as de�ned by Codd: It is astatic integrity constraint which prevents the existence of de�ned foreign keyswithout the existence of a primary key with the same value and results in avague dependency between tuples and between tables.2.2 Referential Integrity in SQL2The discussion in the literature (e.g [7]) has shown that it is useful to extentthe concept of referential integrity. One minor extension is the possibility toreference not only primary keys but also candidate keys by a foreign key. Inconnection to this enhancement it was proposed to specify the integrity con-straint explicitly, thereby achieving a precise dependency between the foreignkey and the referenced primary key or candidate key. A new dimension wasadded through system-enforced maintenance of the relational invariants in amore active manner. Clearly, each database state has to obey these invariantsand the only possible reaction of a non-active database management system isto roll back all operations violating these constraints. The enhancements for ref-erential integrity maintenance (e.g. [5]) describe how the database managementsystem reacts in case a referential integrity constraint is violated. Such reactionshave been included in the new SQL2 standard [11] (we call them referential ac-tions). As the useful reactions seem to be limited, the descriptive nature of therelational model remains valid: It is speci�ed what has to be done if one integrityconstraint is violated and it is not speci�ed how this maintenance is carried out.In the following we will shortly discuss the possibilities of this standard.In the SQL2 standard, referential integrity constraints are de�ned when tablesare created or altered. For this purpose, there is a sub-clause of the CREATETABLE and the ALTER TABLE statement referring to a table C which includes theforeign key (child table):4 The primary key condition and the foreign key condition are also known as therelational invariants.



FOREIGN KEY (<referencing columns>)REFERENCES <table name> [(<referenced columns>)][MATCH fFULL | PARTIALg][ON UPDATE fCASCADE | SET NULL |SET DEFAULT | NO ACTIONg][ON DELETE fCASCADE | SET NULL |SET DEFAULT | NO ACTIONg]The <referencing columns> are the attribute names of the foreign key F =ff1; : : : fng in C. The <referenced columns> denote the corresponding at-tributes of the primary key K of the table P with name <table name> (parenttable). The semantics expressible through MATCH fFULL | PARTIALg is the in-terpretation of null-values in the foreign key of a tuple tC . We assume that anull-value in a foreign key is allowed (unless stated otherwise) and such foreignkeys are not considered in the check whether or not a corresponding primary keyexists. To express this semantics the MATCH sub-clause has to be omitted com-pletely. An in-depth discussion of the various possible interpretations is beyondthe scope of this paper (see e.g. [10]).The sub-clauses ON UPDATE ... and ON DELETE ... allow to specify the ref-erential action in case referential integrity is violated by a user operation. Sixmanipulation operations on P or C are possible: Insert into P , Update P , Deletefrom P , Insert into C, Update C and Delete from C. Due to the de�nition ofreferential integrity, only four out of the six operations may transform a databasestate which ful�lls referential integrity into one where a referential integrity con-straint is violated (\Insert into P" and \Delete from C" cannot cause problems).In the SQL2 standard, the two operations \Insert into C" and \Update fi of C"on the child table are forbidden (backed out) if these would result in DB stateswhere referential integrity is not ful�lled. Therefore, only the two operations(\Delete from P" and \Update ki of P") on a parent are handled in a specialway:1. ON UPDATE. If attributes of a key referenced in a referential integrity con-straint are updated in a tuple tP , then depending on the speci�cation in theschema one of the following actions is carried out:{ CASCADE. The new values in the key are propagated to the referencingchildren tC .{ SET NULL. The attributes in the referencing tuples tC corresponding tothe updated key attributes are set to the null-value.{ SET DEFAULT. The attributes in the referencing tuples tC correspondingto the updated key attributes are set to a default value (de�nable foreach attribute in the schema).{ NO ACTION. Nothing is done. Referential integrity remains violated andif no other operations take place to correct the mismatch of the cor-responding tuples tC , the complete work of the transaction will even-tually be backed out. This happens either at the end of the statement



(if the integrity checking is not deferred) or at transaction commit (ifthe integrity checking is deferred). The implications of deferred integritychecking raise di�cult semantical problems and are subject to furtherresearch.2. ON DELETE. If a tuple tP is deleted then the following actions are carried outdepending on the speci�cation in the schema:{ CASCADE. The referencing children are also deleted.{ SET NULL. The foreign key attributes of the referencing children are setto the null-value.{ SET DEFAULT. The foreign key attributes of the referencing children areset to their default value.{ NO ACTION. Nothing is done. Referential integrity remains destroyed andif no other operation takes place to correct this, the complete work ofthe transaction will be backed out.There is another important referential action which is not introduced in theSQL2 standard, but in nearly all papers which are dealing with referential in-tegrity: RESTRICT (or RESTRICTED depending on the author). The semantics ofthis referential action is to forbid any change (update or delete) of a parent tupletP as long as there exist referencing child tuples tC . Although this action is notin the SQL2 standard (but scheduled for SQL3 [12]) we will include it in ourdiscussion for the matter of completeness.3 The Problem of AmbiguityThe standard technique proposed in literature (e.g. [8, 9]) for implementing in-tegrity constraint maintenance in database management systems is an indepen-dent trigger (or rule) for each integrity constraint. If this technique is used tomaintain descriptively speci�ed referential integrity constraints, some indeter-minism with respect to the outcome of a user operation may occur. In thissection we present an example for this sort of ambiguity.The problem of ambiguity stems from the descriptive nature of the relationaldatabase languages which hide any knowledge about how something is carriedout on underlying structures and let the user specify only what he wants toachieve. Up to now (without referential actions or any other active component),the user has speci�ed the complete scope of his operation, i.e., he has speci�edall components and all operations on these components as far as they are visibleat his interface (e.g., no operations are speci�ed on access paths). Elements notmentioned in the operation either are not of any interest (e.g. order of tuples) ordo not inuence the outcome of the operation. This scenario changes if an activecomponent is involved: Something happens under cover. As the de�nitions ofreferential integrity constraints (with referential actions) are autonomous fromeach other and from any speci�c instance of the schema, but have inuence onthe outcome of an operation, a complete semantics has to include this inter-ference. Fig. 1 shows an example of a schema with possible ambiguities. The



D(cnr, anr, bnr, ...)DELETE CASCADEB (bnr, anr)REFERENCES(bnr, anr)
A (anr)REFERENCES(anr)DELETE CASCADE

DELETE RESTRICTC(anr, cnr)REFERENCES(anr, cnr)
A (anr)REFERENCES(anr)DELETE CASCADEA(anr, ...)

B(bnr, anr, ...) C(cnr, anr, ....)
Fig. 1. Schema with ambiguitiesstructure of the schema is rather arti�cial but nevertheless a possible schema inSQL2. Let us look at the following instance of this schema:Relation A: (anr, : : : )(1, : : : )Relation B: (bnr, anr, : : : )(2, 1, : : : )Relation C: (cnr, anr, : : : )(3, 1, : : : )Relation D: (cnr, anr, bnr, : : : )(3, 1, 2, : : : )Given that each integrity constraint is \implemented" by a separate trigger [9](or ECA rule [18]) the following happens: If the user deletes the tuple (1, : : : )in relation A and the path A-C-D is followed �rst, then the deletion of the tuple(3, 1, : : : ) is prohibited, because the tuple (3, 1, 2, : : : ) in relation D references(3, 1, : : : ). Therefore, the complete operation is backed out. The result is thedatabase state before the deletion of (1, : : : ). If the path A-B-D is followed �rst,then the tuple (3, 1, : : : ) is deleted and, in turn, the deletion of (3, 1, : : : ) in Cis performed, because referencing tuples in D no longer exist. The result is theempty database5.Note the di�erence between ambiguity problems and integrity problems: Thelatter can not be tolerated in a database while the former may be tolerablefor somebody only interested in a DB state satisfying all integrity constraints.5 Similar problems occur with other referential actions, e.g. SET DEFAULT and SETNULL, or even the same pair of referential actions.



Hence approaches dealing with integrity problems (e.g. [16]) have another scope6but we think, the acceptance of a system will be rather low in general, if theuser is not able to understand what the system is doing. This view is embodiedin the new SQL2 standard with an abstract description of a special evaluationprocedure for referential integrity constraints. However, the main problem ofthis evaluation procedure are the costs. These costs result from the necessityto maintain some sort of log for certain operations: In a cascade of referentialintegrity maintenance, each operation has to check whether or not a problemoccurs, by analyzing the log of the operations carried out so far. Apparentlythis procedure causes a lot of overhead at run-time. To prevent this overheadwhenever possible, it is necessary to decide at compile-time of the operation (orthe schema) whether or not such an ambiguity may occur. However, to achieveSQL2 compliance the run-time check has to be implemented in order to allowoperations (schemas) where ambiguities cannot be ruled out7.As mentioned earlier, several authors have already presented di�erent approachesto the problem of compile-time checks. Because the approach of [2, 1] and [20] israther general, it cannot use the speci�c knowledge of the special properties ofreferential integrity constraints. In [14, 17], approaches tailored for this specialarea of constraints were presented. Both approaches su�er from their incomplete-ness, i.e., if the check procedure does not �nd a possible source of ambiguitiesthen there are none (hence, the procedures are su�cient), whereas in the othercase, if the procedures identify an ambiguity, there may be none and hence theprocedures are not complete.However, a su�cient and complete check procedure would be extremely valu-able; therefore, the researchers concentrate on more and more sophisticated ap-proaches. Our main result presented in the next section shows the inability tohave such an exact check procedure.4 Ambiguity is UndecidableA check procedure has to decide the question \are there any ambiguities?" for agiven schema. The result of our research presented here is the undecidability ofthis question in general. The subsequent sections prove the following:There exists no decidable criterion P over a relational schema � with:(P = TRUE) () no instance of � exhibits an ambiguityTo provide a formal proof of this theorem we introduce some preliminaries.6 Those approaches try to detect integrity problems and provide some sort of remedy(e.g. some rules which reinforce the integrity) and those remedies may be the sourceof ambiguity problems.7 If a system does not provide such a run-time check and ambiguities cannot be toler-ated, all schemas (operations) which may lead to ambiguities have to be forbidden.



4.1 Some Formal NotationIn order to state our problem it is su�cient to restrict ourselves to the followingreferential actions:{ If a tuple t is deleted or its primary key is changed then this action ispropagated to those tuples t' that reference t before the deletion/update hastaken place (referential action CASCADE).{ If a tuple t is to be deleted or its primary key is changed and there aretuples t' referencing t before the deletion/update has taken place, then thedeletion/update of t is forbidden (referential action RESTRICT)8.First, we de�ne the basic elements of a relational schema: Domains, attributes,relations, and keys, followed by the de�nition of schema instances.Relational schema: A relational schema � consists of four parts:1. A set D = fd1; : : : ; dkg of domain names.2. A set A = fa1; : : : ; ang of 0-ary functions, aj :! D, called attribute names.3. A set T = ft1; : : : ; tlg of sets of attributes, called relations.th = fah;1; : : : ; ah;nhg � A and ti \ tj = ; for i 6= j.4. A set K = fk1;1; : : : ; kl;qlg of primary keys and candidate keys.km;v � fam;1; : : : ; am;nmg.Instance: An instance I of a relational schema � depends on sets d1; : : : ; dkof values (D = fd1; : : : ; dkg) and results in a set of relation instances r1; : : : ; rlwith the following properties:{ di is the set of values of the domain di.{ rh � dh;1 � : : :� dh;nh where dh;i is the domain of the attribute ai in tableth and dh;i is the set of values of dh;i.{ 8ri8ki;l = fai;l;1; : : : ; ai;l;ni;lg 2 K : 8v1; v2 2 ri :v1#ki;l= v2#ki;l, v1 = v29.On the basis of these notions we will now de�ne inclusion dependencies, func-tional dependencies, referential integrity constraints and NULL constraints.An instance I satis�es{ a NULL constraint nn = ri(av1 ; : : : ; avk) if:8v 2 ri : v#fav1 ;:::;avkg= (w1; : : : ; wk)) wj 6= NULL for each j = 1; : : : ; k.{ an inclusion dependencyi = rm(av1 ; : : : ; avk) � rm0(avk+1 ; : : : ; av2k) if:8v 2 rm : v#fav1 ;:::;avkg= (w1; : : : ; wk) and wj 6= NULL)(9v0 2 rm0 : v0#favk+1 ;:::;a2kg= (w1; : : : ; wk)).8 The choice of these referential actions in the proof is done on behalf of simplicity,other actions lead to the same result.9 We denote with v#fa1;:::;akg the projection of v to the attributes fa1; : : : ; akg.



{ a functional dependencyf = rm(av1 ; : : : ; avk )! rm(avk+1 ; : : : ; avk+l) if:8v1; v2 2 rm : v1#fav1 ;:::;avkg= (w1; : : : ; wk) = v2#fav1 ;:::;avkgand wj 6= NULL) v1#favk+1 ;:::;avk+lg= v2#favk+1 ;:::;avk+lg.{ a referential integrity constraintri = rm(av1 ; : : : ; avk) v rm0(avk+1 ; : : : ; av2k) if:8v 2 rm : v#fav1 ;:::;avkg= (w1; : : : ; wk) andwj 6= NULL) (9v0 2 rm0 : v0#favk+1 ;:::;a2kg= (w1; : : : ; wk) and9k 2 K : k = favk+1 ; : : : ; a2kg).Obviously a referential integrity constraint subsumes an inclusion dependency.This observation is central to our proof.4.2 Inclusion DependenciesWe have introduced the concept of inclusion dependencies as dependencies sep-arate from referential integrity constraints. Furthermore, we stated that a ref-erential integrity comprises such an inclusion dependency. In this section, weelaborate on the inuence of general inclusion dependencies on possible ambigu-ities.The schema of Fig. 2 is slightly enhanced compared to the schema of Fig. 1. Let usnow assume that for all instances I the inclusion dependency D:anr � E:anr10holds (the application may enforce this). Then no ambiguity at all will occurbecause of the following observation:If a tuple t in D is accessed via the paths B�D and/or C�D then the attributet:anr is not null. Hence, the inclusion assumption (D:anr � E:anr) ensures theexistence of a tuple t̂ in E with t̂:anr = t:anr. The precondition for an ambiguityto occur is the deletion of the tuple ~t 2 A with ~t:anr = t:anr. But the operation\delete ~t" will be rolled back because of the referencing tuple t̂ in E and theRESTRICT option. Therefore no ambiguity occurs!The observation of the inuence of inclusion dependencies on ambiguity is cen-tral to our proof, since Chandra and Vardi [3] have shown that the implicationproblem for functional and inclusion dependencies is undecidable. Their proof isbased on a reduction of the word problem in monoids to this problem. We willuse this result to prove our central theorem.4.3 ResultLet us �rst state our main theorem and the corollary describing our main result.Afterwards we proceed to the proof of the theorem in some more or less technicalsteps.10 D:anr respectively E:anr denotes the set of all values occurring in the attribute anrof tuples in D (respectively E).



D(cnr, anr, bnr, ...)
B(bnr, anr, ...)

A(anr, ...)
C(cnr, anr, ....)A (anr)REFERENCES(anr)DELETE RESTRICTDELETE CASCADEA (anr)REFERENCES(anr) (anr)REFERENCESA (anr)DELETE CASCADE

(anr, cnr)REFERENCESC(anr, cnr)DELETE RESTRICTDELETE CASCADEB (bnr, anr)REFERENCES(bnr, anr) E(enr, anr, ....)
Fig. 2. Relevance of inclusion dependenciesTheorem1. Given a relational schema �, a set of referential integrity con-straints C, a set N of NULL constraints and an inclusion dependency i =(a1; : : : ; an) � (b1; : : : ; bn) where ai and bi are attributes of compatible type,it is undecidable whether �; C;N j= i11.The theorem tailors the result of Chandra and Vardi to a speci�c sort of inclusiondependencies and functional dependencies. The main result follows directly fromtheorem 1:Corollary 2. It is undecidable whether a relational database schema with ex-plicit referential constraints and referential actions is free of ambiguities or not.Proof. From theorem 1 it follows, that for a given relational schema with a setof attributes, a set of key constraints K, a set of referential integrity constraintsR and an inclusion dependency i, it is undecidable whether or not K;R j= i.11 �; C;N j= i holds if all instances I of � that satisfy all dependencies in C and allNULL constraints in N also satisfy i.



Furthermore, an inclusion dependency can avoid ambiguities because it initiatesrollbacks for the critical situations. Because the existence of such guarding inclu-sion dependencies is undecidable the question of ambiguity is undecidable. utTo prove theorem 1 we reduce the mentioned problem of general set inclusion de-pendencies and functional dependencies (which is undecidable according to theresult of [3]) to the more speci�c referential integrity constraints and NULL con-straints provided by the new SQL standard. Since the reduction is e�ective, themore specialized problem is also undecidable. The reduction uses the followingidea: Functional dependencies are mapped to key or candidate key constraintsand referential integrity constraints are used to model inclusion dependencies.The mapping of functional dependencies to keys (resp. candidate keys) is donein two steps1. Each such dependency (a1; : : : ; an) ! (an+1) is mapped to a separate rela-tions t with the key (a1; : : : ; an).2. Because an attribute may occur within several functional dependencies, ithas to be guaranteed that the combinations of values used within the dif-ferent relation generated by the �rst step are the same. Therefore given twofunctional dependencies fa = (a1; : : : ; an)! (an+1) and fb = (b1; : : : ; bk)!(bk+1) (with corresponding relation ta and tb) which overlap in some at-tributes c1; : : : ; cl we include the following two inclusion dependencies toguarantee the same usage of values:ta # c1; : : : ; cl � tb # c1; : : : ; cl andtb # c1; : : : ; cl � ta # c1; : : : ; cl.These mappings guarantee to represent all functional dependencies and all loss-less joins.The mapping of functional dependencies is carried out in a �rst step, thereforewe can base the following steps on a schema which includes only key constraintsand inclusion dependencies. The basis of the mapping of inclusion dependenciesare the referential integrity constraints. But those constraints di�er from inclu-sion dependencies in the key constraint on the referenced group of attributesimplied by a referential integrity constraint. Hence, the idea of the modeling ofinclusion dependencies with referential integrity constraints is to combine theattributes of the inclusion dependency with a special key. The latter ensures thekey constraint12 while the former ensures the inclusion dependency.To do this formally we introduce a function < which maps relational schemaswith inclusion dependencies to relational schemas with referential integrity con-straints. In order to map the inclusion dependencies to referential integrity con-straints we introduce for each relation r a new candidate key attribute anew(ranging over a new domain). Furthermore, an new attribute (ai;new) is intro-duced for each inclusion dependency i with attributes of r on the left hand sidewhich also ranges over the new domain. These attributes are used to derivereferential integrity constraints from the inclusion dependencies. Following de�-nitions formalize the introduced ideas.12 The referenced group of attributes is not minimal.



Let C be the set of inclusion dependenciesim;m0;k = rm(am;k;1; : : : ; am;k;nk ) � rm0(am0;k;1; : : : ; am0;k;nk ) and N the set ofNULL constraints.Then <schema(�; C;N ) is de�ned as follows:<schema(�; C;N ) = (�̂; Ĉ; N̂ ) (� = (D;A; T ;K) and �̂ = (D̂; Â; T̂ ; K̂)), where{ D̂ = D [ fdnewg; dnew is a new domain.{ Â = AStm2T fam;new :! dnewgSim;m0;k2Cfafkm;m0;k :! dnewg.{ T̂ = Stm2T ffam;newg [ fam1; : : : ; amnmg [im;m0 ;k2C fafkm;m0;kgg.{ K̂ = K [ fkm;l0 j km;l0 = fam;newgg.{ Ĉ = Sim;m0;k2Cfrm(afkm;m0;k ; am;k;1; : : : ; am;k;nk) vrm0(am0;new; am0;k;1; : : : ; am0;k;nk )g:{ N̂ = N Sim;m0;k2Cfrm(afkm;m0;k)g:An instance I of a relational schema � is mapped by the function<instance(�;D;N ; I) to Î(d̂1; : : : ; d̂k; ^dnew) which is de�ned as follows:1. d̂i = di for 1 � i � k and ^dnew is a countable in�nite set with a completeorder � .2. All tuples of rm are mapped to the corresponding relation in �̂ (denoted asr̂m). The attributes am;new and possible attributes afkm;m0;k are set to thenull-value 13.3. For each tuple v̂ of a particular relation r̂m, set v̂:am;new to a value which isunique within r̂m.4. Let v be a tuple of a relation rm (the original relation). In case there is aninclusion dependencyim;m0;k = rm(am;k;1; : : : ; am;k;nk) � rm0(am0;k;1; : : : ; am0;k;nk)and v #fam;k;1;:::;am;k;nkg does not include a null-value, then there exists atuple ~v in rm0 with v #fam0;k;1;:::;am0;k;nkg= ~v #fam;k;1;:::;am;k;nkg14 and theattribute afkm;m0;k in v̂ (the mapped tuple) is set to the value of ~̂v:am0;new.If v #fam;k;1;:::;am;k;nkg includes a null-value, then v̂:afkm;m0;k is set to anarbitrary value of the domain d̂new .With these de�nitions we can prove the following theorem:Theorem3. Given a relational schema �, a set C of inclusion dependencies anda set N of NULL constraints. The following holds: I is an instance of � satisfyingC and N () <instance(�;D;N ; I) = Î is an instance of <schema(�; C;N ).Proof. if part (\("): Suppose Î is an instance of <schema(�; C;N ) and I is noinstance of �; C;N . While the key constraints cannot be violated by only one of13 The key conditions on am;new and the NULL constraints on the afkm;m0;k are violatedat this point.14 If there is more than one such tuple, choose one arbitrarily.



the instances, a problem may occur through the inclusion dependencies.Let v 2 rm be a tuple which violates an inclusion dependencyim;m0;k = rm(am;k;1; : : : ; am;k;nk ) � rm0(am0;k;1; : : : ; am0;k;nk ). By the de�nitionof the inclusion dependency we obtain that there is no null-value in the attributesfam;k;1; : : : ; am;k;nkg of v. By the de�nition of <instance we have a tuple v̂ in Îthat violates the referential integrity constraint <schema(: : : ; im;m0;k; : : :).Hence Î is no instance of <schema(�; C;N ).only-if part (\)"): Suppose I is an instance of �; C;N and Î is no instanceof <schema(�; C;N ). The contradiction follows directly from the de�nition of<instance. utCorollary 4. Given a relational schema �, a set C of inclusion dependencies, aset N of NULL constraints and an inclusion dependency i. Then the followingholds (for �̂; D̂; N̂ de�ned as above): �;D;N j= i () �̂; D̂; N̂ j= i.Proof. This follows directly from the above theorem. utCorollary 4 immediately implies theorem 1.5 Conclusions and OutlookIntegrity constraints are fundamental concepts for modeling the real world.This is especially true for database systems. In such systems every commit-ted database state has to obey all speci�ed constraints. Therefore, it is desirableto have an automatic maintenance if a constraint is violated (e.g., through auser operation). For this purpose, the new SQL2 standard, as a speci�cation ofa language for the relational data model, includes referential integrity and itsextensions.In this paper, we have shown that the outcome of a user operation may be inde-terministic because of these extensions which was also observed in the frameworkof [13, 17]. Similar e�ects were analyzed in the area of rule processing [2, 1, 20].Although the problem of deciding whether or not a database schema allowsoperations with an indeterministic outcome was known to be unsolvable in gen-eral, we hoped to �nd a solution for simple integrity constraints like referentialintegrity constraints because they are tightly connected to the structure of adatabase schema. As proved in this paper, even this restricted case is unsolvablein general and therefore only a subset of the \safe" schemas may be recognizede.g. by the criterions of [13] or [17]. Hence, as long as the known rule processingalgorithms are used, situations where ambiguities occur cannot be ruled out. Inthose cases one of the following alternatives has to be chosen:1. Live with the dangerNothing is done. Therefore, the database system only guarantees that eachcommitted state obeys all de�ned integrity constraints. Which result stateis achieved using the active maintenance facilities remains unspeci�ed andis therefore not known to the user.



2. Expand the syntax (and semantics) of the rulesThe rule syntax (and as a consequence the semantics) may be enhancedwith the notion of explicit conict resolution, e.g., priority assignment. Butas a result, the rules introduced as local autonomous elements of integritymaintenance may degenerate to a form of a complex (unreadable) if-then-elseprogramming paradigm. To prevent such a deterioration, only conictingsituations should be burdened with these \enhancements"15. Therefore, agood (read: sharp) detection algorithm for ambiguities on a schema basisremains desirable.3. Live with some limitationsOpposed to the second case where all di�culties are solved through amend-ments to the constraints, in this case the operation is backed out completelyafter the detection of an ambiguity. Hence a good detection algorithm isneeded. This is the way SQL2 deals with the ambiguity problem: Whetheror not an ambiguity occurs has to be detected at run-time. This causescoordination overhead only in case an ambiguity occurs. Therefore, less co-ordination is required than in the second case. On the other hand, the needof a check at run-time arises. To optimize this overhead a good compile-timedetection is needed.Since a general requirement in the database context are deterministic results ofoperations the �rst case is ruled out. Both other cases require a good detectionalgorithm. Since the general problem is undecidable, it is an interesting problemto determine the largest subset of database schemas that remains decidable.Furthermore, we want to elaborate on the problem how the semantics of theintegrity constraints proposed in SQL2 and SQL3 can be supported in an e�-cient way. It seems reasonable to use general ECA rules. For this purpose, wedevelop the required deterministic semantics for such rules. This approach willallow an autonomous de�nition of rules, do some compile-time checking (of rulesand operations) and, if ambiguities are possible, include an appropriate checkin the evaluation that provides a coordination at run-time. Implementation con-cepts are developed in parallel. Together these e�orts will allow an answer to thequestion, whether such deterministic semantics can be achieved in an e�ectivemanner acceptable for an end-user.AcknowledgementsWe would like to acknowledge Prof. T. H�arder, B. Reinert, H. Sch�oning and theunnamed referees for reading the preliminary version of the paper and providinguseful hints to improve it.References1. A. Aiken, J. M. Hellerstein, and J. Widom. Static Analysis Techniques for Pre-dicting the Behavior of Active Database Rules. ACM TODS, 20(1):3{41, March15 Note that the SQL2 semantics of referential integrity cannot be achieved usingpriorities.
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