
Implementing Dynamic Code Assembly for
Client-Based Query Processing

J. Thomas, T. Gerbes, T. Härder, B. Mitschang
Dept. of Computer Science, University of Kaiserslautern

67653 Kaiserslautern, Germany

e-mail: {thomas | gerbes | haerder | mitsch}@informatik.uni-kl.de

As determined by the applications’ requirements, non-
standard DBMS are usually conceived for client/server
architectures [5, 12]. While the server is responsible for
general data-management tasks and for precomputing data,
application-oriented processing is done in the main-
memory buffer at the client. Since the expressive power of
the query language should be available not only for
loading/unloading the buffer, but also for more sophisti-
cated processing tasks on the buffer contents,main-
memory based query processing must be supported [6, 14].
A simple navigational buffer interface is no longer satis-
factory. Instead, a declarative interface is required to allow
querying the buffer contents. Additionally, adequate
main-memory indices should be supported to cope with
large application buffers.

Larger client caches improve locality of client-based
processing, and exploiting the buffer contents at run time
becomes a crucial performance issue for query processing.
This calls for efficient run-time optimization. Conse-
quently, the subsequent phase of code generation must be
performed in a flexible and efficient manner as well. Our
approach to achieving flexibility and efficiency is to
dynamically assemble executable code from precompiled
code fragments reducing explicit code generation to a
minimum. We call this step of query processingdynamic
code assembly.

We devised and implemented dynamic code assembly for
KRISYS, a KBMS developed at the University of Kaiser-
slautern. It features an object-oriented knowledge model
and a set-oriented, declarative query language as its user
interface. The language is processed following an algebraic
approach comparable to relational query processors [15].
The plan-operator concept for client-based query
processing has been designed to be extensible and to allow
efficient run-time optimizations [26]. Sect. 1 gives an
overview of KRISYS and its components. In Sect. 2, we
discuss tasks and requirements of code assembly and
execution from a conceptual point of view. Sect. 3
describes how we implemented both steps based on the
existing plan-level realization. Opposed to conventional
query-processing systems requiringstrict compilation, we
can assemble executables by putting together precompiled
functions. As will be discussed in Sect. 4, this approach is
as effective as strict compilation, and, although we used
Common Lisp as implementation platform [1, 25], it is also
feasible for C-like languages, e.g., C++. Sect. 6 discusses
related work and future research issues.

Abstract

Advanced database management systems (DBMS) are faced with
increasingly complex query-processing tasks due to more
powerful data models and query languages. These systems are
usually conceived for client/server environments, with most
application-oriented processing being done in the main-memory
buffer at the client side. For performance reasons, it is indis-
pensable to exploit the buffer contents when optimizing queries.
As the buffer contents is only known at run time, advanced
DBMS should support run-time optimization and offer concepts
guaranteeing flexibility and efficiency of the subsequent phase of
code generation. This paper addresses these issues. Our approach,
dynamic code assembly, is based on a strictly orthogonal specifi-
cation and implementation of the concepts involved in code
generation, allowing to dynamically assemble executables from
precompiled pieces of code, thus reducing explicit code gener-
ation to a minimum. We discuss our considerations and imple-
mentation referring to the KBMS KRISYS, although our ideas are
generally applicable to advanced DBMS requiring run-time
optimization and consequently flexible and efficient generation
of executable code at run time.

1. Introduction

In the area of DBMS, there is a trend towards ever more
powerful data models and query languages [8], spawned on
one hand by advanced applications demanding more
expressive modeling and querying facilities, on the other
hand by improvements of available hardware, e.g., faster,
possibly parallel processor architectures or growing main
memories. These developments call for enhancements to
query processing concerning semantic expressiveness and
extensibility as well as performance.

Semantic expressiveness has been addressed quite success-
fully by advanced DBMS, e.g., object-oriented DBMS [2]
or KBMS [20]. These systems must support extensibility at
different levels of query processing [9, 10, 11] to cope with
later extensions either of the query language (to shift more
application-oriented semantics into DBMS query
processing) or of evaluation methods (e.g., improved join
algorithms). Moreover, the need for extensibility is in
accordance to the general goal of a simple, streamlined
design of the query-processing framework.

Proceedings of the Fourth International Conference on
Database Systems for Advanced Applications (DASFAA ‘95)
Ed. Tok Wang Ling and Yoshifumi Masunaga
Singapore, April 10-13, 1995
 World Scientific Publishing Co. Pte Ltd

In: Proc. DASFAA‘95, Singapore, April 1995, pp. 264-272.

1. Overview of KRISYS

1.1 Overall Architecture

KRISYS was conceived to support knowledge processing
in client/server environments. While processing at the
server is performed in the data model of the server DBMS
(data processing), client-based processing is carried out in
the KRISYS knowledge model (knowledge processing).
Client and server are loosely coupled by an application
buffer in the client, the Working-Memory (WM).
Moreover, the client hosts the KOALA Processing System
(KPS) featuring the query language KOALA as interface to
end users and applications (see [6] for details).

1.2 Knowledge Model

The knowledge model of KRISYS is comparable to object-
oriented data models [2, 16]. An object is uniquely
identified by a name (i.e., object-identifier), and contains a
set of attributes to describe its characteristics:slots are
used for representing properties of an object and relation-
ships to other objects;methods are used for expressing
object behavior. Attributes can be further described by
aspects, defining, e.g., the cardinality of a slot. For object
structuring, the abstraction concepts of classification,
generalization, association, and aggregation [19] are
maintained automatically by the system. For details on the
knowledge model of KRISYS see [4, 20].

1.3 Query Language KOALA

Retrieval and modification of knowledge base (KB)
contents is supported by KOALA [7, 20], a descriptive, set-
oriented language constituting the user interface of
KRISYS. KOALA features two powerful operations, ASK
to query the KB, and TELL to change the state of the KB.
The following ASK statement is taken from an application
modeling a restaurant environment.

Query variables are indicated by a leading question mark.
The query asks for all guests (➀) that have a European
white wine (➁) as preferred wine (➂), and returns the
names of the guests, wines, and countries, respectively. We
will refer to this example query throughout this paper.
Since KRISYS was conceived for a client/server
environment, processing of KOALA in general involves
both server and client. Data not yet residing in the appli-
cation buffer at the client must be pre-selected at the server
and transported to the client. Subsequently, knowledge
processing can be carried out at the client. In the following,
the focus will be on client-based query processing.

1.4 Working-Memory (WM)

Knowledge processing takes place in WM. The representa-
tional framework of WM directly reflects the character-

istics of the knowledge model. This applies to the internal
structure of objects, as well as to the relationships among
objects, the most important of which are the abstraction
concepts, forming abstraction hierarchies. Both types of
relationships are materialized in WM using main-memory
pointers providing fast access to the required information.
Moreover, the WM supports efficient access to and set-
oriented processing of arbitrary collections of objects, e.g.,
intermediate results in knowledge processing or data
fetched from the server, by providing so-calledAccess
Structures (AS). In their basic form, AS are lists supporting
simple traversal operations based on a cursor concept. AS
may also be realized as trees or hash tables taking the role
of main-memory indices that provide key-value access and
ordering facilities. AS can be installed dynamically and
temporarily during query processing. Thus, knowledge is
organized in WM as shown in Fig. 1.

1.5 KOALA Processing System (KPS)

KOALA is based on an algebraic processing model that
allows conventional (relational) algebraic optimizations to
be used to a large extent [22]. Thus, the overall steps of
query processing proceed in a similar fashion as the well-
known steps of data processing in relational DBMS [15]:
first, an algebra graph is generated and optimized; then, a
plan-operator graph is constructed; finally, executable code
is generated, and the query is evaluated. In the following,
we will describe the different representational levels.

Algebra Level
Queries are transformed into algebra graphs and subse-
quently optimized [23]. On one hand, algebra operators
show a functionality that can also be found in conventional
relational algebras (e.g., SELECT or JOIN), on the other
hand, there are specific operators to handle object struc-
tures (e.g., NEST or UNNEST). Without discussing
KOALA algebra in detail, we want to give an impression
of how a query is translated into an algebraic represen-
tation. We refer to the sample query from above. Fig. 2 (left
side) shows the corresponding algebra graph1.

Plan Level
When transforming an algebra graph into a plan-level
representation, KPS must exploit the current contents of
WM (including storage structures, sort orders, etc.). Data
already residing in the application buffer need not be
fetched from the server and can be used for optimizing
query processing2. On the other hand, KPS must ensure
that all information required for client-based query

1. The algebraic representation only employs conventional rela-
tional operators which is sufficient for the scope of this paper.

(ask (?guest ?wine ?country)
(and
(is-instance ?guest persons)
(is-element ?country europe)
(equal white (slotvalue color ?wine))
(is-in ?wine (slotvalue produced-wines ?country))
(is-in ?wine (slotvalues preferred-wine ?guest))

➀
➁

➂

object and its
internal levels

relations defined by

Fig. 1: Representational framework of the WM

abstraction concepts

Access Structure
(collection of objects)

processing is loaded into WM. This results in queries
generally being split into a part to be executed at the server,
and a part to be performed at the client [28]. Hence, plan-
level manipulations can be completed only at run time.
Fig. 2 (right side) shows the plan-operator graph for our
example query. Since the scope of this paper is on client-
based processing, we assume that all input data are residing
in WM, and that, consequently, all plan operators for our
example query are client-based. Moreover, we assume that
instances of wines are sorted by their object names. As
soon as the instances of persons are selected (operator
SEQ-SELECT) and sorted according to their preferred
wines (operator SORT), a sort-merge-join can be employed
to relate persons to their preferred wines (operator SM-
JOIN). Since we do not make any assumption on how the
elements of Europe are stored in WM, the second join is
realized as a simple nested-loop (operator NL-JOIN).
Our plan-operator approach involves the following
concepts (explained in detail in [26]): Plan-operator
templates realize asimple processing paradigm for plan
operators, as well asextensibility at the plan-operator
level. Base predicates introduce knowledge-model
semantics into query processing, e.g., inheritance.
Moreover, they guaranteeextensibility of the query
language without affecting existing plan operators (POs).
Subgraphs of a PO graph are combined to units of
execution, called blocks, which employ logical AS (LAS)
for internal data flow, and which rely on AS in WM for
exchanging information among each other. AS and LAS
ensure efficient data flow between plan operators.
Moreover, the way in which all these concepts are
combined warrantsefficient dynamic query optimization
and the construction offlexible units of execution.
These characteristics were achieved by a modular design
and realization of the plan level, and, although imple-
mented in LISP, we resorted only to techniques to be found
in C-like programming languages as well [17].

Code Assembly and Execution
Units of executable code are assembled by deriving and
establishing a block structure for a given PO graph. Blocks
are the units of execution in our query-processing approach

2. For efficiency, matching buffer contents to data referenced by a
query is an integral part of our approach to query optimization.
Integrating matching and optimization is also advocated in [3].

and introduce a new level of abstraction lying above that of
POs. A query is no longer represented as a graph consisting
of POs, but as a graph made up of blocks. Hence, executing
a query means evaluating the corresponding blocks. Just
like POs, blocks accept one or more input streams and
produce exactly one output stream. Seen from outside,
blocks work in a set-oriented way, yet internally they may
operate tuple-wise, depending on the PO(s) contained.
Blocks rely on the PO level, both conceptually and
concerning their implementation. Hence, not only gener-
ating a plan-level representation for a given query is a task
to be performed (at least partially) at run time, but also
assembling the code to be executed later on. Flexibility and
efficiency of these tasks are important for good perfor-
mance of overall query processing. We will now address
the conceptual and implementational requirements to be
met by the steps of code assembly and execution.

2. Code Assembly and Execution -
Conceptual Issues

We will describe how blocks are constructed from a given
PO graph, and how they can be employed during query
evaluation. Subsequently, we will discuss run-time depen-
dencies between block structuring, the plan level, and the
system state at run time, thus defining goals to be met by an
appropriate realization of code assembly and execution.

2.1 Block Structuring
From the plan-level representation, units of execution
(blocks) must be generated that guarantee a query evalu-
ation which is optimal concerning data flow as well as
minimal in the amount of intermediate results organized as
AS in WM. Intermediate results are required due to either
the topology of the PO graph at hand or the processing
characteristics of the POs in the graph since POs do not
have local buffering facilities [26].
Processing characteristics are associated to each input and
output stream of a PO. We distinguishset-oriented and
tuple-oriented streams. The latter may be further classified
into streams that are read only once (single-pass streams),
and those that are accessed several times (multiple-pass
streams)3. For example, the “outer” input of a nested-loop
join is single-pass tuple-oriented, while the “inner” input is

3. This strategy avoids computing input for each pass repeatedly.

SELECT

inst-of persons

SELECT

elem-of europe

JOIN
slotvalue

preferred-wine

SELECT
inst-of wines
color = white

JOIN
slotvalue

produced-wines

po4: SEQ-SELECT
elem-of europe

po3: SM-JOIN
slotvalue

preferred-wine

po6: SEQ-SELECT
inst-of wines
color = white

po2: NL-JOIN
slotvalue

produced-wines

PROJECT

po7: SEQ-SELECT
inst-of persons

po5: SORT
slotvalue

preferred-wine

po1: PROJECT

Fig. 2: Example query - algebra and plan level

algebra
graph

plan-level
representation

multiple-pass tuple-oriented. Only set-oriented and
multiple-pass tuple-oriented streams require state infor-
mation, i.e., facilities for buffering input or output tuples.
Concerning topology of the PO graph, operators whose
output stream is referenced more than once must materi-
alize their results, hence need an AS at their output. Special
attention must be paid to those leaf POs which perform
accesses to the server and supply input for succeeding
client-based POs. To exploit set-oriented transfer of data
from server to client, results coming in from the server
must be buffered in WM. To this end, an AS must be placed
after each such client-based PO as buffering facility.
We can now derive a set of rules where to place AS in the
PO graph, thus determining block boundaries.
Rule 1: The topmost PO of a query marks the end of (a

unit of) execution, and therefore, a block border
must be placed directly above it.

Rule 2: Set-oriented operators (that need the output
stream to gradually build up their result) must be
placed at the end of a block.

Rule 3: Operators whose output is referenced more than
once must materialize their results; hence, they
must be positioned at the end of a block.

Rule 4: Tuple-oriented, multiple-pass operators need
their input temporarily buffered; hence a block
border must be placed directly below them.

Rule 5: Operators directly above the borderline to the
server (fetching their input from the server) mark
the beginning of a block.

These rules guarantee that intermediate results are materi-
alized in AS only if necessary and result in maximum units
of pipelined processing. Moreover, placing AS only at
those positions in a PO graph allows optimal dataflow.
Applying these rules to the PO graph of Fig. 2 results in the
block structure shown in Fig. 3.

2.2 Block Execution

A PO graph is transformed into a block-structured graph,
i.e., into a representation that abstracts from single POs.
Evaluating a query therefore means executing the corre-
sponding blocks. This can be done sequentially, but also in
parallel [21], based on a multiprocessor shared-memory
architecture [24] and a special plan operatortransmit [28].

2.3 Run-Time Dependencies

Due to the client/server environment and the need to
consider buffer contents, modifications of a PO graph at
run time occur quite frequently. These adaptations, in turn,
may impact single blocks as well as overall block struc-
turing. To substitute a PO for another with compatible
processing characteristics (meaning that the former and the
actual PO both require buffering or not) must be possible
without having to reconstruct the entire enclosing block.
Replacing a PO for another with a different processing
characteristics requires block structuring to be recon-
sidered. This implies reorganizing the internal structure of
blocks and redefining block boundaries. Hence, aflexible
modification of internal block structures as well as a
dynamic redefinition of block boundaries are important
requirements for dynamic code assembly.
We illustrate these considerations referring to the block-
structured graph of Fig. 3. Let us assume we replace po3 by
a simple nested-loop implementation. Moreover, let po6
constitute the “inner” input of that join. On one hand, po5
becomes superfluous, on the other hand, blocks 1 and 4 can
be merged, and the AS in between can be discarded. This is
due to the fact that po3 needs to access each tuple of its
“outer” input only once. Fig. 4 depicts the resulting block
structure for our example query.
As pointed out before, block-structured graphs can be
executed sequentially or in parallel. The objectives under-
lying the rules for constructing blocks guarantee a
minimum amount of intermediate results and optimal data
flow for sequential evaluation, and, as discussed in [27],
also for parallel query execution. The rules introduced
above aim at maximum units of pipelined processing.
Speaking the other way around, blocks render coarse-
grained units of parallelism. Finer-grained parallelism can
be achieved by refined block-determination rules. These
rules might split up blocks (horizontal parallelism), or split
up AS and replicate blocks (vertical parallelism), thus,
however, increasing the number of blocks and intermediate
results. We leave details to a further publication.

3. Code Assembly and Execution - Imple-
mentational Issues

In the previous section, we discussed concepts and require-
ments underlying code assembly and execution. We will
now describe their implementation and integration into

po1: PROJECT

po2: NL-JOIN

po3: SM-JOIN

po6: SEQ-SELECTpo5: SORT

po7: SEQ-SELECT

po4: SEQ-SELECT

Fig. 3: Block structure for our example query

block1

block2

block3

block4

AS

AS

AS

po1: PROJECT

po2: NL-JOIN

po3: NL-JOIN

po6: SEQ-SELECT

po7: SEQ-SELECT
po4: SEQ-SELECT

Fig. 4: Modified block structure for our example

block1
block2

block3

AS

AS

AS

knowledge processing. We chose Common Lisp [1, 25] for
implementation because it supplies a flexible representa-
tional basis for object structures and a powerful
programming environment for system development.
Code assembly is performed in several steps. We will
describe each step together with its input and the resulting
data structures, always referring to the block-structured PO
graph shown in Fig. 3. Starting from this graph, block
borders must be identified. Next, blocks are created, which
comprises building up inter-block communication as well
as constructing the internal structure of blocks.

3.1 Data Structures and General Remarks

Most figures presented below contain simplified Lisp code
emphasizing the important parts of our implementation. To
create new structure types (comparable to record types in
C++), we use Lisp functiondefstruct requiring the
structure’s name and fields as parameters.Defstruct creates
the structure type itself as well as a set of functions to
handle that type: Instances of a structure calledexample
can be created bymake-example which also allows to
preset some or all fields of the new structure.Modify-
example stores values in the fields of an already existing
structure.
Our data structures are (finite) directed acyclic graphs
consisting of nodes and edges. We distinguishroot nodes
(of a graph or subgraph),inner nodes andleaf nodes. Each
node contains a field for the node’s unique identifier,
possibly several fields for node-specific information, and
one field to establish connections, i.e., edges, to child
nodes. Since a node can have several children, the latter
field is realized as a list. Each entry of that list may be a
physical pointer, so a child can be reached directly from a
parent node, or the entry may be a symbolic pointer, i.e., a
node identifier, so a child node must be looked up via a
hash-table, using the node identifier as search key.
For representing POs, we must differentiate between infor-
mation being specific for all occurrences of the same PO
category (e.g., whether the input is processed tuple- or set-
oriented) and information holding for every occurrence of
a PO in the query under consideration (e.g., the source of
its input tuples). This information is stored in structures
called PO-CLASS and PO-INSTANCE (Fig. 5).

Structures of type PO-CLASS, e.g., SELECT, describe
properties common to all its instances. They contain a
pointer to the executable code (function) and information
about the characteristics of input and output streams (zero
to two input-modes and oneoutput-mode). Mode ‘tuple’
denotes single-pass tuple-oriented access, mode ‘set’
denotes set-oriented or multiple-pass tuple-oriented access.

The current PO graph is stored in structures of type PO-
INSTANCE. Every PO-INSTANCE is identified by field
name and belongs to a PO-CLASS. Fieldparameters
contains information to guide the PO functionality, e.g.,
base predicates, key functions, or sort predicates. For every
input stream, list-of-input-pos stores the names of the
producing PO-INSTANCEs. Structure PO-INSTANCE is
made up of three more fields which we will describe later.

3.2 Generating the PO-Graph

As discussed before, a PO graph is created by generating
PO-INSTANCE structures for all POs of the graph and
filling their fields with appropriate values.

3.3 Generating Blocks, Communication and Control

Step 1: Identifying Borders
Information where to put borders in the current PO graph is
stored in the last three fields of each PO-INSTANCE
(write-characteristics, no-of-reader-tuple and no-of-
reader-set). To fill these fields, the PO graph is examined
recursively following the rules defined in Sect. 2.1, taking
the write-characteristics of a producing PO and accumu-
lating the characteristics of all consuming POs into no-of-
reader-tuple andno-of-reader-set.
Having derived information on the positions of borders, we
can now generate blocks for the given PO graph.

Step 2: Generating Blocks
Each block is stored in a data structure of type BLOCK
(Fig. 6 a). Every block has exactly one topmost PO whose
name is used as BLOCK identifier (name). As blocks are
the units of execution, they require a field for the assembled
code (function) and itsparameters. The structure of the
block graph is represented via the child nodes inlist-of-
input-blocks. The subtree of POs which belongs to each
block is not explicitly stored inside the block; it can be
extracted dynamically from the original PO graph4.
A block structure is created for every PO requiring a border
above, according to the information collected in the
previous step. To this end, only fieldname is filled with the
PO name (Fig. 6 b). The other fields are filled in separate
steps, described subsequently.

Step 3: Connecting Blocks
The unconnected blocks are linked by inserting symbolic
pointers intolist-of-input-blocks which are collected during
a recursive traversal of the PO subgraph of every block. To
this end, functionmodify-block is employed (Fig. 6 c).

Step 4: Generating Inter-Block Communication
POs inside a block communicate via LAS (cf. Sect. 1.5). In
contrast, blocks read their inputs from and materialize their
output in physical AS. For every new block, this step
creates a new output AS (Fig. 6 d). By default, the AS
chosen is an unsorted list. In the case of a SORT-PO, for
example, its parameters are used to create an AS of the
considered type (e.g., sorted list or b*tree).

4. With knowledge of the block’s topmost PO and the position of
the borders.

(PO-INSTANCE
name
PO-CLASS
parameters
list-of-input-pos

no-of-reader-tuple
no-of-reader-set
write-characteristics)

(PO-CLASS
name
function
output-mode
input-modes)

Fig. 5: Data structures for representing POs

Step 5: Generating Intra-Block Communication
Before discussing the implementation of this step, we will
first recall how POs operate inside a block. Intra-block
communication is organized via LAS (Sect. 1.5). If a LAS
is requested to produce a new output tuple, it must activate
its underlying PO. The PO called, in turn, needs LAS to
access its input(s) by invoking functionget-entry-from.
This calling pattern is repeated until the bottom-most
operator of a block is reached.

Upon invocation ofget-entry-from, the calling PO must
supply aread-mode. Sequential read modes (first, next, or
current) are supported by all POs, so that the input to a
sequential PO can be supplied by every other PO or by an
AS. On the other hand, there are POs requiring a more
sophisticated access to their input which can only be

provided by AS, e.g., directly accessing a tuple in a hash
table. Such a PO must invokeget-entry-from with
additional parameters (e.g., a key value for direct access) to
be passed to the underlying AS.
To represent intra-block communication, we introduce data
structureLAS. Firstly, it contains a pointer to the PO to be
called, i.e., to the corresponding piece of code (function).
This PO may again need ownLAS to access its inputs,
which are recursively placed in the parameter list of the
consumerLAS (cf. Fig. 7). On the other hand, the PO called
may be the bottom-most operator of a block and thus
receive its input directly from an AS. To this end, we
implemented pseudo-PO READ-FROM-AS that connects
a leaf PO of a block to its input AS (e.g., LAS-6 in Fig. 7).
Moreover, data structureLAS contains a list of parameters
which must be supplied to the underlying PO upon
activation. We distinguishstatic parameters anddynamic
parameters. All parameters are tagged bykeywords
preserving independence of the parameter position. They
consist of information retrieved from PO-INSTANCEs
(e.g., base predicates, key-functions, sort-predicates) and
of a LAS for every input stream of the PO, produced by
function make-las (see below). In contrast,dynamic
parameters must be newly specified for every PO call, e.g.,
read-mode which is filled by an appropriate value each
time a PO is activated). The call itself is performed by the
apply mechanism of Lisp, which automatically handles
keyword arguments. Its performance and transfer to other
programming languages will be discussed in Sect. 4.
To establish theLAS for intra-block communication, make-
las is called for the topmost PO of every block. The
function takes the parameters found in PO-INSTANCE
and recursively generatesLAS (functionmake-las) for each
input stream to build the list of static parameters. Input
streams generated from POs residing in the same block, are
accessed by aLAS with function and parameters of the
producing PO (dark-shaded boxes in Fig. 7). If, in contrast,
the input stream is produced by a PO belonging to a
different block, tuples have been materialized in the
producer’s output AS prior to the execution of that block.
Instead of calling the PO, the input can be fetched from this
AS by creating aLAS with function READ-FROM-AS and
appropriate parameters (light-shaded boxes in Fig. 7).

Step 6: Generating Execution Control
To complete code generation, functions to drive the
execution of blocks are needed. They are stored in each
block together with their parameters, i.e., the name of the
output AS and the name of the block’s topmost LAS from
which to request output. To this end, the output character-
istics of a block’s topmost PO must be considered, since it
defines the output characteristics of the whole block. We
distinguish tuple-oriented and set-oriented output charac-
teristics. Tuple-oriented blocks are driven by function
control-for-tuple-oriented-blocks containing a while loop
which simply reads all output tuples of a block and materi-
alizes them in an AS. Set-oriented blocks, having a set-
oriented PO as topmost operator, are controlled by function
control-for-set-oriented-blocks. Set-oriented POs operate
directly on the output AS and fill the AS on their own. A

(struct BLOCK
name
function
parameters
list-of-input-blocks)

Fig. 6: Establishing Blocks

po1

po2

po3 po4

po5 po6

po7

(make-BLOCK
:name 'po1)

(make-BLOCK
:name 'po5)

(make-BLOCK
:name 'po4)

(make-BLOCK
:name 'po6)

(b) Generating BLOCKs

(c) Interconnecting BLOCKs

(modify-BLOCK
:name 'po1
:list-of-input-blocks

'(po5 po6 po4))

(modify-BLOCK
:name 'po5
:list-of-input-blocks ())

(modify-BLOCK
:name 'po4
....

(modify-BLOCK
:name 'po6
.....

po1

po5 po6

po4

(make-std-AS
:name 'po1)

(make-sorted-list-AS
:name 'po5
:less-pred #'pred-5
:key-fun #'key-1)

(make-std-AS
:name 'po4)

(make-std-AS
:name 'po6)

(d) Generating ASs

po1

po2

po3

po4

po5 po6

po7

(a) Definition of data structure BLOCK

SORT-PO, for example, may sort successively by inserting
every input tuple at the correct position via a b* tree, or it
may firstly insert all tuples in an unsorted list and then sort
the whole list in one shot. Hence,control-for-set-oriented-
pos only initiates set-oriented processing of the block’s
topmost PO and leaves all other tasks to that operator.

3.4 State of the Implementation

The transformation of a query into an algebraic represen-
tation and the subsequent rewrite are already implemented,
as well as all constituents of the PO level, including blocks
and the functionalities for building them. In addition to
different policies for driving single blocks, we can execute
block-structured graphs sequentially. We are currently
working on concepts for executing blocks in different
processing environments ranging from single-processor
workstations over multiprocessor architectures to
distributed settings. First steps in this direction are the
implementation of thetransmit operator to encapsulate
process and processor boundaries between blocks [28] and
of a component for parallel scheduling of blocks [27].

4. Validation

4.1 Lisp Implementation

Extensibility and flexibility are major goals of query
processing for KRISYS. At the PO level, these character-
istics are achieved by a modular design and implemen-
tation of its constituents [26]. The steps of code assembly
and execution were conceptualized and implemented in
such a way that they preserve these advantages. Moreover,
the code produced during these steps can be executed
almost as efficient as that resulting from conventional (i.e.,
strictly compilative) query-processing approaches.

4.1.1 Extensibility and Flexibility
Extensibility at the level of code assembly means that new
POs can be easily integrated. This can be achieved by
adding an appropriate PO-CLASS structure, thereby speci-
fying the new PO’s input and output behavior. This infor-
mation is needed to construct blocks later on. The proce-
dures realizing code assembly need not be modified.
Hence, extensibility is guaranteed for code assembly.
Flexibility during code assembly, i.e., being able to react
immediately to run-time dependencies, is possible only if
the corresponding concepts are of low complexity and can
be employed efficiently at run time. Every step of code
assembly is executed once and has linear complexity
depending on the number of POs in a query. To identify
borders, for example, the total number of visits depends on
the number of input streams in a PO graph. Since we use
only POs with at most two input streams and each visit
takes constant time, say tv, the complexity of that step is
bound to 2 * #PO * tv. Hence, the complexity of overall
code assembly is comparatively low.

4.1.2 Efficiency of Produced Code
Concerning efficiency of the code generated, there are two
criteria to be considered, the time to build executable code
(start-up time) and the efficiency of code execution.

In conventional code generation, e.g., Bubba [29], queries
are transformed into C source code which is explicitly
compiled as the last step of code generation. Compilation
typically takes several seconds of start-up time (cf. Fig. 8,
upper part) consuming main memory up to a few
megabytes for the compiler, source files and object code.
On the other hand, the resulting code is efficient because
the compiler can use in-line substitution of functions and
optimized argument passing by static parameter blocks.
In our approach, executable code is assembled using fully
compiled functions which are combined by data structures
containing function pointers. Hence, the resulting code
need not be interpreted. This approach,dynamic code
assembly (DCA), only needs a very short start-up time,
since code can be assembled very fast. Measurements show
that even for large queries of up to 100 POs, DCA is
completed in far less than one second (SUN Sparc SLC, 16
MB RAM). During code execution, however, we do have
some overhead due to function calls viaapply with
keyword parameters. To our experience, each such call can
be weighted as (at most) three function calls with ordinary
parameters. This worst-case ratio results from measure-
ments we performed for typical PO calls. Hence, compared
to explicit compilation, execution time rises faster as the
number of PO calls increases (see Fig. 8, lower part).
Although this overhead is small compared to the efforts for
knowledge processing as a whole, it can still be reduced by
a more appropriate mechanism for parameter passing. To
this end, we will sketch an alternative implementation in
C++. By employing C++, we can streamline parameter
passing to our needs, yet keep most of the flexibility
required for knowledge processing (except for the
definition of new PO-CLASSes which may cause modifi-
cations of source code and consequently recompilations).

4.2 Transfer from Lisp to C++
Lisp function apply together withkeyword parameters
allows convenient and powerful specification of param-
eters which is overly flexible for DCA. By reducing flexi-
bility, we can eliminate this unnecessary overhead.
In a straightforward fashion, we map each PO-CLASS to a
class in C++. Thus we construct a PO hierarchy exploiting
inheritance of C++. This hierarchy consists of root class
plan_operator and virtual base classespo_with_1_input
and po_with_2_inputs for POs with one or two input
streams. In the root class, a pure virtual functionpo_func is
defined. However, only the interface (the dynamic param-
eters) of that function is specified, concrete function code
is associated topo_func only in the derived classes.
From these virtual base classes, concrete classes are
derived, one for each PO-CLASS, e.g., a PO for accessing
the server (SERVER), SELECT, or JOIN. Moreover,
virtual functionpo_func is filled with appropriate function
code, and additional fields (for static parameters) are
possibly added to the classes. To actually build query
graphs, instances of these concrete classes must be
generated and put together, as in our Lisp implementation.
Concerning efficiency, this approach has a start-up time
comparable to that of the Lisp implementation, on the other
hand, parameter passing is not as overly flexible as in the

case of theapply/keyword mechanism due to a strict distin-
guishing between static and dynamic parameters.
Compared to pure C, however, C++ still offers some flexi-
bility due to function dispatch at run time. Consequently,
the overhead per PO call is less than theapply/keyword
mechanism; thus the break-even point with explicit compi-
lation is shifted accordingly (cf. Fig. 8, upper part).

4.3 Comparison of Implementation Alternatives
In the previous part of Sect. 4, we proved the feasibility of
DCA for different implementation environments.It became
obvious that choosing a programming platform for DCA is
primarily a matter of weighing flexibility against
efficiency. The table in Fig. 8, lower part, clearly demon-
strates the advantages and disadvantages of each imple-
mentation alternative.
The Lisp implementation is not the most efficient one, but
it is highly flexible. For a testbed environment, flexibility
outweighs rigorous performance considerations. However,
in performance-critical scenarios, one would switch to
more performance-oriented implementation platforms,
e.g., C++, trading flexibility for performance.

5. Conclusion and Related Work
The scope of this paper is client-based query processing in
advanced DBMS which are usually conceived for client/
server environments. Application-oriented processing is
performed mostly in the main-memory buffer at the client.
To dynamically exploit the buffer contents for query
processing, advanced DBMS should support run-time
optimization. This measure must be complemented by a
flexible and efficient code-generation phase.Dynamic
code assembly, our approach to achieve this objective,
allows to combine pieces of precompiled code fragments to
executable code reducing explicit code generation to a
minimum. We exemplified dynamic code assembly

referring to the KBMS KRISYS and its implementational
platform Common Lisp. Further, we showed the feasibility
of our approach for any other C-like language.
Dynamic code assembly is based on a strictly orthogonal
specification and implementation of the concepts under-
lying the plan-operator level. These concepts, which can be
found in most (advanced) DBMS, comprise

- knowledge-model semantics (base predicates),
- plan-operator functionality,
- communication between plan operators (LAS),
- main-memory data structures (AS), and
- units of execution (blocks).

This modular partitioning of concepts allows to efficiently
handle the tasks involved in code generation at run time.
Our approach as well as the mechanisms necessary for its
implementation are not restricted to KRISYS but are
generally valid for (advanced) DBMS requiring flexible
and efficient generation of executable code at run time.
Run-time optimizations may be motivated either by the
desire to flexibly adjust execution strategies, as pursued by
Volcano [10], or by the desire to dynamically exploit buffer
contents, as proposed for ADMS [3]. In Volcano, meta-
operator choose-plan was introduced that allows to
construct an optimized query execution plan from a set of
alternative plan fragments prepared by the optimizer. This
solution is different from the one presented in this paper,
since it allows flexibility only on the level of plan
fragments, i.e., on already generated code, and not on the
underlying PO level. For efficiency reasons, ADMS
integrates matching and query optimization: The query
graph is reduced by those parts that match to cached query
results and organized by a specific data structure called
logical access-path schema. In our case, representation of
buffered and intermediate (cached) data coincide. Hence,
matching and optimization operate on a single representa-
tional framework, thus simplifying query-processing

(make-las :name LAS-2
:function po2
:parameter (:join-pred <...>

 :las-1 :las-2))

(make-las:name LAS-1
:function po1
:parameter (:sort-pred <...>

 :las-1))

(defstruct LAS
function
parameter
buffer
current-value)

po1

po2

po3

po4
po5 po6

po7
(make-las :name LAS-3

:function po3
:parameter (:key-fun1 <...> :less-pred <...>

 :las-1 :las-2))

Fig. 7: Internal block structure

(make-las :name LAS-6
:functionREAD-FROM-AS
:parameter (:as <...> :cursor <...>))

(make-las :name LAS-5
:functionREAD-FROM-AS
:parameter (:as <...> :cursor <...>))

(make-las :name LAS-4
:functionREAD-FROM-AS
:parameter (:as <...> :cursor <...>))

implementation. In general, it is difficult to compare our
approach to code generation in other DBMS (including
Volcano and ADMS), since there is hardly any detailed
information on that topic in literature. For relational
approaches, mostly System R is mentioned which,
however, does not focus on run-time optimization [18]. To
our knowledge, there are no OODBMS that offer compa-
rable concepts for optimizing and processing arbitrary
queries on the client’s buffer contents. ObjectStore [2], for
example, provides mainly simple search arguments (path
expressions) for navigating the buffer contents. Selecting
appropriate indices handling simple search arguments and
execution are interleaved. This optimization measure is
different to our approach of employing run-time optimi-
zation before execution.

One of the primary goals for future work is to investigate
the effects of dynamic code assembly on query optimi-
zation in KRISYS. The flexibility of this approach allows
to generate a preliminary plan-level representation already
at compile time. Hence, instead of generating a plan from
scratch, run-time optimization can be restricted to adapting
this solution to the current evaluation scenario. Moreover,
it might be worthwhile storing plans of previously
processed queries for later re-use. This may be advanta-
geous for queries that are posed comparatively often,
however, it must consider varying buffer contents.

References
[1] Austin Kyoto Common Lisp, Version 1.605, 1991.
[2] Cattell, R. (ed.): Next Generation Database Systems, Special
issue of Communications of the ACM, Vol. 34, No.10, 1991.
[3] Chen, C.M., Roussopoulos, N.: The Implementation and
Performance Evaluation of the ADMS Query Optimizer: Integrat-
ing Query Result Caching and Matching, in: Advances in Data-
base Technology - EDBT ‘94, Jarke, M., Bubenko, J. (eds.),
LNCS 779, Springer-Verlag, 1994, 323-336.
[4] Deßloch, S.: Semantic Integrity in Advanced Database Man-
agement Systems, Doctoral Thesis, Dept. of Computer Science,
University of Kaiserslautern, Sept. 1993.
[5] DeWitt, D., Futtersack, P., Maier, D., Velez, F.: A Study of
Three Alternative Workstation Server Architectures for Object-
Oriented Database Systems, Proc. 16th VLDB Conf., Brisbane,
Australia, 1990, 107-121.
[6] Deßloch, S., Härder, T., Leick, F.J., Mattos, N.: KRISYS - a
KBMS Supporting the Development and Processing of Advanced
Engineering Applications, Bayer, R., Härder, T., Lockemann, P.
(eds.): Objektbanken für Experten, Springer 1992.

[7] Deßloch, S., Leick, F.J., Mattos, N.M.: A State-oriented Ap-
proach to the Specification of Rules and Queries in KBMS, ZRI-
Report 4/90, University of Kaiserslautern, 1990.
[8] Freytag, J., Maier, D., Vossen, G.: Query Processing for Ad-
vanced Databases, Morgan Kaufmann, 1993.
[9] Graefe, G, DeWitt, D.: The EXODUS Optimizer Generator,
Proc. 1987 ACM SIGMOD Conf., San Francisco, 1987, 160-172.
[10] Graefe, G.: Volcano, an Extensible and Parallel Dataflow
Query Processing System, to appear in: IEEE Transactions on
Knowledge and Data Engineering, 1993.
[11] Haas, L. Freytag, J., Lohman, G., Pirahesh, H.: Extensible
Query Processing in Starburst, in: Proc. ACM SIGMOD Conf.,
Portland, 1989, 377-388.
[12] Härder, T., Reuter, A.: Database Systems for Non-Standard
Applications, Proc. Int. Computing Symposium on Application
Systems Development (ed. H.J. Schneider), Nuremberg, Germa-
ny, March 1983, Report 13 of the German Chapter of the ACM,
Teubner Verlag, Stuttgart, 452-466.
[13] Hong, W., Stonebraker, M.: Optimization of Parallel Query
Execution Plans in XPRS, Distributed and Parallel Databases,
Vol. 1, 1993, 9-32.
[14] Eich, M. (ed.): IEEE Transactions on Knowledge and Data
Engineering, Special Issue on Main-Memory Databases, Vol. 4,
No. 6, 1992.
[15] Jarke, M., Koch, J.: Query Optimization in Database Sys-
tems, Computing Surveys, Vol. 16, No. 1, June 1984, 111-152.
[16] Kim, W.: Introduction to Object-Oriented Databases, Com-
puter System Series, MIT Press, 1991.
[17] Lippman, S.: C++ Primer, Addison-Wesley, 1989.
[18] Lorie, R., Wade, B.: The compilation of a high level data lan-
guage, IBM Research Report RJ 2589, 1979.
[19] Mattos, N.M.: Abstraction Concepts: the Basis for Data and
Knowledge Modeling, 7th Int. Conf. on Entity-Relationship Ap-
proach, Rome, Italy, Nov. 1988, 331-350.
[20] Mattos, N.: An Approach to Knowledge Base Management,
in: LNCS 513, Springer-Verlag, 1991.
[21] Pirahesh, H., Mohan, C., Cheng, J., Liu, T.S., Selinger, P.:
Parallelism In Relational Database Systems: Architectural Issues
And Design Approaches, IBM Research Report RJ 7724, 1990.
[22] Pirahesh, H., Mohan, C.: Evolution of Relational DBMSs to-
ward Object Support: a Practical Viewpoint (invited talk), Proc.
GI-Fachtagung "Datenbanksysteme in Büro, Technik und Wis-
senschaft", Kaiserslautern, March 1991, Informatik-Fachberichte
270, Springer-Verlag, 1991, 16-37.
[23] da Rocha, Rafael: Transformation and Rewrite in the Query-
Processing System of KRISYS, Master Thesis (in portuguese),
UFRGS, Porto Alegre, May 1992.
[24] Sequent Computer Systems: System Summary, 1990.
[25] Steele Jr., G. et al.: Common Lisp - The Language, 2nd edi-
tion, Digital Equipment Corp., 1990.
[26] Thomas, J., Deßloch, S.: A Plan-Operator]Concept for Cli-
ent-Based Knowledge Processing, Proc. 19th VLDB Conf., Au-
gust 1993, Dublin, Ireland, 555-565.
[27] Thomas, J., Mitschang. B., Mattos, N.: Parallelism in Client-
Based Knowledge Processing - The KRISYS Approach. SFB-Re-
port 25/93, University of Kaiserslautern, 1993.
[28] Thomas, J., Mitschang. B., Mattos, N., Deßloch, S.: Enhanc-
ing Knowledge Processing in Client/Server Environments, Proc.
2nd Int. Conf. on Information and Knowledge Management, Nov.
1993, Washington, D.C., USA, 324-334.
[29] Valduriez, P., Danforth, S., Hart, B., Briggs, T., Cochinwala,
M.: Compiling FAD, a Database Programming Language, Proc.
2nd Workshop on Database Programming Languages, June 1989,
375-393, 1989.

explicit
compilation

DCA
in Lisp

DCA
in C++

notation
extensibility low high medium
flexibility low high high
start-up time high low low
execution overhead none medium low

Fig. 8: Comparing code-generation strategies

break-even points

execution

startup

number of PO calls

time

time

