Ambiguity for Referential Integrity Is
Undecidable

Joachim Reinert

University of Kaiserslautern
Department of Computer Science
P.O. Box 3049, 67653 Kaiserslautern, Germany
e-mail: jreinert@informatik.uni-kl.de

Abstract. SQL has grown to be the language for relational database
systems. One vital element of the relational model is referential integrity.
This type of integrity constraints is now included in the new SQL2 stan-
dard [11] with capabilities to react on violations of specified integrity
constraints. These reactions may lead to indeterminism with respect to
the outcome of a user operation which is also known from the usage
of rules or triggers. In the database context, however, such ambiguities
are undesirable. Hence, for each submitted operation one must check
whether or not an ambiguity occurs, and in the former case rollback the
operation. Since such checks are time consuming, one might consider per-
forming them only for schemas which bear the risk of an indeterminism.
This paper shows that it is undecidable whether or not a schema may
have an instance leading to ambiguities. Therefore, unnecessary checks
cannot be avoided in general.

1 Introduction

Compared to other paradigms in database systems, the relational technology is
long known and well understood. Invented by Codd [4] in the late sixties as a
rock-solid mathematical theory for management of data, some concepts remain
somewhat vague. One of these concepts is referential integrity. Basically defined
to guarantee the existence of referenced objects, it was refined by Date [5, 7] to
a more active concept, i.e., the possibility to define limited reactions in order to
compensate violations of the referential integrity by so-called referential actions.
These ideas have been included in the new SQL2 standard [11]. In this paper, we
analyze the referential integrity with respect to the semantics specified in this
standard.

Referential integrity with referential actions may lead to some indeterminism
during the evaluation of a user operation (see e.g. [13, 14, 17]) which is undesired
(and not allowed in the SQL standard). Hence systems implementing referen-
tial integrity have to deal with this phenomenon. The problem is well known
in literature because on a more abstract level, referential integrity constraints
(with referential actions to maintain the integrity) can be viewed as triggers



or rules! [6, 7, 19]. Ambiguities of rule sequences were addressed for example
in [2, 1, 20]. To detect whether a given set of rules may lead to an indeterminis-
tic behaviour, general analysis procedures of the rule sets were developed. The
main directions are to analyze the read and write sets of the rules (e.g. [20]) or
to use concepts developed in the area of term rewriting (e.g. [2, 1]). Both direc-
tions have developed analysis procedures which operate on an arbitrary rule set
without the necessity to examine any database instance (some sort of schema
analysis). Unfortunately these procedures bear two drawbacks:

1. They are based on a schema analysis. This allows to have the check-overhead
at compile-time of an operation (and therefore decrease the run-time) but
the problems occur within the execution of a concrete user operation on a
concrete instance of the schema. Hence, it is possible to have a “problematic”
rule set marked as “problematic” and to get still never into trouble, as the
“problematic” instances are never generated.

2. The problem is known to be undecidable, i.e., it is impossible to have a
detection algorithm which discriminates exactly those schemas having prob-
lematic instances from those having none. Therefore the algorithms either
cover only a restricted class of rules or are over-pessimistic in all cases.

The SQL2 standard “solves” the above problems by introducing a run-time
check. In real applications of the relational model (business administration), the
instances of a schema (the databases) are finite, and therefore the problem of
ambiguity becomes decidable if each user operation terminates. However, the
required checks result in a severe run-time overhead. Therefore a good compile-
time check procedure would be valuable to avoid unnecessary checking at run-
time.

These observations lead to the development of specific criteria for referential
integrity, covering schemas which may have instances with ambiguities. To check
these criteria the required algorithms also have been developed. To cover SQL
the approach has to be divided into two phases:

1. Test the schema-based criteria at compile-time.
2. If a problem may occur, include a check at run-time. If not, no further
precautions are required.

A detailed discussion may be found in [13, 14, 17] and is beyond the scope of
this paper. Besides the limitation that the criteria are schema-based (so they
cannot cover SQL completely at compile-time), the second problem mentioned
above remains: The criteria developed so far (and checked by the algorithms)
are sufficient only, i.e., they only identify a subset of the schemas which are safe
(exhibiting no ambiguity)?. The goal of this research was to derive a precise crite-
rion for referential integrity constraints. As opposed to the more general problem

! We will use the term trigger and rule interchangeable throughout the paper always
referring to the same concept.

? Markowitz presented a criterion in [15] claimed to be safe and sound, but it can be
shown that this is not correct.



of rules, this goal seemed to be realistic because such referential integrity con-
straints are structural constraints and therefore limited in their expressiveness.
However, we show in this paper that the underlying problem is undecidable and,
as a consequence, a precise criterion cannot be developed.

The paper is organized as follows: In the following section, we introduce ref-
erential integrity as proposed by Codd and the form now standardized in the
SQL2 standard. After this short introduction we present an example to show
why referential integrity may lead to ambiguities. This discussion is followed by
the presentation of the needed results known from literature and our own proof
of the main result. The paper is closed by a discussion of the consequences of
this result for referential integrity checking in relational database systems.

2 Referential Integrity

In this section we discuss the referential integrity as it was defined by Codd in his
fundamental paper [4] and the definition which is now adopted by the standard
committees.

It is assumed that the reader is familiar with notions of the relational data model.

2.1 Referential Integrity in the Relational Data Model

Referential integrity constraints are a fundamental concept of the relational data
model introduced by Codd [4]. To define this concept (at least informally) one
needs the notion of tables as disjoint sets of attributes. Attributes themselves
are defined as null-ary functions (constants) mapping into a specific domain.
In his original paper, Codd defines the primary key to be an attribute or a
group of attributes which uniquely identifies every database object (tuple) within
a table (key condition). The primary key of each tuple has to be completely
defined, i.e., no null-values are allowed as values of attributes forming the primary
key. Furthermore, a primary key has to be minimal, i.e., no real subset of the
attributes fulfills the key condition (minimality condition). Together the three
conditions form the primary key condition. It is possible to have more than
one attribute (group of attributes) in a relation that satisfy the key condition
and the minimality condition. Such attributes (groups of attributes) are called
candidate keys. In contrast to the primary key, null-values may be allowed as
attribute values for such candidate keys.

The domains mentioned before are the ranges of the attributes. Domains are
independent from attributes and represent the means to express dependencies
between attributes®. This independence allows the implicit definition of foreign
keys, an additional basic concept of the relational data model: A foreign key is
an attribute (or group of attributes) defined on the same domain as the primary
key of some relation. The property of set inclusion is connected directly to the

% Note that the concept of the domain of an attribute is extended in canonical form
to groups of attributes: Their domain is the crossproduct of the domains of each
attribute in the group.



foreign key, i.e., for every value of the attribute (respectively group of attributes)
forming the foreign key, there has to be a tuple in some relation with this value
(respectively values) in its primary key (foreign key condition*). Exceptions to
this rule are special null-values that appear as attribute values in the foreign
key.

Note the usage of the term some in this definition: It is possible to have more
than one primary key defined on a specific domain (let us denote this set of
tables with S). In this case, a foreign key defined on that domain may reference
all these primary keys in the following sense: For each tuple t¢ of the child table
C with defined values in the foreign key attributes, a matching tuple has to exist
in at least one of the tables of S. One cannot specify which table. Furthermore,
different tuples of C may reference different tuples in different tables.

To summarize the aspects of referential integrity as defined by Codd: It is a
static integrity constraint which prevents the existence of defined foreign keys
without the existence of a primary key with the same value and results in a
vague dependency between tuples and between tables.

2.2 Referential Integrity in SQL2

The discussion in the literature (e.g [7]) has shown that it is useful to extent
the concept of referential integrity. One minor extension is the possibility to
reference not only primary keys but also candidate keys by a foreign key. In
connection to this enhancement it was proposed to specify the integrity con-
straint explicitly, thereby achieving a precise dependency between the foreign
key and the referenced primary key or candidate key. A new dimension was
added through system-enforced maintenance of the relational invariants in a
more active manner. Clearly, each database state has to obey these invariants
and the only possible reaction of a non-active database management system is
to roll back all operations violating these constraints. The enhancements for ref-
erential integrity maintenance (e.g. [5]) describe how the database management
system reacts in case a referential integrity constraint is violated. Such reactions
have been included in the new SQL2 standard [11] (we call them referential ac-
tions). As the useful reactions seem to be limited, the descriptive nature of the
relational model remains valid: It is specified what has to be done if one integrity
constraint is violated and it is not specified how this maintenance is carried out.
In the following we will shortly discuss the possibilities of this standard.

In the SQL2 standard, referential integrity constraints are defined when tables
are created or altered. For this purpose, there is a sub-clause of the CREATE
TABLE and the ALTER TABLE statement referring to a table C' which includes the
foreign key (child table):

* The primary key condition and the foreign key condition are also known as the
relational invariants.



FOREIGN KEY (<referencing columns>)
REFERENCES <table name> [(<referenced columns>)]
[MATCH {FULL | PARTIAL}]
[ON UPDATE {CASCADE | SET NULL |
SET DEFAULT | NO ACTIDN}]
[ON DELETE {CASCADE | SET NULL |
SET DEFAULT | NO ACTION}]

The <referencing columns> are the attribute names of the foreign key F' =
{fi,...fn} in C. The <referenced columns> denote the corresponding at-
tributes of the primary key K of the table P with name <table name> (parent
table). The semantics expressible through MATCH {FULL | PARTIAL} is the in-
terpretation of null-values in the foreign key of a tuple tc. We assume that a
null-value in a foreign key is allowed (unless stated otherwise) and such foreign
keys are not considered in the check whether or not a corresponding primary key
exists. To express this semantics the MATCH sub-clause has to be omitted com-
pletely. An in-depth discussion of the various possible interpretations is beyond
the scope of this paper (see e.g. [10]).

The sub-clauses ON UPDATE ... and ON DELETE ... allow to specify the ref-
erential action in case referential integrity is violated by a user operation. Six
manipulation operations on P or C' are possible: Insert into P, Update P, Delete
from P, Insert into C, Update C' and Delete from C. Due to the definition of
referential integrity, only four out of the six operations may transform a database
state which fulfills referential integrity into one where a referential integrity con-
straint is violated (“Insert into P” and “Delete from C” cannot cause problems).
In the SQL2 standard, the two operations “Insert into C” and “Update f; of C”
on the child table are forbidden (backed out) if these would result in DB states
where referential integrity is not fulfilled. Therefore, only the two operations
(“Delete from P” and “Update k; of P”) on a parent are handled in a special
way:

1. ON UPDATE. If attributes of a key referenced in a referential integrity con-
straint are updated in a tuple tp, then depending on the specification in the
schema, one of the following actions is carried out:

— CASCADE. The new values in the key are propagated to the referencing
children t¢.

— SET NULL. The attributes in the referencing tuples ¢ corresponding to
the updated key attributes are set to the null-value.

— SET DEFAULT. The attributes in the referencing tuples t¢ corresponding
to the updated key attributes are set to a default value (definable for
each attribute in the schema).

— NO ACTION. Nothing is done. Referential integrity remains violated and
if no other operations take place to correct the mismatch of the cor-
responding tuples tc, the complete work of the transaction will even-
tually be backed out. This happens either at the end of the statement



(if the integrity checking is not deferred) or at transaction commit (if
the integrity checking is deferred). The implications of deferred integrity
checking raise difficult semantical problems and are subject to further
research.
2. ON DELETE. If a tuple ¢p is deleted then the following actions are carried out
depending on the specification in the schema:

— CASCADE. The referencing children are also deleted.

— SET NULL. The foreign key attributes of the referencing children are set
to the null-value.

— SET DEFAULT. The foreign key attributes of the referencing children are
set to their default value.

— NO ACTION. Nothing is done. Referential integrity remains destroyed and
if no other operation takes place to correct this, the complete work of
the transaction will be backed out.

There is another important referential action which is not introduced in the
SQL2 standard, but in nearly all papers which are dealing with referential in-
tegrity: RESTRICT (or RESTRICTED depending on the author). The semantics of
this referential action is to forbid any change (update or delete) of a parent tuple
tp as long as there exist referencing child tuples ¢t¢. Although this action is not
in the SQL2 standard (but scheduled for SQL3 [12]) we will include it in our
discussion for the matter of completeness.

3 The Problem of Ambiguity

The standard technique proposed in literature (e.g. [8, 9]) for implementing in-
tegrity constraint maintenance in database management systems is an indepen-
dent trigger (or rule) for each integrity constraint. If this technique is used to
maintain descriptively specified referential integrity constraints, some indeter-
minism with respect to the outcome of a user operation may occur. In this
section we present an example for this sort of ambiguity.

The problem of ambiguity stems from the descriptive nature of the relational
database languages which hide any knowledge about how something is carried
out on underlying structures and let the user specify only what he wants to
achieve. Up to now (without referential actions or any other active component),
the user has specified the complete scope of his operation, i.e., he has specified
all components and all operations on these components as far as they are visible
at his interface (e.g., no operations are specified on access paths). Elements not
mentioned in the operation either are not of any interest (e.g. order of tuples) or
do not influence the outcome of the operation. This scenario changes if an active
component is involved: Something happens under cover. As the definitions of
referential integrity constraints (with referential actions) are autonomous from
each other and from any specific instance of the schema, but have influence on
the outcome of an operation, a complete semantics has to include this inter-
ference. Fig. 1 shows an example of a schema with possible ambiguities. The



(anr)

REFERENCES

A (anr)

DELETE CASCADE

A(anr, ...

)

B(bnr, anr, ...)

(bnr, anr)
REFERENCES

B (bnr, anr)
DELETE CASCADE

(anr)

REFERENCES

A (anr)

DELETE CASCADE

C(cnr, anr, ....)

D(cnr, anr, bar, ...

)

(anr, cnr)
REFERENCES
C(anr, cnr)

DELETE RESTRICT

Fig. 1. Schema with ambiguities

structure of the schema is rather artificial but nevertheless a possible schema in

SQL2. Let us look at the following instance of this schema:
Relation A: (anr, ...)

1,...)
Relation B: (bnr, anr, ...)

2, 1,...)
Relation C: (cnr, anr, ...)

3, 1,...)
Relation D: (cnr, anr, bar, ...)

3, 1, 2,...)

Given that each integrity constraint is “implemented” by a separate trigger [9]
(or ECA rule [18]) the following happens: If the user deletes the tuple (1, ...)
in relation A and the path A-C-D is followed first, then the deletion of the tuple
(3, 1, ...) is prohibited, because the tuple (3, 1, 2, ...) in relation D references
(3, 1, ...). Therefore, the complete operation is backed out. The result is the
database state before the deletion of (1, ...). If the path A-B-D is followed first,
then the tuple (3, 1, ...) is deleted and, in turn, the deletion of (3, 1, ...) in C
is performed, because referencing tuples in D no longer exist. The result is the
empty database®.

Note the difference between ambiguity problems and integrity problems: The
latter can not be tolerated in a database while the former may be tolerable
for somebody only interested in a DB state satisfying all integrity constraints.

% Similar problems occur with other referential actions, e.g. SET DEFAULT and SET
NULL, or even the same pair of referential actions.



Hence approaches dealing with integrity problems (e.g. [16]) have another scope®
but we think, the acceptance of a system will be rather low in general, if the
user is not able to understand what the system is doing. This view is embodied
in the new SQL2 standard with an abstract description of a special evaluation
procedure for referential integrity constraints. However, the main problem of
this evaluation procedure are the costs. These costs result from the necessity
to maintain some sort of log for certain operations: In a cascade of referential
integrity maintenance, each operation has to check whether or not a problem
occurs, by analyzing the log of the operations carried out so far. Apparently
this procedure causes a lot of overhead at run-time. To prevent this overhead
whenever possible, it is necessary to decide at compile-time of the operation (or
the schema) whether or not such an ambiguity may occur. However, to achieve
SQL2 compliance the run-time check has to be implemented in order to allow
operations (schemas) where ambiguities cannot be ruled out”.

As mentioned earlier, several authors have already presented different approaches
to the problem of compile-time checks. Because the approach of [2, 1] and [20] is
rather general, it cannot use the specific knowledge of the special properties of
referential integrity constraints. In [14, 17], approaches tailored for this special
area of constraints were presented. Both approaches suffer from their incomplete-
ness, i.e., if the check procedure does not find a possible source of ambiguities
then there are none (hence, the procedures are sufficient), whereas in the other
case, if the procedures identify an ambiguity, there may be none and hence the
procedures are not, complete.

However, a sufficient and complete check procedure would be extremely valu-
able; therefore, the researchers concentrate on more and more sophisticated ap-
proaches. Our main result presented in the next section shows the inability to
have such an exact check procedure.

4 Ambiguity is Undecidable

A check procedure has to decide the question “are there any ambiguities?” for a
given schema. The result of our research presented here is the undecidability of
this question in general. The subsequent sections prove the following:

There exists no decidable criterion P over a relational schema p with:
(P = TRUE) < no instance of p exhibits an ambiguity
To provide a formal proof of this theorem we introduce some preliminaries.

5 Those approaches try to detect integrity problems and provide some sort of remedy
(e.g. some rules which reinforce the integrity) and those remedies may be the source
of ambiguity problems.

" If a system does not provide such a run-time check and ambiguities cannot be toler-
ated, all schemas (operations) which may lead to ambiguities have to be forbidden.



4.1 Some Formal Notation

In order to state our problem it is sufficient to restrict ourselves to the following
referential actions:

— If a tuple t is deleted or its primary key is changed then this action is
propagated to those tuples t’ that reference t before the deletion/update has
taken place (referential action CASCADE).

— If a tuple t is to be deleted or its primary key is changed and there are
tuples t’ referencing t before the deletion/update has taken place, then the
deletion/update of t is forbidden (referential action RESTRICT)®.

First, we define the basic elements of a relational schema: Domains, attributes,
relations, and keys, followed by the definition of schema instances.
Relational schema: A relational schema p consists of four parts:

1. A set D= {dy,...,d;} of domain names.
2. A set A={as,...,an} of O-ary functions, a; :— D, called attribute names.
3. Aset T ={t1,...,t} of sets of attributes, called relations.
ty = {ah,l,...,ah,nh} C A and tiNt; = (0 for 4 75]
4. A set K ={k11,...,kq} of primary keys and candidate keys.

kmm - {am,la Sy am,nm}-
Instance:_An instance T of a relational schema p depends on sets di,..., dy
of values (D = {di,...,dr}) and results in a set of relation instances ry,...,r

with the following properties:

— d; is the set of values of the domain d;.

-7, C m X ... X m where dj, ; is the domain of the attribute a; in table
t;, and m is the set of values of dj, ;.

— \V/TiniJ = {ai,m, RN a,umi‘l} €K :Yuy,vs €7y :
U1iki,,= UQiki,,(i* v = 5.

On the basis of these notions we will now define inclusion dependencies, func-
tional dependencies, referential integrity constraints and NULL constraints.

An instance 7 satisfies

— a NULL constraint nn = r;(ay,, . .., Gy, ) if:
Yo € 1t 0l a0, 1= (wi,...,wg) = wj # NULL for each j =1,... k.
— an inclusion dependency

1= Tm(avu- ‘e 7avk) Crm (avk+17 ceey a’UZk) if:
Y0 € Pt 0lay, 00, 1= (wi,...,w) and w; # NULL =
(F" € rp - Uli{akarw...,agk}: (w1, wg)).

® The choice of these referential actions in the proof is done on behalf of simplicity,
other actions lead to the same result.
9 We denote with ¥l {ay,...,a,} the projection of v to the attributes {a1,...,ar}.



— a functional dependency
F=rm(u o au,) = P (s vy Qo) i
VU1,U2 €y - Ulwlf{avu...,avk}: (wh .. 'awk) = U2~lf{avl,...,avk}
and wj 7é NULL = Uli{auk_‘_l,...,avk_‘_l}: v2~L{avk+1,...,avk+l}-
— a referential integrity constraint
Ti =T Gy ey Gyy) B P Qg gy e o -5 Gy )
Yo €rp: lef{avl,...7auk}: (wla s ,’LUk) and
wj # NULL = (' € rpy - U,*L{avk+17..-,azk}: (wy,...,wg) and
dk € K: k= {au,,, --,021})

Obviously a referential integrity constraint subsumes an inclusion dependency.
This observation is central to our proof.

4.2 Inclusion Dependencies

We have introduced the concept of inclusion dependencies as dependencies sep-
arate from referential integrity constraints. Furthermore, we stated that a ref-
erential integrity comprises such an inclusion dependency. In this section, we
elaborate on the influence of general inclusion dependencies on possible ambigu-
ities.

The schema of Fig. 2 is slightly enhanced compared to the schema of Fig. 1. Let us
now assume that for all instances Z the inclusion dependency D.anr C E.anr!®
holds (the application may enforce this). Then no ambiguity at all will occur
because of the following observation:

If a tuple ¢ in D is accessed via the paths B— D and/or C — D then the attribute
t.anr is not null. Hence, the inclusion assumption (D.anr C E.anr) ensures the
existence of a tuple ¢ in E with t.anr = t.anr. The precondition for an ambiguity
to occur is the deletion of the tuple £ € A with f.anr = t.anr. But the operation
“delete #” will be rolled back because of the referencing tuple # in E and the
RESTRICT option. Therefore no ambiguity occurs!

The observation of the influence of inclusion dependencies on ambiguity is cen-
tral to our proof, since Chandra and Vardi [3] have shown that the implication
problem for functional and inclusion dependencies is undecidable. Their proof is
based on a reduction of the word problem in monoids to this problem. We will
use this result to prove our central theorem.

4.3 Result

Let us first state our main theorem and the corollary describing our main result.
Afterwards we proceed to the proof of the theorem in some more or less technical
steps.

10 D.anr respectively E.anr denotes the set of all values occurring in the attribute anr
of tuples in D (respectively E).



(anr) (anr)
REFERENCES A(anr, ...) REFERENCES
A (anr) A (anr)
DELETE CASCADE DELETE CASCADE
(anr)
REFERENCES
A (pnr)

DELETE RESTRICT

B(bur, anr, ...) C(car, anr, ....)

E(enr, anr, ....)

(bnr, anr) (anr, cnr)
REFERENCES REFERENCES
B (bar, anr) C(anr, cnr)

DELETE CASCADE ELETE RESTRICT

D(car, anr, bnr, ...)

Fig. 2. Relevance of inclusion dependencies

Theorem 1. Given a relational schema p, a set of referential integrity con-
straints C, a set N of NULL constraints and an inclusion dependency i =
(a1,...,an) C (b1,...,b,) where a; and b; are attributes of compatible type,
it is undecidable whether p,C, N | i'l.

The theorem tailors the result of Chandra and Vardi to a specific sort of inclusion
dependencies and functional dependencies. The main result follows directly from
theorem 1:

Corollary 2. It is undecidable whether a relational database schema with ex-
plicit referential constraints and referential actions is free of ambiguities or not.

Proof. From theorem 1 it follows, that for a given relational schema with a set
of attributes, a set of key constraints I, a set of referential integrity constraints
R and an inclusion dependency 4, it is undecidable whether or not K, R [ i.

" p,C,N' = i holds if all instances T of p that satisfy all dependencies in C and all
NULL constraints in N also satisfy i.



Furthermore, an inclusion dependency can avoid ambiguities because it initiates
rollbacks for the critical situations. Because the existence of such guarding inclu-
sion dependencies is undecidable the question of ambiguity is undecidable. O

To prove theorem 1 we reduce the mentioned problem of general set inclusion de-
pendencies and functional dependencies (which is undecidable according to the
result of [3]) to the more specific referential integrity constraints and NULL con-
straints provided by the new SQL standard. Since the reduction is effective, the
more specialized problem is also undecidable. The reduction uses the following
idea: Functional dependencies are mapped to key or candidate key constraints
and referential integrity constraints are used to model inclusion dependencies.
The mapping of functional dependencies to keys (resp. candidate keys) is done
in two steps

1. Each such dependency (a1, ...,a,) = (an+1) is mapped to a separate rela-
tions ¢t with the key (a1, ...,an).

2. Because an attribute may occur within several functional dependencies, it
has to be guaranteed that the combinations of values used within the dif-
ferent relation generated by the first step are the same. Therefore given two
functional dependencies f, = (a1,...,an) = (ant1) and fo = (by,...,b;) =
(bga1) (with corresponding relation ¢, and t,) which overlap in some at-
tributes ci,...,¢ we include the following two inclusion dependencies to
guarantee the same usage of values:
toler,...,q0 Ctpder,...,c and
tydcl,...,c0Ctaler,... .

These mappings guarantee to represent all functional dependencies and all loss-
less joins.

The mapping of functional dependencies is carried out in a first step, therefore
we can base the following steps on a schema which includes only key constraints
and inclusion dependencies. The basis of the mapping of inclusion dependencies
are the referential integrity constraints. But those constraints differ from inclu-
sion dependencies in the key constraint on the referenced group of attributes
implied by a referential integrity constraint. Hence, the idea of the modeling of
inclusion dependencies with referential integrity constraints is to combine the
attributes of the inclusion dependency with a special key. The latter ensures the
key constraint'? while the former ensures the inclusion dependency.

To do this formally we introduce a function ® which maps relational schemas
with inclusion dependencies to relational schemas with referential integrity con-
straints. In order to map the inclusion dependencies to referential integrity con-
straints we introduce for each relation r a new candidate key attribute ajeq
(ranging over a new domain). Furthermore, an new attribute (a; ney) is intro-
duced for each inclusion dependency ¢ with attributes of r on the left hand side
which also ranges over the new domain. These attributes are used to derive
referential integrity constraints from the inclusion dependencies. Following defi-
nitions formalize the introduced ideas.

2 The referenced group of attributes is not minimal.



Let C be the set of inclusion dependencies

imom/ k= Tm(@mk 1y s Gmkng) S P (@os ks« oy Gt kg, ) @and A the set of
NULL constraints.

Then Rsehema(p,C, N) is defined as follows: o
Rscnema(p,C,N) = (p,C,N) (p= (D, A, T,K) and p = (D, A, T,K)), where

- 7? =D U {dnew}, dnew is a new domain.

- A= AUtmET{am7new = dnew} Uim‘ml,kec{afkm,m’,k = dpew -
- T =U,,, ert{amnew}t U{am,- - amn,, } Ui, 0 ec {agr, .0}
— IS: =KU {km,l’ | km,l’ = {am,new}}-

= C=U;, . eclrm(@sh, s @mkas s 0mpm) E

'm’ (am’,newa Am! ks - - - aam’7k7nk)}-

- N :NUim‘ml,kEC{rm(afkm’m"k)}.

An instance Z of a relational schema p is mapped by the function
Rinstance (0, D, N, T) to f((fl, oy dy, dn;w) which is defined as follows:

1. cfl =d;forl <i<kand dn;w is a countable infinite set with a complete
order <.

2. All tuples of r,,, are mapped to the corresponding relation in p (denoted as
7m ). The attributes am new and possible attributes afk,, .., are set to the
null-value 3.

3. For each tuple © of a particular relation 7,, set ¥.am, new to a value which is
unique within 7,,.

4. Let v be a tuple of a relation r,, (the original relation). In case there is an
inclusion dependency
im,m’,k =Tm (am,k,la vy am,k,nk) C rom (am’,k,la vy am’,k,nk)
and ”i{am,k,17...7am,k,nk} does not include a null-value, then there exists a
tuple o in r, with UJ/{am’,k,17"'7am’,k,nk}: ﬁi{am,k.h---,am,k,nk}M and the

attribute ayr_, in O (the mapped tuple) is set to the value of f}.amr’new.

If vdfamprram " includes a null-value, then v.az;_,, is set to an

arbitrary value of the domain cfnew.
With these definitions we can prove the following theorem:

Theorem 3. Given a relational schema p, a set C of inclusion dependencies and
a set N of NULL constraints. The following holds: T is an instance of p satisfying
Cand N <= Rinstance(p, D, N,T) = T is an instance of Rschema(p,C, N).

Proof. if part (“<”): Suppose 7 is an instance of Rsenema(p,C,N) and 7 is no

instance of p,C, . While the key constraints cannot be violated by only one of

13 The key conditions on am new and the NULL constraints on the Ak i AT€ violated
at this point.

' If there is more than one such tuple, choose one arbitrarily.



the instances, a problem may occur through the inclusion dependencies.
Let v € rp, be a tuple which violates an inclusion dependency

imom' k= Pm(@mk 1y - Omokng) C Tm/ (Gm! &1y - -5 Gm/ kg )- By the definition
of the inclusion dependency we obtain that there is no null-value in the attributes
{@m,k1,--->Qm.kng } Of v. By the definition of Ripsiance we have a tuple ¢ in 7

that violates the referential integrity constraint Rscpema(- - - »bm,m/ k» - - -)-
Hence 7 is no instance of Rsenema(p, C, N). X

only-if part (“="): Suppose Z is an instance of p,C,N and 7 is no instance
of Rschema(p,C,N). The contradiction follows directly from the definition of
éRinstance- O

Corollary 4. Given a relational schema p, a set C of inclusion dependencies, a
set N of N ULL constraints and an inclusion dependency i. Then the following
holds (for p, D, N defined as above): p, D,N i < p,D,N Ei.

Proof. This follows directly from the above theorem. O

Corollary 4 immediately implies theorem 1.

5 Conclusions and Outlook

Integrity constraints are fundamental concepts for modeling the real world.
This is especially true for database systems. In such systems every commit-
ted database state has to obey all specified constraints. Therefore, it is desirable
to have an automatic maintenance if a constraint is violated (e.g., through a
user operation). For this purpose, the new SQL2 standard, as a specification of
a language for the relational data model, includes referential integrity and its
extensions.

In this paper, we have shown that the outcome of a user operation may be inde-
terministic because of these extensions which was also observed in the framework
of [13, 17]. Similar effects were analyzed in the area of rule processing [2, 1, 20].
Although the problem of deciding whether or not a database schema allows
operations with an indeterministic outcome was known to be unsolvable in gen-
eral, we hoped to find a solution for simple integrity constraints like referential
integrity constraints because they are tightly connected to the structure of a
database schema. As proved in this paper, even this restricted case is unsolvable
in general and therefore only a subset of the “safe” schemas may be recognized
e.g. by the criterions of [13] or [17]. Hence, as long as the known rule processing
algorithms are used, situations where ambiguities occur cannot be ruled out. In
those cases one of the following alternatives has to be chosen:

1. Live with the danger
Nothing is done. Therefore, the database system only guarantees that each
committed state obeys all defined integrity constraints. Which result state
is achieved using the active maintenance facilities remains unspecified and
is therefore not known to the user.



2. Expand the syntax (and semantics) of the rules
The rule syntax (and as a consequence the semantics) may be enhanced
with the notion of explicit conflict resolution, e.g., priority assignment. But
as a result, the rules introduced as local autonomous elements of integrity
maintenance may degenerate to a form of a complex (unreadable) if-then-else
programming paradigm. To prevent such a deterioration, only conflicting
situations should be burdened with these “enhancements”!®. Therefore, a
good (read: sharp) detection algorithm for ambiguities on a schema basis
remains desirable.

3. Live with some limitations
Opposed to the second case where all difficulties are solved through amend-
ments to the constraints, in this case the operation is backed out completely
after the detection of an ambiguity. Hence a good detection algorithm is
needed. This is the way SQL2 deals with the ambiguity problem: Whether
or not an ambiguity occurs has to be detected at run-time. This causes
coordination overhead only in case an ambiguity occurs. Therefore, less co-
ordination is required than in the second case. On the other hand, the need
of a check at run-time arises. To optimize this overhead a good compile-time
detection is needed.

Since a general requirement in the database context are deterministic results of
operations the first case is ruled out. Both other cases require a good detection
algorithm. Since the general problem is undecidable, it is an interesting problem
to determine the largest subset of database schemas that remains decidable.
Furthermore, we want to elaborate on the problem how the semantics of the
integrity constraints proposed in SQL2 and SQL3 can be supported in an effi-
cient way. It seems reasonable to use general ECA rules. For this purpose, we
develop the required deterministic semantics for such rules. This approach will
allow an autonomous definition of rules, do some compile-time checking (of rules
and operations) and, if ambiguities are possible, include an appropriate check
in the evaluation that provides a coordination at run-time. Implementation con-
cepts are developed in parallel. Together these efforts will allow an answer to the
question, whether such deterministic semantics can be achieved in an effective
manner acceptable for an end-user.
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